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Abstract. In robotics, a key problem is for a robot to explore its envi-
ronment and use the information gathered by its sensors to jointly pro-
duce a map of its environment, together with an estimate of its position:
so-called SLAM (Simultaneous Localization and Mapping) [12]. Various
filtering methods – Particle Filtering, and derived Kalman Filter meth-
ods (Extended, Unscented) – have been applied successfully to SLAM.
We present a new algorithm that adapts the Square Root Unscented
Transformation [13], previously only applied to feature based maps [5],
to grid mapping. We also present a new method for the so-called pose-
correction step in the algorithm. Experimental results show improved
computational performance on more complex grid maps compared to an
existing grid based particle filtering algorithm.

1 Introduction

This paper addresses the classical robotics problem of a robot needing to ex-
plore its environment and use the information gathered by its sensors to jointly
produce a map of its environment together with an estimate of its position:
so-called SLAM (Simultaneous Localization and Mapping) [12]. SLAM is an in-
herently sequential problem, which suggested the use of Bayesian Filters. Early
path tracking methods such as the Kalman Filter (KF) [12] are based on the
idea that, given knowledge about the position and heading of a moving object,
observed data can be used to track that object; the problem becomes more dif-
ficult when the sensors are mounted on the moving object itself. The Extended
KF (EKF) [12] is a successful method for modeling the uncertainty of a robot’s
noisy measurements (e.g. encoders, range finders), however it is unstable and im-
precise because of linearization[1]; the Unscented KF (UKF) [8,15] avoids such
approximation.

Particle filtering is a popular sequential estimation technique based on the
generation of multiple samples from the distribution that is believed to approxi-
mate the true distribution. Studies have shown that particle filtering can better
approximate a robot’s real position than KF techniques, but the method is com-
putationally intense because every particle is updated through a lightweight KF
derived technique. Particle filtering has been used successfully to solve SLAM for
both grid and feature based maps [12]. Grid maps generate a representation of
the surrounding (usually closed) environment through a grid of cells, using raw
sensor data for precisation. In contrast, feature based maps describe a (typically

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 121–130, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



122 S. Zandara and A. Nicholson

open) environment through a set of observed features, usually sensor readings
(e.g. range and bearing).

Unscented Particle Filtering [13] for SLAM [7] has been successfully applied
to feature based mapping. It mixes Particle Filtering and UKF by updating
particles using an unscented transformation, rather than updating the uncer-
tainty through Taylor linearisation of the update functions. Our research draws
from this wide spectrum of KF and particle filtering algorithms; in Section 2 we
provide a brief introduction (see [16] for more details). We present a new algo-
rithm (Section 3) which we call SRUPF-GM (Square Root Unscented Particle
Filtering for Grid Mapping) to adapt Unscented Particle Filtering to grid based
maps. We also present a new method for the so-called pose-correction step in
the algorithm. In Section 4 we present experiments comparing its performance
to the well-known GMapping algorithm [2], on three grid environments. Our re-
sults show that while SRUPF-GM is slower on simpler maps, it is faster on more
complex maps, and its performance does not degrade as quickly as GMapping
as the number of particles increases.

2 Background

2.1 Particle Filtering for SLAM Problem

The main idea behind Particle Filtering applied to SLAM [11] is to estimate
sequentially the joint posterior p(xt, m|xt−1, zt, ut) for the robot’s state x (which
is usually its position X , Y and bearing θ), and the map of the environment m.
This is done using its previous state (x at time t − 1), odometry information
(u at time t), that is, the robot’s own measurements of its movements from its
wheels, and the measurements from sensors (z at time t), e.g. lasers, sonars, etc.

p(xt, m|xt−1, zt, ut) has no closed solution. In Particle Filtering, its estimation
can be decomposed by maintaining a set of n poses, S, that make up a region of
uncertainty (a Monte Carlo method); these poses are called particles [10]. Each
particle has its own position, map and uncertainty; the latter is represented by a
Gaussian defined by its position μ (mean) and covariance Σ. The generated distri-
bution is called the proposal. The proposal is meant to represent the movement of
the robot and is usually derived from u and z. It is proven that to solve SLAM the
noise that is inherent in the odometry and sensor readings must be modeled; all
SLAM algorithms add a certain amount of noise to do this. The final set of parti-
cles becomes the robot’s final pose uncertainty ellipse. Another key characteristic
of Particle Filtering is resampling, which aims to eliminate those particles which
are believed to poorly represent the true value. This resampling is done using a
weighting mechanism, where each particle has an associated weight. A high-level
description of the particle filtering algorithm is given in Algorithm 1.

2.2 Unscented Transformation

The odometry update in particle filtering can be implemented in different ways;
thus far the most well-known technique is based on an EKF update, which
unfortunately introduces unwanted complexity and error [1]. The Unscented
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Algorithm 1. Particle filtering algorithm
while Robot received data from sensors do

for all xi in S do
Apply odometry to update robots position(xi,ut)
Apply sensor measurement to correct pose(xi,zt)
Generate Map(xi,zt)
xi updated by sampling new pose
Update Weight(xi)

end for
S = resample();

end while

Transformation (UT) [15] aims to avoid Jacobian calculations and has been proved
to better approximate the true values. Instead of linearizing odometry and mea-
surement functions, the UT generates a better approximated Gaussian that repre-
sents the true distribution through a set of so-called Sigma points. It has been used
to generate feature based maps using laser or visual sensors [8,5]. Sigma points are
generated deterministically using the previous mean and added noise.

Known Problems. The Unscented Transformation is proven to be more accu-
rate than EKF, but its calculation is difficult. During the selection of the Sigma
points one needs to calculate the square root of the augmented covariance ma-
trix; this is usually done through a Cholesky Factorization. However, this method
needs the matrix to be positive-defined, otherwise the method dramatically fails.
Unfortunately, after several updates, the matrix may become non-positive [4].
Different solutions have been proposed; here, we look at one such solution, the
Square Root Unscented Transformation method [14]. In this method, the square
root of the covariance matrix is propagated during the updating sequence; this
requires a number of other changes in the updating algorithm. Complexity is
also reduced from O(N3) to O(N2) for N Sigma points.

3 The New Algorithm: SRUPF-GM

The Unscented Particle Filter (UPF) as described in [7,5] is an algorithm for
feature based maps. Here we combine elements of the UPF with aspects of
the GMapping Particle Filtering algorithm [2] to give an improved algorithm,
SRUPF-GM (see Algorithm 2), for SLAM with grid based maps.

3.1 Updating Robot’s State Using Odometry Information

All SLAM filters add noise when updating the state using the robot’s odometry
information. While investigating the most recent GMapping implementation [3],
we found differences from the method reported in [2]. For example, rather than
updating using a KF method, they approximate it, generating the noise around
four independent pre-defined zero-mean Gaussians. While fast, this does not
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Algorithm 2. SRUPF-GM Update Step Algorithm
Input: previous state set S =< x[t−1,0], ..., x[t−1,n] >, sensor zt and odometry ut data
at time t;
{Cycle through all particles}
for all xi in S do

{Sigma Point Generation}
xaug = [xi 0 0]
covaug = [covi Cholesky(Q)]
SP = [xaug xaug + γ(covaug)i xaug − γ(covaug)i−n] for i=0 to 2n
{Odometry Update Step, function f}
for all xj in SP do

< v, δ > = ut

V = v + xj [3]
G = δ + xj [4]

xj =

⎛
⎝

Xxj + V × cos(G + θxj )
Yxj + V × sin(G + θxj )

θxj + G

⎞
⎠

add(ST,xj)
end for
xi =

∑2n
i=0 ωcxj for all xj in ST

covi = QRDecomposition(< xj − xi >) for j = 1 to 2n
covi = CholeskyUpdate(covi, x0 − xi, w0)
{Measurement Update Step, Map Generation and Weight Update}
if measurementoccurs then

< xi, covi > = scanmatch(xi, zt)
Generate Map(xi,zt)
Update Weight(xi)

end if
xi = sample new pose(xi, cov′

i × covi) {Final Update Step}
end for
if variance of particle weight is above threshold then

S = resample() {Resampling Step}
end if

provide the mean and covariance information we need. Instead, we replace the
GMapping odometry update step with a more accurate Square Root Unscented
Transformation update step. We augment the mean and the covariance, which
are then used to compute the Sigma points (SPs):

μaug =
[
μt−1

0

]
, Σaug =

[
Σt−1 0

0
√

Q

]
(1)

where Q is the added noise matrix and is constant for every update step. SPs
spi are then calculated using the augmented covariance matrix:

sp0 = μaug (2)
spi = sp0 + (γΣaug)i i = 1, ...., n (3)

spi = sp0 − (γΣaug)i−n i = n + 1, ...., 2n (4)
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γ controls how fast uncertainty increases. The SPs are passed through the odom-
etry function f that incorporates the noise and odometry information to generate
vectors spi of size 3 (X, Y, θ).

spi = f(spi, ut) i = 0, ..., 2n (5)

The new mean is calculated from the set of SPs. The covariance is calculated
with a QR Decomposition of the weighted deltas between the SPs and the new
mean.

μ =
2n∑
i=0

ωgspi (6)

Σ = QRDecomposition
[√

|ωc|(spi − μ)
]

i = 1, ...2n (7)

Σ = CholeskyUpdate (Σ, sp0 − μ, ω0) (8)

where ωg and ωc are weights on the SPs;1 our weight system follows [5]. Finally,
we add randomness; the particle’s new pose is sampled around the Gaussian
generated by:

xi ∼ N (μ, ΣtΣ) (9)

3.2 Measurement Update

Gmapping’s measurement update step uses laser information both to correct
the robot’s pose and to generate the map. While we keep the map generation
unchanged, we changed the measurement update step. Our method uses the
usual UT measurement update step but with a different pose correction method.

Uncertainty Decrement. SPs are passed to the measurement update function
h, which acts as a lightweight pose corrector and returns the best SP ν.

ν = h(spi, zt) (10)

Σμ,ν =
2n∑
i=0

√
ωc(spi − μ)(spi − ν)t (11)

Σν = QRDecomposition
[√

|ωc|(spi − ν)
]

i = 1, ...2n (12)

Σν = CholeskyUpdate (Σν , sp0 − ν, ω0) (13)

Σμ,ν is the cross covariance between the newly calculated mean and the previ-
ously calculated mean (with odometry). The last step is then to calculate the
final mean and covariance:

K = Σμ,ν [ΣνΣt
ν ]−1 (14)

μ = ν (15)

Σ = CholeskyUpdate
(
Σ, KΣt

ν,−1
)

(16)
1 Not to be confused with the particle weights.
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(a) (b)

Fig. 1. (a) GMapping pose correction, initial step. Δ is divided by two until a better
pose is found. (b) SRUPF-GM pose correction delta uses uncertainty ellipse.

where K is the Kalman Gain. We do not want to perturbate the final mean, as
the scan matcher returns the best pose, so μ is just the best Sigma point. The
final Σ is decreased with M successive Cholesky updates using all the M columns
of the resulting matrix KΣt. No sampling is done after the scan-matching step.

Pose Correction. One reason GMapping works quite well is due to its accu-
rate pose-correction step. The pose corrector generates a number of deterministic
samples around a particle’s mean and tries to find the best pose within a given δ.
Pose correction checks, for every measurement update, if the particle is generat-
ing a consistent map. It uses the scan-matching method that incorporates a new
scan into particle’s existing map to generate a weight. This value is also used
to weight the particle. Our square root unscented particle approach works quite
well with no accurate pose correction (function h) on simple maps, however more
challenging maps do require a pose-correction step. Thus SPs are no longer used
to search for the best pose, instead their mean is taken as the starting point.

Our pose correction follows GMapping’s with the difference that the δ on
which the deterministic samples are generated depends on the covariance covt

generated during the odometry update. This makes the computation faster than
the original GMapping pose-correction, because it searches for the best pose
inside the covariance ellipsis, whereas Gmapping version searches over a user
pre-defined δ that would eventually include a huge number of improbable poses.
Note that (10) in this case is omitted. Figure 1 illustrates the intuition behind
our pose-correction approach compared to GMapping pose-correction.

4 Experiments

We tested two versions of the new SRUPF-GM algorithm – with and without
pose correction – against the original GMapping implementation. Each algorithm
was tested on three different grid-map SLAM problems provided by the Radish
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Repository [6] in CARMEN [9] format. Each problem consists of a dataset gen-
erated by the sensors of a robot driven around by a human controller, inside a
building. The dataset consists of odometry and laser scan readings.

The Radish Repository does not provide a real map neither in an image
format nor in an accurate sensor form. Hence it was not possible to compare the
algorithms in terms of the quality of the map (for example by generating an error
measure). Therefore, we compare the algorithms firstly by whether they achieve
the main goal of generating a consistent map. The consistency test assessed
whether the overall shape of the map follows the real map, by visually inspecting
an image of the results. Secondly, we compared the computation time of the
algorithms. Each result reported for the following experiments is the mean of the
computational time calculated for 10 runs. To explore the relative computational
performance of the algorithms, we also varied two important parameters: (1) the
number of particles, and (2) the amount of added noise.

4.1 Experiment 1

The first test was done on a very simple map, generally squared with one single
loop and no rooms, as shown in Figure 2(a). For this experiment, we used 30 parti-
cles, and the noise parameters were linear 0.1, angular 0.2. (The noise parameters
were chosen through preliminary investigations which showed, coincidentally, that
these were the best values for all three algorithms.) Table 1 shows the difference
in computational time. As one can see, on this simple map, Gmapping is quite
fast even using its pose-correction method. SRUPF-GM without pose correction
is faster than GMapping, while SRUPF-GM with pose correction is slower, as ex-
pected, due to the complexity introduced by the QR and Cholesky computations.

(a) (b) (c)

Fig. 2. (a) NSH Building, (b) Cartesium Building, (c) MIT CSAIL
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Table 1. Expt 1: Computation time (30 particles, 10 runs)

Algorithm Average Computation Time (sec) Std. Deviation

SRUPF-GM without pose correction 17.3140 0.2340
GMapping 21.7994 0.3635

SRUPF-GM with pose correction 27.2739 0.5679

(a) (b)

Fig. 3. Expt 2 (above) and Expt 3 (below) comparing SRUPF-GM with and without
pose correction (pc/npc) to GMapping, increasing (a) no. of particles (b) added noise

4.2 Experiment 2

In the second experiment the same algorithms were applied to a dataset of
medium difficulty, shown in Fig. 2(b). This map increases the difficulty due to the
robot’s path, which generates a number of loops; closing a loop in the right way
is not a simple task. We minimized the error and the number of particles for each
algorithm for which it was always successful (generating a consistent accurate
map). In this experiment, we varied the noise parameters and the number of
particles to explore the resultant changes in computational time.

Figure 3(a)(above) shows that the computation time for all the algorithms
increases linearly in the number of particles, however GMapping’s results have
the largest gradient. Increasing the number of particles is necessary to increase
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precision. Figure 3 (b)(above) shows the variation of time when increasing the
odometry noise. Note that we had to use different minimum added noise for
each algorithm; the added noise is algorithm-specific as it depends on how the
odometry incorporates this noise into the model function. As the noise is in-
creased, SRUPF-GM with no pose correction shows no significant difference, the
computation time for GMapping increases, while the time for SRUPF-GM with
pose correction decreases. The explanation for this is found in the pose correction
function: by searching inside the uncertainty ellipse SRUPF-GM avoids checking
improbable pose. On the other hand, if the ellipse is too small SRUPF-GM may
search in vain, hence SRUPF-GM always requires added noise that is not too
low. For all the algorithms, increasing the added noise across these values did
not decrease accuracy. Of course if the added noise is too high, all the algorithms
may no longer find a solution; this ‘too high’ noise value depends on both the
algorithm and the map.

4.3 Experiment 3

In this last experiment, a relatively complicated map was used, still relatively
small in area but with an irregular shape and numerous loops in the path. This
dataset was taken in the MIT CSAIL building (see Figure 2(c)). On this dataset
SRUPF-GM with no pose correction always failed to generate a consistent map
(regardless of the number of particles and the amount of noise). Hence it is clear
that pose correction is actually needed to generate more difficult maps. This fact
of course makes SRUPF-GM without pose correction unusable unless the map
complexity is known a priori (a rare case). Results are shown in Fig. 3(below).
The difference in the computational time is even more pronounced than for the
simpler maps, with the computation time again increasing linearly as the number
of particles is increased. And again, SRUPF-GM performs better as the noise
increases, while GMapping takes longer.

5 Conclusions and Future Works

In this paper, we have presented an improved particle filtering algorithm for
solving SLAM on grid based maps. We used as our starting point the GMapping
particle algorithm which has been shown (as we confirmed), to generate very
accurate maps even for large scale environments. To improve this algorithm,
we took aspects from the square root Unscented particle filtering algorithms,
previously only applied to feature based maps. We adapted this as required for
grid based mapping, increasing the precision during the odometry update as well
as decreasing the computation time required for pose correction. One obvious
future step is to obtain suitable test datasets that give the real map in a form
that allows accurate error measurements to be computed, which will allow us to
compare the quality of the resultant maps more accurately. We expect to be able
to improve the computation time of SRUPF-GM’s pose correction and further
optimize the overall algorithm. We envisage these improvements being based on
topological hierarchical methods that should decrease the computation time by
focusing the accuracy on smaller submaps.
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