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QoS Routing in Networks with Uncertain Parameters
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Abstract—We consider the problem of routing connections with
quality of service (QoS) requirements across networks when the
information available for making routing decisions is inaccurate.
Such uncertainty about the actual state of a network component
arises naturally in a number of different environments. The goal
of the route selection process is then to identify a path that
is most likely to satisfy the QoS requirements. For end-to-end
delay guarantees, this problem is intractable. However, we show
that by decomposing the end-to-end constraint into local delay
constraints, efficient and tractable solutions can be established.
Moreover, we argue that such decomposition better reflects the
interoperability between the routing and reservation phases.

We first consider the simpler problem of decomposing the
end-to-end constraint into local constraints for a given path.
We show that, for general distributions, this problem is also
intractable. Nonetheless, by defining a certain class of probability
distributions, which includes typical distributions, and restricting
ourselves to that class, we are able to establish efficient and exact
solutions. We then consider the general problem of combined
path optimization and delay decomposition and present efficient
solutions.

Our findings are applicable also to a broader problem of
finding a path that meets QoS requirements at minimal cost,
where the cost of each link is some general increasing function of
the QoS requirements from the link.

Index Terms—Delay, metric inaccuracy, networks, QoS, QoS-
dependent costs, routing, topology aggregation.

I. INTRODUCTION

BROADBAND integrated services networks are expected
to support multiple and diverse applications, with various

quality of service (QoS) requirements. Accordingly, a key
issue in the design of broadband architectures is how to
provide the resources in order to meet the requirements of
each connection. The establishment of efficient QoS routing
schemes is, undoubtedly, one of the major building blocks in
such architectures. Indeed, QoS routing has been the subject
of several studies and proposals (see, e.g., [2], [4], [5], [7],
[10], and references therein). It has been recognized that the
establishment of an efficient QoS routing scheme poses several
complex challenges. One of the major challenges results from
the inherent uncertainty of the information available to the
QoS routing process.

As networks grow in size and complexity, full knowledge
on network parameters is typically unavailable. Indeed, each
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single entity in the network cannot be expected to have detailed
and instantaneous access to all nodes and links. Routing must
therefore rely on partial or approximate information and still
meet the QoS demands. Among the various QoS parameters,
the two major ones are bandwidth and end-to-end delay. In
the presence of inaccuracies, the former was shown to be
polynomially solvable, while the latter poses major obstacles,
such as computational intractability [5].

Our model of uncertainty assumes a probability distribution
for each link that represents a tradeoff between the QoS
guarantees demanded from the link and the probability that
the link can meet those demands. This tradeoff is modeled
by link costs, which are increasing functions of the QoS
requirements. In the framework of parameter uncertainty, the
“cost” corresponds to the probability of failure, i.e., not being
able to meet the requirements. However, it is important to
note that our results hold for a more general case in which the
costs do not necessarily originate from uncertainty. The routing
problem is then to establish a connection that satisfies some
QoS requirements, at a minimal cost, where the cost function
associated with each link increases with the QoS required from
it. For simplicity, we will focus on the uncertainty perspective.

In this paper, we consider end-to-end delay guarantees.
We explore the impact of inaccurate network information
on the QoS routing process, identify useful and problematic
properties in this process, and present efficient solutions to the
various related problems.

We proceed to discuss the possible origins of uncertainty in
network parameters.

A. Origins of Uncertain Parameters

1) Network Dynamics:Many parameters associated with
delay requirements are affected by temporal conditions, such
as congestion. Parameters advertised by a link might be based,
for example, on average behavior or on worst-case behavior.
In either case, the advertised parameters are not accurate.
This inaccuracy can be eliminated by rapidly advertising the
current, updated, accurate conditions. Unfortunately, this is
impractical when the network is highly dynamic and changes
are frequent. Thus, advertised values should be considered as
uncertain. The precise probability distributions associated with
each value depends ona priori knowledge on the frequency
of updates and the dynamics of the network.

2) Aggregation in Large Networks:In interconnected net-
works, the sheer growth in information makes it practically
impossible to maintain accurate knowledge about all nodes
and links. Accordingly, proposals have been made on how
to provide the needed information in a scalable form. For
example, the ATM Forum PNNI standard [7] introduces a
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hierarchical process that aggregates information as the network
gets more and more remote. However, the aggregation process
inherently decreases the accuracy of the information and
introduces uncertainty. The semantics of the available param-
eters depend on the aggregation method used. For instance,
we could consider the parameters as averages or as best
or worst cases. Some aggregation schemes may advertise a
possible range for each parameter, which may be considered
as uniformly distributed within this range. Other schemes may
imply different probability distributions and publish specific
parameters associated with these distributions, such as mean
and variance.

3) Hidden Information: Interconnected networks may in-
clude private networks that hide some or all of their infor-
mation. One reason for this could be hiding the network’s
internal proprietary mechanisms. Typically, such networks
would advertise information that contains inaccuracies or
advertise ranges for specific parameters. We can interpret this
information as probability distributions, based on parameters
supplied by these networks, or by prior experience.

A second possible cause for hidden information in sub-
networks is to maintain some degree of freedom in internal
routing. For each request, the subnetwork is free to choose any
internal route that satisfies the QoS requirements. The network
may advertise the likelihood of path availability for each QoS
requirement, in which case the QoS parameters should be
treated as random variables.

4) Approximate Calculation:Even the “exact” node and
link parameters cannot be assumed to be truly accurate.
Typically, they are just approximations of the real parame-
ters and values, since they are based on elaborated models
that cannot fully represent the intricacy of the devices. The
calculated parameters are usually upper bounds (as in [8])
or incorporate some inaccurate assumptions. Approximate
calculation is hence yet another source of uncertainty in the
advertised parameters.

B. Goals of the Paper

Our overall goal is to investigate the impact of uncertain
parameters on routing with end-to-end delay guarantees. We
assume a framework where the delay guarantees that are
advertised by each link are random variables with known
distributions. These variables represent the probability that a
link can satisfy a QoS delay requirement. We further assume
that this knowledge is available to us, and that the delays on
the links are independent.1 A source node is presented with a
request to establish a new connection that meets given end-to-
end delay requirements. The source node seeks a path that is
most likely to satisfy these requirements.

The basis for this work was laid in [5]. That study presented
the framework of a network with uncertain parameters and
solved the QoS routing problem for rate demands and for
delay demands under a rate-based model, as in [9]. It also
presented heuristic methods for dealing with end-to-end delay
requirements in models that are not rate-based, and optimal

1This does not necessarily imply that probability distributions are advertised
by the nodes; this point is elaborated in Section II-A.

solutions for specific cases. This paper extends that framework
and achieves optimal and-optimal solutions for the general
case.

The rest of the paper is organized as follows. In Section II,
we introduce terminology and definitions and present different
variants of the problem. In Section III, we consider the
simpler problem of decomposing the end-to-end constraint into
local constraints for agiven path.We show that, for general
distributions, this problem is also intractable. Nonetheless, by
defining a class of probability distributions, which posses a
certain convexity property, and restricting ourselves to that
class, we are able to establish efficient and exact solutions.
Moreover, we show that typical distributions would belong to
that class. We then proceed to consider the combined problem
of path selection and constraint decomposition. As a first step,
in Section IV we discuss therestricted shortest pathproblem,
which is closely related to our problem. Then, in Section V,
we present a solution to the QoS routing problem, under the
assumption that the end-to-end delay is partitioned along the
optimal path. In Section VI, we present an efficient-optimal
approximation scheme. Conclusions are presented in Section
VII. Due to space limits, many of the proofs and technical
details are omitted from this version and can be found in [6].

II. M ODEL AND PROBLEMS

This section introduces the notations and definitions that
are used throughout the paper.

The network topology is known and is represented by a
graph . There is a single source and a single
destination , and we need to establish a connection with
QoS requirements, namely end-to-end delay requirements. We
denote by the number of links in a path .

A. Uncertain Parameters

The uncertainty lies in the delay parameter of the links.
For each link , we are given a function which is
the probability that the link can guarantee a delay bound.
We denote by the probability that an end-to-end delay
bound can be guaranteed on the path. We shall assume
that the functions are known and that the delays
are independent.

These parameters may be (partially) advertised as in any
link-state routing scheme. The distributions can be either an
interpretationof available parameters as probability distribu-
tions or may be deduced from prior experience or bea priori
assumptions. For instance, we may consider the delays as
uniformly distributed around the advertised value, where the
size of the region is determined by the update threshold. The
exact mechanisms for obtaining these distributions are out of
the scope of this paper.

Note that even in a dynamic network the functions do
not change very rapidly; rather, the dynamics are incorporated
in the probabilities. Hence, using an uncertainty perspective
allows less frequent updates which are a key problem when
dealing with QoS parameters. Also note that, as link pa-
rameters reflect the chances of successful connection setup,
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they might vary with the source and possibly with the flow
specification.

B. Problems definition

As mentioned, we need to satisfy a given end-to-end delay
constraint. Observe that we do not seek a shortest path but
rather a path that is most likely to satisfy our delay constraints.
This can be formalized as follows.

Problem MP—Most Probable Path:Given an end-to-end
delay constraint , find a path , such that for every other
path , .

It is important to notice that problem MP is different from
finding the path that is most likely to be shortest (when
considering as a random variable with a distribution).
Indeed, it is possible that the path would unlikely be the
shortest path despite being the most likely to satisfy our delay
constraints.

After an optimal path is selected, a reservation phase takes
place. Usually, this involves decomposing the end-to-end delay
constraints into local constraints, each imposed on a link along
the path. Such a decomposition allows evaluating the delay
requirements in terms of link resources (e.g., rate [9]). Thus,
the total delay guarantee should be partitioned into a set of
guarantees such that .

Definition 1: Given a path and a set of link delay
requirements , define

Different partitions may lead to different probabilities of
success, and, as we shall see, finding the best partition (for a
given path) is a difficult problem.

Problem OP—Optimal Partition:Given a path and a
delay , find a partition , s.t.

, for every (other) partition .
The assumption that the delay is partitioned imposes a new

restriction on the solution of problem MP. It also changes the
probability space, since each event is now determined by the
solution to problem OP. This leads to a revised problem as
follows.

Problem OP-MP—Optimally Partitioned MP:Given an
end-to-end delay constraint , find a path s.t. for every
other path , .

Problem OP-MP is identical to problem MP except that the
delay constraint is partitioned. As argued above, partitioning
the delay is a requirement that often rises from the actual way
in which delay guarantees are requested and provided.

C. Example

We illustrate the problems through the following exam-
ple. Consider the network of Fig. 1, where the probability
distribution of each link is listed.

There is a single source and a single destination . All
paths go through and the routing problem is merely choosing
which of the three links will be used to traverse fromto .
We will assume that the end-to-end delay bound is 3.

Fig. 1. Example.

It can be easily verified that the probability of satisfying the
end-to-end bound is 0.5 for the left link, 0.2 for the middle
link, and 0.54 for the right link. Thus, the solution to problem
MP is the path through the right link.

If we assume the delay requirement must be later partitioned
into local constraints then we must solve problem OP for each
path. The optimal partition on the right path is (1, 2), which
leads to a probability of success of 0.45. The same partition is
optimal for the left path also, leading to a (higher) probability
of success of 0.5. The optimal partition for the middle path
is (2, 1) which has a probability of success of only 0.2. Note
that the naive “equal-partition” solution to problem OP (1.5,
1.5) leads to a very poor probability of success of 0.1 on the
left path and even worse on the other paths. Next, observe
that themiddle path has the shortest expected delay yet it is
a bad choice for both problems MP and OP-MP. Finally, note
that the solution to problem OP-MP in this case is the left
path, while the solution to problem MP, i.e., the right path, is
significantly inferior.

D. Practical Considerations

In practice, there are further restrictions to the above prob-
lems.

One such restriction is on the minimal probability of suc-
cess, i.e., ; in other words, we do not
consider paths with a probability of success smaller than.
This imposes a restriction on the minimum probability for each
link .2 Since is monotonic increasing, we get a
restriction on the minimal delay allocated to each link. This
means that implies for each . Note
that this restriction always holds, as . Accordingly, in
the following we shall assume that for every link, we have
a positive minimal delay . Moreover, we shall assume that
there is a nonzero probability , such that for every link
we have , that is, the probability that the link can
guarantee a delay of is positive.

A second restriction is regarding the granularity of the delay
values. In practice, the delays cannot be broken into arbitrarily
small pieces. We denote the smallest possible change in delay
by , i.e., is the resolution we have for the delay. The smaller

is, the more accurate the solution is, but generally at the cost

2Typically, p0 is greater thanpmin, since the probability of a path is
determined by all its links. For instance, ifk links havep0 as their probability
of success then we must havep0 �

p
pmin.
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of higher complexity in order to solve the problem (or even
just to represent the solution). We shall assume, without loss
of generality, that , and that all delays
are integers.

E. Relation to Shortest Path Algorithms

The probability of success on a path is a product of the
probability of success on all links. This is readily transformed
to a usual sum by defining a proper cost function. Given a
probability distribution , we define a corresponding cost
function . The cost associated with each
link is positive and decreases as the delay allocated to the link
increases.

The standard shortest path problem (and consequently its
corresponding algorithms) has anoptimal substructureprop-
erty [1]: the shortest path between two vertices contains
within it other shortest paths. This property is a hallmark of
the applicability of bothdynamic-programmingand greedy
methods.

Specifically, the above property means that if
is a shortest path from to , then is a

shortest path from to . Thanks to this property, one does not
have to check all possible paths, and the complexity reduces
from exponential growth to polynomial. Unfortunately, this
propertydoes nothold in our framework, making it impossible
to apply standard shortest path algorithms to our problems.
This is illustrated through the example of Fig. 1 (Section II-C).
Suppose we wish to solve problem MP through a subproblem,
i.e., the best path from to . The left link is best if the delay
bound on the segment is less than 2 and the middle
link is best otherwise. Recall, however, that theright link is
the optimal solution to problem MP, yet it is not optimal for
any choice of . Thus, problem MP does not posses an
optimal substructure property.

Partitioning the delay, however, introduces a similar useful
property to problem OP-MP, as follows: if
is a solution of problem OP-MP with total delay, and it is
partitioned into link delay constraints, such that is allocated
to the subpath , then , with the same delay
partitioning, is an optimal solution for total delay from
to . This enables us in certain circumstances to solve problem
OP-MP by greedy and dynamic programming methods. Going
back to the example, we see that the left link is an optimal
subpath for the delay bound , which is indeed the
optimal delay partition on the segment .

The solution of problem OP may also introduce some
optimal substructure property. This is especially true if we
use a predefined (nonoptimal) solution of problem OP. For
instance, partitioning the delay with equal probabilities for
all links allows us to use standard shortest path solutions, as
shown in [5].

F. General Costs

Guaranteeing QoS requires allocating resources along the
path, hence the cost of providing such QoS guarantees corre-
sponds to the cost of reserving such resources. Accordingly,
each link may advertise the costs of providing various delay

guarantees. A QoS routing mechanism for such a network
should choose a path that can satisfy the end-to-end delay
requirements at minimal cost.

Hence, the cost function can be
viewed in a broader scope than uncertainty. In other words, all
the previously defined problems can be redefined in terms of
cost alone without restricting ourselves to cost functions that
originate from parameter uncertainty. We only require that the
cost is decreasing with the delay. This requirement is very
reasonable, since we should pay less if we get a worse QoS
bound.

Obviously, such costs provide important tools for resource
management. For instance, one may associate higher costs
with congested links in order to direct traffic away from
them. In other words, less cost may reflectnetworkoptimality
rather thanuseroptimality.3 Our results are applicable for this
general cost model as well as for the uncertainty model.

III. SOLUTION TO PROBLEM OP

In this section we explore problem OP, and establish an
efficient solution for a wide class of probability distributions.
Due to space limits, in this version we just outline the results,
and the reader is referred to [6] for the full details.

Problem OP can be shown to be NP hard, through a
reduction to the 0–1knapsack problem[1]. However, by
restricting ourselves to a certain class of distributions, exact
and efficient solutions can be obtained.

First, we define a family of probability distributions for
which we can present efficient solutions. This family consists
of distributions with a certain convexity property.

Definition 2: For , let be the set of
probability functions , s.t. is
(strictly) monotonic increasing with.

includes all probability distributions with convex cost
functions . In [6] we investigate to what extent the
assumption limits the choice of . We proceed to
outline the main conclusions.

It is important to note that the assumption is needed only
in the region . In other words, we are only interested
in the region . Typically, the minimal probability
of success on each link should be close to 1 to allow a
reasonable probability of success for the whole path.

Proposition 1: If a probability distribution is concave,
then .

A probability distribution is concave if its density function
is monotonic decreasing. This is true for many distributions,
given that is large enough. For instance, the exponential
distribution is concave for any choice of , and the normal
distribution is concave for . In [6], we show that the
uniform distribution also belongs to .

Next, we show that any optimal partition is anequilibrium
point, in the sense that moving a single delay unit from one
link to another does not improve the overall probability of
success. The following lemma states this property in terms of

3Note that the network perspective can be incorporated within the uncer-
tainty model by “distorting” the distributions.
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Fig. 2. Algorithm GREEDY-OP.

the “cost” functions , as defined in Section II-E, and
the partition .

Lemma 1: If is an optimal solution to problem
OP, then for any we have .

Proof: Otherwise we can reduce the total cost by adding
1 to at the expense of . The cost will reduce because

.
Lemma 1 leads to an important corollary.
Corollary 1: If is an optimal solution to problem

OP then there is a threshold, s.t. for all we have
.

Proof: Set , and the result
follows.

Focusing on cost functions in, is monotonic increas-
ing hence determines . We denote the delay allocated to
the link for a specific by , and from the definition of

we have . The corresponding
delay allocated to the whole path is . It
can be verified that for distributions in
is a solution to problem OP for .

As a consequence of the above result, we can employ a
greedy scheme (Fig. 2). Specifically, we distribute the total
delay piece by piece, giving each piece to the link where
it most improves the probability of success. Such a strategy
involves iterations, in each of which we select the optimal
link and add 1 to its allocated delay.

Theorem 1: If for all , then algorithm GREEDY-
OP solves problem OP within steps.

This result can be further improved by searching for the
threshold , i.e., we find an for which .
We assume that the cost functions have bounded variations
( ), therefore we must have . We may
also assume4 that changes in are of the same magnitude
as changes in , therefore a change of 1 in requires
a change of in .

This means that theeffectivesize of our search space is of
order . is a monotonic function, thus we can
employ a binary search with iterations (Fig. 3).
Computing requires , hence the search can be
implemented in .

Theorem 2: If for all , then algorithm BINARY-
SEARCH-OP solves problem OP in .

4See [6] for a more detailed discussion.

Fig. 3. Algorithm BINARY-SEARCH-OP.

It is possible to solve problem OP by extractingdirectly
from the equation . This can be done numerically
in the general case, and analytically for certain distributions.
One such distribution is the uniform, which we proceed to
discuss.

A. Uniform Distribution

It can be verified that uniform distributions belong to.
We proceed to show that we can get an implicit expression
for the optimal partition .

Theorem 3: Let be uniform, , i.e.,

if

if

if

for every . Let be a delay, s.t.
.

Then, is a solution to
problem OP.

Proof: The derivative is given by

if

if

if

hence, for we get
. By the assumption on, we have for

Since and , we have that

is a solution to problem OP.
Note that, since is differentiable, we may apply the

previous lemmas on rather than .
Theorem 3 leads to an alternative algorithm for solving

problem OP. The idea is to seek thestated in the theorem.
From the proof of Theorem 3the calculation of , we can
realize how we should partition the delay: all links should get
exactly the same addition to their minimal requirement, i.e.,

is constant. We only have to compensate for the fact
that this addition might be greater than. All excess allocation
beyond can be evenly distributed among the other links.
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Fig. 4. Algorithm DYNAMIC -RSP.

Such an algorithm was presented in [5], without the above
proof of optimality. The complexity is .

IV. RESTRICTED SHORTEST PATH PROBLEM

In this section, we review the well-known restricted shortest
path problem and a (nonstandard) variant of its dynamic
programming solution. We then discuss the relation between
this problem and problem OP-MP. These observations shall
help us solve problem OP-MP, in the next section.

We begin by formally presenting the problem.
Problem RSP—Restricted Shortest Path:Given a network

, a delay and a cost for each link , and a
maximal delay , find a path , such that
and , for any other path that satisfies
the restriction .

Problem RSP is NP-hard [3] yet has a pseudopolynomial
solution based on dynamic programming. The version of the
algorithm presented in Fig. 4 is not standard, but it simplifies
our subsequent discussion. At iteration, we calculate the
optimal path from to each vertex , with a delay limit of ,
and store its cost . The cost is calculated
similarly to , except that the last link on the optimal
path to is assumed to be . At each iteration, after we
have for each vertex , we find
for all outgoing links from .

Finding the optimal path involves calculating
and choosing theparent of on the optimal

path. We add a loop to each vertex with a delay of 1 and
a zero cost, i.e., , . This addition exempts
us from handling the special case where .

Since , calculating
requires a total of for all vertices. At each iteration,
we go over all links in , and the number of iterations
is . Thus, the complexity is .

A. Application to Problem OP-MP

Problem OP-MP can be shown to be NP-hard [6], essentially
through a reduction to problem RSP. The crucial difference
between problems RSP and OP-MP is that we do not have
a single pair for each link . Rather, we
have a complete function . This means that we cannot
calculate in . We must find the minimal

among all possibilities for and the corresponding .
In the worst case, this would mean that at each iteration,

, we recalculate according to
. This implies a total complexity of

.
A better bound can be achieved for discrete probability

distributions. Assume there is a bound such that, for each
link , there are no more than possible delays, that
is, (and ) are discrete functions with no more
than points. Under this assumption, calculating
requires finding a minimum among possibilities and can be
done in , leading to a total complexity of .
Alternately, we could replace each linkwith a set of
links , each with a specific delay . We then get
a graph with , and the related complexity is
again .

Yet a more careful analysis of problem OP-MP enables one
to considerably reduce the complexity of the solution, for the
wide class of (both discrete and continuous) distributions in

. This is shown in the next section.

V. PROBLEM OP-MP

In this section, we solve problem OP-MP using dynamic
programming methods. The solution uses a modification of
algorithm DYNAMIC -RSP.

Suppose we have a data structure that contains ,
for all . Clearly, this structure must be updated
times, once for each calculation of , .
We will denote by the value of after
iteration .

For specific and , where , may affect
, only if we allocate a delay of to the link

. In this case, we define to be the calculated
, that is, .

We also define for .
In each iteration, we update, for all,

. Note that
cannot change after iteration, and for each , there is some

for which . We will
denote this by .

We are now ready to present algorithm DYNAMIC -OP-MP
(Fig. 5). The algorithm employs a data structure that holds

and supports three operations: INIT—initialize
the structure; UPDATE—update the structure at each iteration;
and GET—get the value of for a specific . Note
that for each vertex we need to hold not only its parent on the
optimal path, but also the delay allocated to the last hop.

The algorithm is essentially the same as algorithm
DYNAMIC -RSP. The main difference is in calculating

. After each calculation of , we use the
UPDATE procedure to update our data structure. At lines 11–13,
we extract the value of from our data structure
and calculate . We use at Line 17 to
calculate the delay allocated to the last hop and then store this
delay with the parent at Line 18.

With an efficient implementation of , the time
complexity of algorithm DYNAMIC -OP-MP is .
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Fig. 5. Algorithm DYNAMIC -OP-MP.

A. Implementing base

In the general case, maintaining our data structure requires
in each iteration, which results in a total complexity

of . However, we will show that, for probability
distributions that belong to , this can be done in ,
reducing the total complexity of algorithm DYNAMIC -OP-MP
to .

As described above, at each iteration we perform the update

for all . Since , we need for the update,
however the next lemma (see the Appendix for proof) shows
that we can improve upon this for distributions in.

Lemma 2: If , and there exists an for
which , then

for all .
Intuitively, Lemma 2 means that and

have at most a single intersection point. At each
iteration we only need to search for the next intersection point.
This can be done, using a binary search, in . In each
update, we seek the smallest that satisfies the condition of
Lemma 2 and set for all .

We implement through a balanced binary sort
tree. The tree is kept balanced by maintaining a subset of a
full tree, that is, each level splits the interval exactly by half.
We also maintain an in-order linked list of all “live” nodes in
the tree. During the search, we create all the nodes on the path
leading to and update the linked list. When is found we
trim the tree by simply connecting node to node .

Procedure INIT (Fig. 6) performs the initialization.
Line 1 just simplifies the notation. Each tree is initialized

with two nodes. Node is needed because each search for
begins by checking if . The initial base value assumes
the allocation to the link is . Node 0 is needed for
the beginning of the linked list, that is, our initial base value
for each iteration is 0. The variablelast is used by GET and
is explained later.

Fig. 6. Procedure INIT.

Fig. 7. Procedure UPDATE.

Procedure UPDATE (Fig. 7) is the core of the algorithm.
The procedure traverses through the search tree, creating

new nodes and trimming the tree whenever needed. This pro-
cedure is called at each iteration, after is calculated,
for all outgoing links , from vertex . The search for

is done in therepeatloop, where is the currently visited
node and is the current interval.

Lemma 3: Procedure UPDATE updates the tree in .
Proof: We assume the tree is correct before the UPDATE

call. At each iteration of therepeatloop (Line 5), we compare
what can be achieved from the node’s base (using )
with what can be achieved from (using ). If the
current base is better than, we must have , hence we
should keep searching in the right branch, i.e., in the interval

. If is better, we must have , hence we should
keep searching in the left branch, i.e., in the interval .
In the latter case, we must also update the base to, and trim
the tree, i.e., updatenextto . Thus, we have established that
we search in the right direction and update the nodes along
the way correctly.

We need to show how we create new nodes. We have an
indication that is a new node if and are neighbors in
the linked list (Line 14). In this case, we insert the nodein
the list and set the default base to the base of. Note that
the new node will be examined (and updated if needed) on
the nextrepeat iteration.

Each node is updated (and if needed, created) in
and the number of nodes is bounded by. Since the tree
is balanced, the search is done in iterations.
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Fig. 8. Procedure GET.

GET should simply return the value of , and
can be easily implemented by traversing the tree in .
However, if we save the last returned value between calls, we
can implement GET in as follows (Fig. 8).

The value oflast represents the closest intersection point
before , and is always smaller than. last is initialized to 0
by INIT and is updated at each iteration.

We are now ready to calculate the complexity of Algorithm
DYNAMIC -OP-MP.

Theorem 4: Algorithm DYNAMIC -OP-MP solves problem
OP-MP within steps.

Proof: By Lemmas 2 and 3, we conclude that we can
maintain a data structure for , that can be updated
in . Clearly, the INIT procedure can be done in

for all links. Each iteration calls UPDATE and GET once
for each link in . There are iterations,
thus we get a total time complexity of , as
claimed.

B. Uniform Distribution

Our solution to problem OP-MP uses the fact that the delay
is partitioned to establish an optimal substructure property,
which allows the use of dynamic programming. However, it
does not make use of the partition strategyper se.Indeed, the
dynamic programming algorithm adds at each iteration a single
link to an optimally partitioned path. It is obvious that the delay
allocated to that link may result in a nonoptimal partition of
the whole path. This means that only a specific delay may be
allocated to the added link. Thus, we can perform an UPDATE

at each iteration in .
For uniform distributions, we can efficiently solve problem

OP and use this result in the solution of OP-MP. By Theorem
3, the optimal partition is ,
where is a delay such that

The delay is a common property for all links along the
optimal path (with optimal partition). This implies that any
optimal subpath should be continued only with the same.

The initial value of is determined by the delay allocated to
the first link of each path, hence we must consider all possible
delay allocations for any links outgoing from.

The dynamic programming algorithm inspects all possible
delay allocations to any link outgoing from, hence all
possible values of are considered. We might expect a
complexity of for the solution, however, this is not
the case. The problem arises whenis greater than for a
link outgoing from . In any optimal solution, the maximal
delay allocated to a link is , hence an allocation of may
correspond to different choices of. This means that a path

Fig. 9. Algorithm UNIFORM-OP-MP.

starting with corresponds to several different values of
and each UPDATE will require more than .

This problem can be circumnavigated if we assume ,
for all ,5 in which case the optimal partition becomes

. This can be implemented using dynamic
programming, by saving for each optimal path, and checking
all possible values of for each outgoing link from [6]. Thus,
with the above assumption we can solve problem OP-MP in

.
In the following algorithm UNIFORM-OP-MP (Fig. 9), we

relax the (unreasonable) assumption for all .
If for some link, then the cost on that link is
zero ( ); however, we must allocate delay to
the link. When is already known, we can simply allocate

for the next hop. However, when such a link
is the first link in the path, we must determine. We should
consider all possible values for, and in the worst case this
could change the complexity to . To overcome this
problem, we must make sure that paths do not start with such
links.

If we sort all links by increasing values of, i.e.,
, then we can solve the problem times,

where at iteration, we assume . For all links
that have , we set , with probability 1.
We can now delete all those links from the graph and add
their delay to the remaining links. For each remaining link

we add a new link , which has the same as
, but with , where is the

delay allocated to the links we removed. is the minimal
distance (on those links) from to w.r.t. and can
be computed using a (standard) shortest path algorithm on a
graph consisting of the links we removed.

Theorem 5: Algorithm UNIFORM-OP-MP solves problem
OP-MP, for uniform distributions, within
steps.

Proof: Finding requires .6 In the worst
case, the number of links is doubled, hence the complexity
of finding each optimal path in Line 7 is . Thus,
the complexity of each iteration is . We
perform such iterations, hence the total complexity is

.

5We shall relax this assumption later.
6For example, using the Bellman–Ford algorithm.
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In practice, it is possible to take advantage of the limits on
in each iteration. We may also assume that ,

hence the complexity of the algorithm UNIFORM-OP-MP is
.

VI. A PPROXIMATION SCHEME FOR PROBLEM OP-MP

In this section, we present an efficient approximation
scheme for problem OP-MP. Our approximation is an
adaptation of fully polynomial approximation schemes (FPAS)
for problem RSP, which are based on dynamic programming
principles. We use algorithm DYNAMIC -OP-MP and detail
only the needed adjustments.

First, we switch the roles of cost and delay, i.e., we iterate
over all possible costs instead of delays. Since we have cost
functionsit is not obvious that this can be done. However, we
show that, for probability functions in , it is indeed possible
to reverse the functions. Next, we use the minimal allowed
probability of success to bound the maximal cost. Finally, we
establish a relation between the granularity of the cost and the
error and complexity of computation.

A. Changing to

Recall that we assumed a minimal probability of success
for each link , implying a minimal delay allocated to it

[where ]. This means that there is amaximalcost,
, for each link, i.e., . Themaximalprobability

of success for a link is bounded by 1, which implies a minimal
cost of 0. We will denote the minimal delay, which achieves
this cost, by .

For probability distributions in , the cost functions
are monotonic nonincreasing and convex. This implies that
the cost functions are strictly monotonic, hence the inverse
function exists. It also implies that the inverse functions
are monotonic nonincreasing and convex. Thus, we may apply
algorithm DYNAMIC -OP-MP to . Formally, we define the
inverse function as follows.

Definition 3: Given a probability function ,
define

We shall denote by the equivalent of (Section II-D) for
costs, i.e., we assume from here on that all costs are
integer multiples of . We will later analyze the impact of
on the error and complexity.

Remark 1: The discretization of the delay may be re-
garded as ana priori assumption, i.e., the delay demands from
each link cannot be given more accurately. We maychoose
to increase to improve performance, but then we have to
consider the error due to this discretization. On the other hand,
the cost discretization is not inherent to the problem and
is always a matter of choice. If the delay discretization is
inherent, then must have discrete values both forand
for . This might complicate many of the claims regarding
the function (for instance, it might not be strictly convex).
In order to avoid such complications, we shall assume that the
discretization is finer than the discretization. Specifically,

we assume that , in the region , for
all . The total error due to discretization would depend
both on and on .

B. Application to Algorithm DYNAMIC-OP-MP

The algorithm can be readily used with instead
of . Hence, we should expect a complexity of

, where is the maximal total
cost. Since there is a bound on the minimal probability of
success, , we have

This result can be refined, as we must change the “stop”
condition. In the original algorithm, the condition was .
An equivalent condition would be , however theactual
stop condition should be for some . We
denote by the discrete cost of the optimal path, i.e.,

The resulting complexity is .

C. Impact of

We now inspect the impact of the cost discretization on
the error. We denote by the discrete path found by the
algorithm and by the corresponding delays and costs.
Similarly, we denote the optimal solution by . We
use the notation for the discrete costs corresponding to the
optimal costs, . The relation between the total
costs on the path is given by

.
For each link , we have , hence
, therefore , which means that

is a legal (nonoptimal) solution. Since is an optimal
discrete solution, we must have ,

hence . Thus,
the difference in actual cost between the optimal solution and
the discrete solution is bounded by
and, in terms of the corresponding probabilities of success,
we get .

By setting , we get , and using
, for small , we have , i.e., an

-approximation. The value of affects the order of ,
as . We can assume

, hence . Implementing this
into the complexity, we get

Thus, we have achieved an efficient-approximation scheme
which is summarized in the following theorem.
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Theorem 3: Algorithm DYNAMIC -OP-MP can be used (with
the above modifications) to find, within

steps, a path that satisfies

VII. CONCLUSIONS

This paper investigated the effects of uncertain parame-
ters on QoS routing with end-to-end delay requirements. We
have defined the routing problem and an important variant:
optimally partitioned most probable path(OP-MP). We have
discussed these problems in the context of shortest path
problems and indicated their difficulties.

We first focused on theoptimal delay partition problem
(OP). Although problem OP is intractable in the general case,
we established an efficient and exact solution for a wide class
of probability distributions, including exponential and normal
distributions. Moreover, a further improvement, in terms of
complexity, was presented for uniform distributions.

Next, we considered problem OP-MP with the above class
of distributions and established a pseudopolynomial solution,
based on dynamic programming. It is remarkable that changing
the parameters of each link, from a specific delay with a
specific probability of success, as in problem RSP, to a
complete probability distribution function, as in problem OP-
MP, only adds a factor of to the complexity of the
solution. Finally, we established a fully polynomial-optimal
approximation to problem OP-MP.

Our solutions are applicable to a broader domain than that
of uncertain parameters. Specifically, they apply to any link
costs that are a (convex) increasing function of the QoS
guarantees provided by the link. Such a cost scheme is not
only reasonable, but also useful for resource management, as
it allows taking network objectives into consideration.

Establishing a connection with QoS guarantees requires
the invocation of a QoS routing scheme, and, subsequently,
a reservation protocol for setting up the flow. The QoS
guarantees are usually provided by each link along the path.
This usually requires to decompose the end-to-end QoS re-
quirements into local (link) requirements. While reservation
protocols, such as RSVP, provide the mechanisms for sig-
naling, they do not provide a partition policy. Therefore,
the QoS routing problem that we considered, OP-MP, is not
only more solvable than (the more straightforward) MP but,
more importantly, seems to be theactual problem that we
should solve. Indeed, our algorithms for solving problem OP-
MP return both the optimal path and the optimal partition
of QoS requirements along it. We also solve the optimal
partition problem, OP, which, as argued above, is relevant
independently of the path selection process.

While almost any network control function has to handle
some degree of uncertainty, traditional approaches, such as
dealing with average values, were often enough to circumvent
the problem. However, large-scale broadband networks require

more sophisticated solutions. Indeed, the size and architec-
ture of such networks increases the degree of uncertainty,
while the stricter service demands complicate the impact of
imprecisions. While we believe that our results offer valuable
insight toward the construction of a proper analysis and design
methodology, it is clear that much is yet to be done and
understood.

We are currently working on extending our results to multi-
cast routing. This includes investigating optimal partitions of
end-to-end QoS demands on given multicast trees, as well as
finding optimal trees.

APPENDIX

PROOF OF LEMMA 2

can be viewed as a (monotonic decreasing)
function of . We proceed to show that any two such functions

have at most a single intersection
point.

Lemma A1: If , and and if for
some , we have , then for
every we have .

Proof: The assumption implies
. Combining this with the assumption implies

, for all . Hence

implying

(A1)

Observe that

A(2)

Now, by considering the assumption
, and adding (1) using (2), we get

, as required.
We are now ready to prove Lemma 2, which we quote again.
Lemma 2: If , and there exists an , for

which , then
for all .

Proof: By definition,

therefore we have, for all ,
. Hence, by Lemma A1, we have, for all

and for all , , for
all . Thus, for all , we have
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