
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Quality control of CFRP by means of digital image processing
and statistical point pattern analysis

D. Trias a,*, R. Garcı́a b, J. Costa a, N. Blanco a, J.E. Hurtado c

a AMADE: Analysis of Advanced Materials for Structural Design, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
b VICOROB: Computer Vision and Robotics Group, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain

c Universidad Nacional de Colombia, Sede Manizales, Apartado 127, Manizales, Colombia

Received 14 September 2006; received in revised form 22 December 2006; accepted 23 December 2006
Available online 25 January 2007

Abstract

Although fiber-reinforced composite materials have often been considered as periodic materials in theoretical models, the distribution
of fibers is random in real materials. This random distribution of fibers is closely related to their transverse failure behavior. This paper
proposes the use of statistical functions which describe random point patterns as a quantification of the dispersion of the transverse fail-
ure properties of several carbon fibre reinforced polymers (CFRP). It is shown that the analysis of the K function is the most meaningful
for this purpose.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

At the microscopical level, the main morphological
characteristics of long fibre reinforced polymers are heter-
ogeneity and anisotropy. In spite of this, composite mate-
rials have classically been modeled by means of
periodical unit cells, that is, without taking into account
neither the heterogeneity nor the geometrical disorder of
fibers. The periodicity hypothesis leads to simplifications
which make possible the application of homogenization
methods [1–3], it provides good estimations for the elastic
properties [4], and it can also be employed with good
results in non-linear two-scale methods [5–9]. Also, in com-
putational mechanics, the periodicity assumption leads to
lower computational costs whereas other approaches may
be computationally unaffordable.

However, a simple optical microscope observation
reveals that long fiber reinforced composites (i.e. carbon

or glass fiber-reinforced thermoset matrices) are far from
being ordered materials since the fiber is randomly distrib-
uted through the matrix, sometimes showing areas with
fiber clusters and resin pockets. These heterogeneities lead
to local stress values in the matrix which are higher than
those obtained assuming a periodical distribution and, con-
sequently, they are more likely to produce damage, matrix
cracking, or to cause degradation phenomena [10]. For this
reason, the local damage in a transverse section of the com-
posite (that is, matrix cracking and matrix-fiber debonding)
is expected to depend strongly on the random distribution
of the reinforcement.

On the other hand, because of the growing importance
of composite materials in mechanical and structural engi-
neering together with the lack of knowledge about many
issues related to their failure, damage and fatigue behavior,
there is a demand from the industry for quality control
methods. This quality control methods should provide
information on the defects within the material produced
during manufacturing, the tolerance to these kind of
defects, the relation between the material properties and
its micro-scale structure. Traditionally, volume fraction is
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used as a measure of the quality of a laminate and ultra-
sound devices are normally used to complement this infor-
mation by detecting voids and bubbles within the matrix.

Some researchers have proposed sophisticated and
highly technological procedures such as thermal imaging
techniques [11,12], optical coherence tomography [13],
near-infrared spectroscopy [14,15] or X-ray tomography
[16] for the inspection of fiber-reinforced composites.
Although these techniques are extremely precise, they usu-
ally require high technology machinery, sophisticated inter-
pretation techniques and highly specified and qualified
personnel. This makes them unusable for most industries.

The widespread use of computers in industry prompted
some pioneering work, like that by Berryman [17], in data
acquisition using digital image processing for heteroge-
neous materials. The quantitative techniques for digital
image processing of composites are widely employed in
metal matrix composites (MMCs) [18,19] and some
research has applied Fourier transformation to detect the
orientation of reinforcement in reinforced concrete [20].

In fiber-reinforced polymers, much of the work devoted
to the geometrical characterization of materials via digital
image processing has been focused on braided composites
[21]. Summerscales and co-workers computed total perim-
eter and total area of inter-tow pore spaces in woven lam-
inates produced by RTM [22,23] and applied Voronoi
tessellation and fractal dimensions to quantify the micro-
structure of woven composites [24].

The full characterization of glass and carbon fiber rein-
forced composites has also been addressed by means of
optical microscopy [25] and digital image processing of mic-
rographies has been employed by Joffe and Mattsson [26].

This work is part of a line of research which tries to
bridge stress and strain fields at the macroscale with dam-
age initiation and other microstructural phenomena by
considering the random distribution of the fibers within
the composite. This approach provides probability distri-
bution functions for the stress and strain components,
and is therefore useful for structural reliability purposes.
The methodology presented here starts from micrographies
and, using image processing techniques together with spa-
tial statistics tools, measures the homogeneity of the distri-
bution of the fiber within the composite. Although the
distribution of the fiber within the material is random, it
is homogeneous – as will be shown in the next section the
statistical homogeneity can be mathematically defined – if
the fiber is correctly spread through out the material and,
in this way, regions containing matrix pockets are avoided.
This homogeneity can be seen as a measure of the quality
of the fiber distribution since, as this paper will show,
homogeneity in the material leads to lower mechanical
property dispersion.

2. Spatial point patterns

This section summarizes the basics on spatial point pat-
terns focusing on those aspects which are specially relevant

for the statistical analysis of the microstructural character-
istics of heterogeneous materials. Details on these topics
can be found elsewhere [27–29].

A spatial pattern is a set of points which are located
irregularly in a domain. The points’ position is governed
by some stochastic mechanism. Consider an image of area
A of a fiber-reinforced composite material, with the num-
ber (N) and position (x) of the center of the fibers being
a random variable. Then, the set of the position of the cen-
ters is a spatial point pattern.

The first-order properties of a spatial point pattern can
be described by the intensity function, k(x):

kðxÞ ¼ lim
jdxj!0

E½NðdxÞ�
jdxj

� �
ð1Þ

where E[Æ] is the mathematical expectance operator. The
second-order intensity function, k2(x,y), can be defined as:

k2ðx; yÞ ¼ lim
jdxj;jdyj!0

E½NðdxÞNðdyÞ�
jdxjjdyj

� �
ð2Þ

which corresponds to the intensity function at x condi-
tional on knowing that there is a fiber located at y. The
scaled function:

gðx; yÞ ¼ kðx; yÞ=k2 ð3Þ
is called the radial distribution function.

A usual assumption for the spatial point patterns found
in heterogeneous materials is that they are second-order
stationary. This assumption implies that their statistical
properties are invariant under translation, they have a con-
stant mean, k((x)) = k, and second-order properties can be
expressed only as a function of the vector r = x � y. More-
over, if a spatial point pattern can be considered isotropic,
second order properties only depend on the modulus of
vector r , so we can write k2(x,y) = k2(r), g(r) = g(r). The
point patterns given by the positions of fiber centres in
fiber-reinforced composite materials can be considered iso-
tropic second-order stationary and, consequently, the sec-
ond order properties analyzed in this work only depend
on r.

The usual probabilistic function which is assumed to
describe the position of inclusions in a material is the Pois-
son point field [28,29]. This model describes complete spa-
tial randomness (CSR) in the distribution of fibers. That
means that the probability of finding N fibers in a subdo-
main of area A is the same for any chosen subdomain.
Consequently, this model assumes that clusters of inclu-
sions (fibers) do not take place.

The probability of finding k fibers in a window W of
area A(W) is given by:

P ½N ¼ k� ¼ ðk � AðW ÞÞ
k

k!
� e�k�AðW Þk ¼ 0; 1; . . . ð4Þ

where k is the fiber density, that is, the number of fibers per
unit area.

Nevertheless, the Poisson distribution is physically unat-
tainable due to finite dimension of the inclusions. For this
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reason, the Poisson distribution is often used for compari-
son purposes and may serve to distinguish between aggre-
gated and more regular patterns. Therefore, a slight
modification in the Poisson point field model is usually
taken into account in order to reproduce real situations,
in which the inclusions have a finite radius. In this case,
the center of two inclusions cannot be closer than their
diameters. So this model, which is also known in the liter-
ature as Matérn’s model [28,29], is normally employed to
describe the random position of the fibers within the com-
posite. For the cases in which the radius of the fiber r is
much smaller than the sample window, it can be considered
that the Poisson hard-core model and the Poisson model
can be considered equivalent. This is the situation found
in the materials described in this paper and, for this reason,
only the Poisson distribution will be employed.

After these assumptions, the pair distribution function
g(r) can be defined as the probability of finding an inclu-
sion whose center lies in an infinitesimal circular region
of radius dr around the point r, provided that the coordi-
nate system is located at the center of a second inclusion.

Another useful function for the statistical analysis of
point patterns is Ripley’s K-function, which can be defined
as the number of further points expected to lie within a
radial distance r of an arbitrary point and divided by the
number of points per unit area. Ripley’s estimator [30]
seems to be the most appropriate [31]:

KðrÞ ¼ A

N 2

XN

k¼1

w�1
k IKðrÞ ð5Þ

where N is the number of points in the observation area A;
IK(r) is the number of points lying within the circle of ra-
dius r and with center located in the k-th point; and wk is
the proportion of the circumference contained within the
sampling area A to the whole circumference with radius
r. The weight wk can be computed numerically or using
analytical expressions given in the literature [27].

The following relation between g(r) and K(r) can be
found [32]:

gðrÞ ¼ 1

2pr
dKðrÞ

dr
ð6Þ

The second-order intensity function of a complete random
pattern (CSR or Poisson set), KP(r), in a two dimensional
domain is given by [28,29]:

KPðrÞ ¼ pr2r > 0 ð7Þ

Although g(r) and K(r) are related, they provide quite dif-
ferent physical information. K(r) can distinguish different
patterns and detect regularities, whereas the pair distribu-
tion function g(r) describes the occurrence intensity of in-
ter-inclusion distances. In this later function, a local
maximum indicates the most frequent distances between
points and a local minimum the least frequent ones in the
pattern. The pair distribution function, , instead of the
two-point probability function, can be used for the statisti-

cal description of a composite sample when the material
can be considered ergodic and statistically isotropic.

The second order intensity function, K(r), and the pair
distribution function, g(r), are useful to describe long-range
interactions between points. Another interesting measure
of how inclusions or fibers are distributed within the mate-
rial is given by the nearest-neighbor distribution, which can
be obtained easily as the probability distribution function
of the shortest distance to a fiber for each fiber. Analo-
gously, second- or third-nearest-neighbor distributions
may be computed. These nearest neighbor functions focus
on short-range interactions between points.

3. Materials and techniques

In this work, the analyzed composite materials were UD
Laminates containing a nominal fiber volume fraction of
60% (HTA 5131 400TEX 6K TO AERO Tenax). Three dif-
ferent matrices, RTM6 and 6376 from Hexcel and 977-2
epoxy resin from Cytec, were used. The composite with
the RTM6 matrix was produced by resin transfer moulding
and the others by a standard autoclave technique. All com-
posites were cured at 180 �C for 2 h and post cured at
190 �C for 4 h . From the panel, standard tensile test spec-
imens were cut according to DIN EN ISO 527-4, Type 3,
and 45� GFRP tabs were applied. Finally, for each mate-
rial, seven specimens were tested in tension in the 90� direc-
tion in a universal tensile machine (Zwick 1475) at a cross
head speed of 1 mm/min. The elastic properties of HTA
fibers and the different matrices can be found in Table 1.
Results of tension tests are given in Table 2.

The next step is the automatic detection of the fibers. In
order to achieve this goal, image processing algorithms
have been applied to the sequence of acquired images.

4. Digital image processing techniques

The automatic detection of the fibers should face two
main challenges. Firstly, the radiometric properties of the
acquired images prevent the fibers from being segmented
from the matrix by a simple binarization. This radiometric
artifact can be observed in the images as a non-uniform

Table 1
Elastic properties of the fiber (HTA5131) and the three analyzed matrixes

Property material HTA5131 RTM6 977-2 6376

E (MPa) 28,000a 2755 2730 3630
m 0.23 0.34 0.34 0.34

a Transverse modulus.

Table 2
Ultimate strain statistics for three different CFRPs

Material l(eu) r(eu)

HTA5131/RTM6 0.0034 0.0063
HTA5131/977-2 0.0112 0.0099
HTA5131/6376 0.0081 0.0009

2440 D. Trias et al. / Composites Science and Technology 67 (2007) 2438–2446
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illumination field, brighter at the top-right corner of the
image, and darker at the bottom-left corner. Fig. 1 shows
a sample image to be processed. Its radiometric properties
can be observed by plotting the intensity component of the
image as a depth-map, as shown in Fig. 2. On the other
hand, it is not possible to directly binarize the acquired
images, since their histogram is not bimodal and, therefore,

no unique threshold exists to correctly separate the pixels
belonging to the fibers and from those of the matrix (see
Fig. 3). The second problem to be solved is the detection
of the individual fibers in the segmented image. In view
of the fact that a binary image segmenting the fibers pre-
sents a large number of connected fibers (e.g. see
Fig. 3a), it is not possible to directly apply standard image
processing techniques –such as connected component label-
ing (CCL) [33]– to label the fibers. On the other hand, we
could consider using the a priori knowledge of the circular
shape of the fibers. One alternative could be the use of the
Hough transform [34]. Unfortunately, some of the fibers
present radii that are quite different from the average
(e.g. see Fig. 4), generating a very large parameter space.
The amount of possible radius in the parameter space,
together with the lack of knowledge in the number of fibers
to detect in every image, advises against the use of the
Hough transform for circles.

In this context, the proposed procedure to detect the
fibers involves 2 phases: (i) filtering and radiometric correc-
tion, and (ii) fiber segmentation and localization.

4.1. Filtering and radiometric correction

In order to carry out the radiometric correction of the
images, the procedure illustrated in Fig. 5 is applied.

First, the image is divided into buckets. Every bucket
has to be small enough to neglect local differences in the
radiometric values inside the bucket, but big enough to
ensure that a reasonable amount of pixels belonging to
the two regions to be segmented (fiber and matrix) fall
inside the bucket. Next, a local segmentation of the grey
levels detected in every bucket is carried out. We should
look for the two main regions, fiber and matrix, and com-
pute the average value of the matrix grey levels. In some
cases, a small third region, which belongs to the dust form-
ing a deposit onto the sample, may appear . The pixels
belonging to this third region can be observed in Fig. 2b
as the vertical stripes at the lower bound of the depth
map. It is expected that the amount of dirt will be very
small when compared with the other two regions, and that
it will have lower grey values. A fixed threshold is set to
remove the pixels that belong to the dust (if any). The
remaining pixels are segmented into the two regions (fiber
and matrix), using the Otsu algorithm [35]. The local
brightness-constancy assumption has proved to be valid
for every bucket, enabling a correct segmentation of the
matrix region. Then, the average value of the region corre-
sponding to the matrix is computed for every bucket. Once
a grid of mean grey level values is obtained, a second order
2D surface is fitted to them.

Finally, the original image is subtracted from the
obtained surface. In this way, a corrected image presenting
similar values for both fiber and matrix regions is obtained.
The good performance of this procedure can be observed
comparing the histograms of an original and a processed
image (see Fig. 6).

Fig. 1. Sample image to be processed.

Fig. 2. Two views of the depthmap representing the grey values of the
image of Fig. 1. (a) Orthogonal view and (b) perspective view.

D. Trias et al. / Composites Science and Technology 67 (2007) 2438–2446 2441
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4.2. Fiber segmentation and localization

Once the image has been radiometrically corrected, it
presents a perfect bimodal histogram, as illustrated in
Fig. 6b. Therefore, a binarization can be carried out by
choosing the correct threshold using the algorithm pro-
posed by Otsu [35]. Then, a connected component labeling
(CCL) algorithm can be applied to the binary image [33].
Since the points in a connected component form a candi-
date region for representing an object, this algorithm finds
the connected blobs in the image. After running CCL on
the image, the algorithm assigns a unique label to all points
in the same component. Our final aim is then to obtain a
labeled image where every label belongs to an individual

fiber in the image. Unfortunately, if we apply CCL to the
binarized image, and then look for the largest connected
component, the object illustrated with a bounding rectangle
in Fig. 7a is obtained. For this reason, further processing is
required to segment the individual fibers. One way to ‘‘dis-
connect’’ objects that are linked together is to apply the
erode operator as defined by the mathematical morphology
[36]. This operator shrinks the objects by ‘‘eroding’’ their
contour, but erosion of a binary image has the problem:
the objects that are smaller than the size of the structuring
element used for eroding are eliminated. A priori, this
should not be a problem, since a small 3 · 3 structuring ele-
ment is used. However, due to the nature of the images illus-
trated in this work, several iterations of erosion are required
to ‘‘disconnect’’ individual fibers. For this reason, instead of
applying the erosion to the whole image, the biggest con-
nected component of the image is segmented from the rest
of the image, and the erode operation is applied only to this
element. This procedure produces an image where only this
connected component is eroded, and the rest of the image
remains unmodified (see Fig. 7). Next, the biggest con-
nected component of the object is located through CCL,
and the segmentation/erosion procedure is repeated recur-
sively until the biggest object is the size of an individual
fiber. Finally, CCL provides a unique label for every fiber
of the image. Then, computing the gravity center of every
connected component provides the localization of the
fibers, as shown in Fig. 8. Provided that most image pro-
cessing algorithms involving the use of neighborhood oper-
ations (i.e., applying structuring elements, masks, etc.) fail
to correctly process the boundaries of the image, the outline
of the image is ignored to obtain statistical data. This out-
line has been set to the radius of a standard fiber.

5. Results and discussion

For each of the materials described in Section 3, 40
images have been analyzed with the techniques just
described. As a result, the position of the center of the
fibers in each image has been determined.

Fig. 3. Result of applying a binarization to the original image according to Otsu’s algorithm [35]. (a) Threshold is set to 0.65. Notice that it produces a
poor segmentation at the top right and bottom-left corners and (b) result of applying a 0.69 threshold to correctly segment the bottom-left fibers. It can be
observed how a small change in the threshold produces a big change in the segmentation. This means that the selected threshold is located at a very
unstable point.

Fig. 4. Detail of three images showing fibers of different radii.

Fig. 5. Block diagram of the radiometric correction procedure.

2442 D. Trias et al. / Composites Science and Technology 67 (2007) 2438–2446
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5.1. Volume fraction

The first magnitude which can be easily computed from
the acquired data is the fiber content (vf). This is a key mag-

nitude which governs the composite behavior and from
which elastic constants are usually estimated. Table 3
shows the mean (l), variance (r2) and coefficient of varia-
tion (q) computed for each of the three analyzed materials.
While HTA5131/RTM6 and HTA5131/977-2 have similar
properties, clearly HTA5131/6376 has a higher mean and
much lower values of variance and coefficient of variation.

Fig. 6. Histograms of (a) the original image illustrated in Fig. 1, and (b) the image obtained after radiometric correction. In (a) it is impossible to find an
adequate threshold, as illustrated in Fig. 3. The (b) histogram is now well conditioned to binarize the image applying Otsu’s algorithm.

Fig. 7. Binarization of the radiometrically corrected image. (a) The red rectangle frames the largest object after applying a Connected Component Labeling

(CCL) strategy. The largest object defined in (a) is eroded, giving rise to image (b). Now the objects with maximum height (red) and width (blue) are
framed. (For interpretation of colours in this figure legend the reader is referred to the web version of this article.)

Fig. 9. Estimation of Ripley’s K-function, K(h). Shaded area corresponds
to the weight, wk.Fig. 8. Localization of the automatically detected fibers. Due to the

nature of the algorithm, it can be observed how the algorithm fails to
correctly locate the center of the fibers when they are touching the border
of the image. For this reason, only the fibers having their gravity center
within the rectangle are considered.

D. Trias et al. / Composites Science and Technology 67 (2007) 2438–2446 2443
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5.2. Second-order functions

K(h) and g(h) (Eqs. (3) and (5), respectively) can be used
to assess if a point pattern describes complete spatial
randomness.

For each of the images of all three materials, functions
K(h) and g(h) were computed according to Eqs. (5) and
(6), respectively, and as schematized in Fig. 9. Let us

denote with ~KðjÞi ðhÞ and ~gðjÞi ðhÞ the estimations of functions
K(h) and g(h) computed for the th image for the jth mate-
rial. Then, for each of the materials, we can analyze the sta-
tistics of K(r) and g(r):

l½KðjÞðrÞ� ’ ~KðjÞðrÞ ¼ 1

m

Xmj

i¼1

~KðjÞi ðhÞ ð8Þ

Var½~KðjÞðrÞ� ’ 1

mðm� 1Þ
Xmj

i¼1

f~KðjÞi ðrÞ � ~KðjÞðrÞg ð9Þ

q½~KðjÞðrÞ� ’ Var½~KðjÞðrÞ�
~KðjÞðrÞ

ð10Þ

l½gðjÞðrÞ� ’ ~gðjÞðrÞ ¼ 1

m

Xmj

i¼1

~gðjÞi ðrÞ ð11Þ

Var½~gðjÞðrÞ� ’ 1

mðm� 1Þ
Xmj

i¼1

f~gðjÞi ðrÞ � ~gðjÞðrÞg ð12Þ

q½~gðjÞðrÞ� ’ Var½~gðjÞðrÞ�
~gðjÞðrÞ ð13Þ

Figs. 10 and 11 show plots for these statistics. Fig. 10(top)
shows l[K(r)] for each material together with the plot of
the analytical expression for a Poisson set (Eq. (7)). All
four plots are nearly superposed, showing that, on average,
all three materials could be considered to contain a CSR
pattern for the distribution of fibers.

A closer observation of the plots of ~KðjÞðrÞ reveals that
the superposition of the plots is more remarkable for
r/R < 15, where r is the inter-fiber distance and R the fiber
radius. For larger values of r/R the plot for HTA5131/
977-2 seems to depart slightly from the CSR plot. The dif-
ference with respect a CSR pattern can be analyzed by
computing the relative error for each material j:

E½KðjÞðrÞ� ¼
~KðjÞðrÞ � KP ðrÞ

KP ðrÞ
ð14Þ

According to the plot for this function, given in Fig. 12, the
HTA5131/6376 material is clearly much closer to the CSR
pattern than the others.

The plots for the variance and coefficient of variation of
K(r), also given in Fig. 10. As happened in the results for

the volume fraction, given in Table 3, the variance found
in HTA5131/6376 is much lower than in the other
materials.

Regarding Fig. 11, analogous conclusions can be
derived: all three materials seem to have a g(r) function
close to that corresponding to a CSR pattern and the
variance and coefficient of variation is much lower for
the HTA5131/6376 material. The relative difference with

Fig. 10. Mean (top), variance (middle) and coefficient of variation
(bottom) of K(h) for the analyzed materials.

Table 3
Volume fraction statistics computed for three different CFRPs

Material l(vf) r2(vf) q(vf)

HTA5131/RTM6 0.5771 0.002383 0.08458
HTA5131/977-2 0.5725 0.002118 0.08037
HTA5131/6376 0.6052 0.0004436 0.03480

2444 D. Trias et al. / Composites Science and Technology 67 (2007) 2438–2446
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respect to a CSR pattern can be computed for g(r) as was
done for K(r) in Eq. (14). The resulting plots for E[g(j)(r)],
shown in Fig. 11, and the relative error, shown in Fig. 13,
are not as meaningful as they were for E[K(j)(r)].

However, from the fiber distribution analysis and the
statistics of volume fraction and from the results of tensile
tests shown in Table 2 a clear conclusion can be drawn:
those materials showing a large dispersion on tensile test
also exhibit a large dispersion on volume fraction and a

large dispersion from a CSR distribution. Analysis of the
K function reveals this phenomenon more clearly than
the analysis of the fiber volume fraction.

6. Conclusions

The statistical point patterns of fiber positions have been
analyzed for three different carbon fiber-reinforced poly-
mers. Data for the statistical analysis has been obtained
through digital image processing: (i) filtering and radiomet-
ric correction, and (ii) fiber segmentation and localization.
In this way, 40 digital images for three different CFRPs
have been analyzed. The volume fraction and the position
of the fiber centers has been obtained for each digital
image. Together with a statistical analysis of the volume
fraction, the functions K(r) and g(r) which describe the ran-
dom distribution of fibers within the material have been
computed and compared with the respective functions for
a Complete Spatial Random (CSR) pattern.

Fig. 11. Mean (top), variance (middle) and coefficient of variation
(bottom) of g(h) for the analyzed materials.

Fig. 12. Relative error for K(h).
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The results of this analysis reveal that the materials
showing a distribution of fibers which is more different
from a CSR pattern have a larger dispersion in their failure
behavior,and the analysis of the K function is the most
meaningful.

The tools presented could be easily employed in an
industrial environment as quality control measurements,
since the small dispersion in failure behavior is a desired
property in mechanic engineering materials.
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