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Abstract— Underwater chain cleaning and inspection tasks
are costly and time consuming operations that must be per-
formed periodically to guarantee the safety of the moorings.
We propose a framework towards an efficient and cost-
effective solution by using an autonomous underwater vehicle
equipped with a forward-looking sonar. As a first step, we
tackle the problem of individual chain link detection from
the challenging forward-looking sonar data. To cope with
occlusions and intensity variations due to viewpoint changes,
the recognition problem is addressed as local pattern matching
of the different link parts. We exploit the high frame-rate of the
sonar to improve, by registration, the signal-to-noise ratio of the
individual sonar frames and to cluster the local detections over
time to increase robustness. Experiments with sonar images of
a real chain are reported, showing a high percentage of correct
link detections with good accuracy while potentially keeping
real-time capabilities.

I. INTRODUCTION

Chain moorings on floating structures such as floating

production, storage and off-shore (FPSO) vessels are subject

to harsh environmental and structural conditions that can

cause wear, fatigue cracking, corrosion, distortion and other

critical chain issues. Therefore, the monitoring of the chain

integrity through regular and thorough inspections is of major

concern as any failure can have catastrophic consequences.

While the traditional methods to conduct inspections require

the chain to be recovered on deck or moved ashore, in

situ in-water inspection methods are improving thanks to

the deployment of remotely-operated vehicles (ROVs) with

optical calipers [1][2].

However, most existing solutions require prior removal

of the marine growth so that the underlying chain can be

properly inspected. Cleaning solutions range from manual

brushing with divers, which is potentially hazardous and

has an inherent depth limit, to high-pressure water systems

deployed with ROVs [3]. The time spent to clean the marine

growth strongly depends on the selected cleaning option,

but in general is a tedious and slow task since the optical

visibility drops drastically as the removed marine growth

floats in the water. Indeed, considering the cost of ROV

vessels, the cleaning of marine growth can be a significant

fraction of the cost of a chain inspection program [3].
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PANDORA-Persistent Autonomy through Learning, Adaptation, Observa-
tion and Re-planning (Ref 288273) funded by the European Commission
and the Spanish Project ANDREA/RAIMON (Ref CTM2011-29691-C02-
02) funded by the Ministry of Science and Innovation.

This work is within the context of developing a cost and

time efficient solution for the cleaning and inspection of

mooring chains using an autonomous underwater vehicle

(AUV). In order to autonomously navigate along the chain

and locate each of the links, we propose to use a high

resolution imaging sonar [4][5], which delivers acoustic im-

ages at near video frame rate allowing the operation in high

turbidity conditions. In this way the cleaning process is sped

up while avoiding the presence of troublesome ROV cables

and reducing the cost of the deploying vessel. Moreover, by

producing an enhanced composition of the images gathered

along the chain trajectory, the same methodology provides

the means to perform a first visual inspection where it is

possible to identify some major issues or locate problematic

parts that need further inspection.

The paper focuses on the automatic chain link detection

from Forward-Looking Sonar (FLS) imagery, which is the

first step of the framework that we propose for autonomous

chain cleaning and inspection. An overview of this general

framework is introduced in next section. Section III presents

the algorithm for individual link detection. Experimental

tests and results are reported in Section IV, showing the

performance of the link detection algorithm on real sonar

data gathered along a chain.

II. OVERVIEW OF THE AUTONOMOUS CHAIN

CLEANING AND INSPECTION FRAMEWORK

The proposed framework that we propose for the au-

tonomous chain following and cleaning is composed of three

main stages, as shown in Fig. 1. In order not only to follow

the chain, but to be able to clean it appropriately, it is

required to detect the position and orientation of each of

the individual chain links. Therefore, the first and key stage

consists in developing a robust link detection algorithm from

sonar images, which is the focus of the present paper.

The detected link positions and orientations along the

vehicle trajectory will then be successively incorporated as

features in a global map. The mapping system follows the

methodology presented in [6] substituting the visual features

by link detections. When there are new observations of

the same link, which are determined based on distances

to previous detections, the location and orientation of the

corresponding link is updated. This global mapping stage

ensures the consistency of the chain, filtering out outlier

detections that are not consistent with the detections already

incorporated on the global map. Finally, the information of
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Fig. 1: Schematic of the general framework for autonomous

chain following and cleaning.

the succeeding link locations on the global map is converted

to control signals to guide the vehicle from link to link and

perform the cleaning. The details of the cleaning procedure,

by means of a water jet integrated on the AUV, fall beyond

the scope of this paper.

It is worth highlighting that the presented methodology

assumes the chain lying approximately on a plane, but could

be extended to other configurations with the aid of a pan-and-

tilt unit in order to set the sonar to the appropriate imaging

configuration.

III. LINK DETECTION

While there is a large body of research on object recog-

nition techniques on optical images, the literature is more

restricted when working on sonar data, and especially un-

der real-time constraints. Despite the recent advances on

resolution of FLS, the nature of their data presents chal-

lenging conditions to the traditional detection techniques

used on video images. For instance, the detection through

point features, popularly used on optical images, becomes

not reliable on sonar frames due to the low degree of

feature repeatability [7]. A common practice in sonar object

recognition is to take advantage of shadow cues [8][9]. Given

that the chain links are not isolated objects, but interlaced

elements, it is difficult to exploit the use of shadows as

they cannot be identified distinctly. Likewise, gradient-based

techniques or edge-based processing become unreliable as

depending on the link’s position there is a wide range of

different outcomes in image intensities. There are many

possible intensity transitions (from link to background, link

to shadow, link to link, shadow to background...) besides

possible sonar artifacts (e.g cross-talk or strong reflections)

that can contribute to fragment and clutter an edge map,

thus making more complex the task of identifying the link’s

contour.

The proposed method relies mainly on the intensities

backscattered by the link itself, which are most of the times

under partial occlusions due to the imaging viewpoint or

(a) (b)

Fig. 3: (a) Example of a a single sonar frame. (b) Enhanced

frame computed by registering n = 3 consecutive frames.

actual objects occluding parts of the chain link, such as other

links or marine growth. We have approached the problem

as a pattern matching using normalized cross-correlation

of local templates, which allows us to detect portions of

the link while others are not visible. Those detections are

then robustly clustered and related according to their known

dimensions and spatial location to finally identify the pres-

ence of a link and provide an estimation of its center and

orientation.

The general flow of the detection algorithm can be seen in

Fig. 2. In the next sections each of the steps will be detailed.

A. Image enhancement

Rather than working on a frame-by-frame basis the pro-

posed system takes advantage of the sonar high frame rate

and uses registration within a small window of n consecutive

frames to produce an intermediate image of increased signal

to noise ratio (SNR). The registration process considers an

approximated FLS projection model [10] and estimates the

frame’s relative displacements and rotation using Fourier-

based techniques [10]. Fig. 3 shows an example of one

individual sonar frame and the enhanced image computed

with a window of n = 3 neighbours. The fused image is

composed by averaging the intensities at each point thus

reducing the noise and the incidence of spurious artifacts

present in the individual frames. Hence an enhanced image,

on which the rest of the processing pipeline will be con-

ducted, is provided at every n sonar frames. Additionally,

the relative displacement and rotation between every pair of

frames is stored to be used in later steps.

B. Pattern matching

Working with the enhanced images, a template matching

process can be applied with higher reliability. Given that

occlusions are frequent, we treat the detection problem as

a template matching in a local fashion in order to identify

separately the location of different parts of the link (i.e, the

four corners plus the long side segment).
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Fig. 2: Schematic of the link detection algorithm.

Fig. 4: Example set of basic local templates for a studless

chain. For each template two more templates are generated

by rotating several degrees to each side

Local templates of the chain are extracted from any

available sonar image of the chain gathered in previous

inspections. For a studless chain, a full set of templates

consists of 5 local patches centered at the link’s four corners

and one centered on the longest side of the link (see Fig. 4),

each of one together with two more corresponding templates

rotated several degrees at each side. It is not required to use

a more extended set of templates covering a finer range of

orientations since the aim of this step is just to identify the

position and type of different link parts. The actual estimation

of the link orientation will be handled in a later stage. Thus,

for example, any of the three different upper left corner

templates will output a stronger correlation on the position

of an upper-left corner than any of the other patterns, even

if the rotation is slightly different.

The template set is strongly related to the morphology

of the chain and must be tailored to each particular chain

typology. For instance, if the focus of inspection is a chain

of stud links, the straight segment template could be replaced

for two extra templates containing the t-shaped connection

in the center of the link. However, knowing the settings in

which the images were gathered (initial and end range of

the sonar frame) a given set of templates can be scaled

accordingly to be used on other datasets gathered on the

same chain but at different sonar configurations

Therefore, for a given image, we perform normalized

cross-correlation for each of the local template patterns:

Corr(u, v) =

∑

x,y
[I(x, y)− Īu,v ][T (x− u, y − v)− T̄ )]

√

∑

x,y
[I(x, y)− Īu,v ]2

∑

x,y
[T (x− u, y − v)− T̄ ]2]

(1)

where I is the image, T is the template, T̄ is the mean

of the template intensities and Ī the mean of of the image

intensities under the template. For each template class (i.e

upper left, lower left, upper right and lower right corners

and straight segment), we keep the location of the maximum

correlation Corr(u, v), thus identifying in each image one

and only one detection of each class. Given that many links

would be usually imaged in a single frame, correlation of a

template gives different areas with high values. However, in

order to maximize the robustness of the detections only the

strongest one is kept at each image.

Notice that the 5 template detections can be located on

the different parts of the same link, distributed on different

links or even in locations where there is no link at all (outlier

template detections caused by miscorrelations or the lack of

links in the image). The most common case is that different

template detections are spread in several links, as the right

and the left sides of a particular link are not usually observed

at the same time due to the inclination caused by the link

interlacing (see Fig. 5).

C. Clustering of detections

In order to increase the robustness of the detection mech-

anism and discard outliers, template detections are accumu-

lated over time. A buffer of m consecutive enhanced images

(I1, I2, ...Im) is established and their individual template

detections are accumulated by referencing all of them with

respect the sonar origin of I1. Transformations needed for
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Fig. 5: Example of the detections obtained by cross-

correlation of the 5 different template classes. Only the

maximum of each class is retained. In this case detections

are spread over 3 different links.

bringing each detection from Ii to I1, are obtained from the

registrations computed in the image enhancement stage. m
corresponds to the number of enhanced images generated

over a displacement equivalent to the length of a link .

Equation (2) shows an approximated rule to determine m
according to the sonar acquisition frame rate (sfps), vehicle

velocity (v), link length (h) and number of registered raw

frames for each enhanced image (n):

m =
sfps · h

v · n
(2)

Therefore, every m images the algorithm will accumulate

5-by-m detections. As pointed out earlier, those detections

might be spread in different locations, but even the ones

that have targeted the same corner or same link segment

might have some position variability. This is due to slightly

different positions of the correlation peak or due to the accu-

mulated error in the transformation that brings the detection

to the first image of the buffer. It is then required to cluster

those detections by classes in a nearest-neighbour fashion.

For a given class, detections will be considered to be part of

the same group if they are within less than half link distance

(h/2) of other detections of the same class.

Groups with less than m/3 detections are discarded. In

this way, we force the detections to have enough support

over time (i.e should be detected at least over a third of

the different images) to be considered valid detections. Note

that, the number of links that can be detected in a single

image is limited by this threshold and thus can happen that

the algorithm only keeps valid detections on one of the

links, despite more links might be present in the image. This

favors the robust detection of the link or links that are better

observed along the m images, rather than the identification of

all of them. As the vehicle is moving along the chain, these

Fig. 6: Example of established clusters (circled in white)

after the accumulation of detections over a buffer of m = 9
images. Notice that several detections, even correct ones, are

discarded as they are not part of a group with enough support

(in this case, less than 3 detections).

links will start to drop out of the sonar’s field of view and

links that were imaged at further ranges (and therefore lower

resolutions) will be imaged later at closer ranges. Hence if

a link has not had any detection in a given image due to a

poor insonification viewpoint it has chances to be detected

more robustly in later images.

Fig. 6 shows an example of detections accumulated along

m = 9 enhanced images and the clusters that have been

identified.

D. Link identification

Clustered detections that were tackled as valid must be

associated into groups belonging to the same link. To identify

which detections are part of the same link we make use of

an heuristic that explores a series of possibilities according

to the cluster’s spatial location and known link dimensions.

The applied heuristic assumes that given the main direc-

tion in which the chain is deployed, the links can not have

sudden orientation change of more than 90 degrees from one

link to the next one. This is a reasonable assumption given

that mooring chains are typically subject to tension and even

they can have curved trajectories, those vary smoothly with

most of the links following an orientation around the main

chain deployment direction.

Due to link interlacing, alternate links have different

inclinations across the main chain axis, making elements of

the same side easier to be seen at the same image. Therefore

the heuristics sweeps the image in the chain direction (here

considered vertically) for the combination of elements (either

two or three) of the same side, rather than looking for side-

way combinations such as [lower-left corner/right-left cor-

ner]. Thus, the heuristic mechanism looks for combinations

or sub-combinations of clusters corresponding to the follow-
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Fig. 7: Link identification performed on the clusters of Fig.

6. Two different groups have been identified.

ing sequences: [lower-left corner/straight segment/upper-left

corner] or [lower-right corner/straight segment/upper-right

corner].

Two elements are considered to be part of the same group

if they are within half-link distance or within link distance,

depending on the element class. Two corners of the same

side are a valid combination if they are within link distance,

while a corner and a straight segment of the same side must

be closer than half-link distance to be considered part of the

same link. In order to compute the distance, the centroid

location of the clusters is used.

Fig. 7 shows an example of the link identification per-

formed on the clusters of Fig. 6 where two different groups

have been identified. The first one is a two-element com-

bination of left-side groups ([lower-left corner/upper-left

corner]) and the second is a full combination of right-

side groups ([lower-right corner/straight segment/upper-right

corner]). Notice that one of the lower-right corner clusters

identified in Fig. 6 has not been grouped as no possible

combination has been found around thus yielding weak

evidence of the presence of a link in that location.

E. Orientation estimation

Orthogonal regression is used to fit a line through the

points composing the different groups of a given link. The

orientation of this line with respect to the image x axis gives

an estimate of the link’s orientation. Fig. 8 shows examples

of orientation estimation for links identified out of 2 and 3

class groups.

F. Center estimation

Given an estimation of a link’s orientation α, the theoreti-

cal center position [cx, cy] can be projected from each of the

detected points p as:
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Fig. 8: Example of different orientation estimations.

where [tx, ty] are the displacements of the link center with

respect the theoretical location of point’s p class. Fig. 9a

shows the projection of the center locations from each of

the detections identified in Fig. 7.

This two-dimensional center projection is just an approx-

imation as due to the chain interlacing the links are not

lying horizontally on the plane. Moreover, the correlation

maximum detected in the pattern matching step (i.e points p)

may not correspond to the exact location of the link part.To

handle this uncertainty, each projected center is converted to

a gaussian probability distribution function (PDF) of σ =
ts/2, where ts is the template size. Then, the final center

position is estimated as the maximum of the probability map

generated from the addition of all gaussian distributions of

the link’s group (see Fig. 9b).

Apart from a more robust estimation of the center location,

this provides us a simple way to extract an estimation of

the confidence of the center position. The maximum of the

combined PDF is cut at its half height and the variance

in every axes direction provides an estimate of the center

location uncertainty. This measure can then be converted

to meters and used within the global mapping stage of the

framework.

IV. EXPERIMENTS AND RESULTS

In order to test the link detection algorithm, three datasets

have been acquired by using Girona500 AUV [11] equipped

with an ARIS FLS from Sound Metrics [4]. The vehicle has

been teleoperated inside a water tank containing a studless

chain composed of 13 links 0.7 m long each (see Fig. 10).

FLS imagery has been collected while navigating all over the

chain through different viewpoints. In datasets 1 and 2 the

vehicle starts around the first link and follows along the chain

with slightly different trajectories. In dataset 3 the vehicle

begins at the other end of the chain, going from the last link

to the first.

The ARIS sonar was configured to image a window from

1 to 4 meters ahead of the vehicle, thus being able to image

3 or 4 links in every frame. The frame rate of acquisition
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Fig. 9: (a) Projections of the theoretical center locations from

each of the groups detections. (b) Overlay of the probability

map generated as the sum of individual gaussian distributions

for each projected center. The link center is estimated as the

maximum in each combined pdf.

Fig. 10: Chain deployed in the water tank for the experi-

ments.

was set at 9 frames per second and the neighbourhood

for the image enhancement stage to n = 3. According

to Equation (2), as the vehicle velocity was around 0.25

m/s, m has been established to 9 images. Hence, inside our

general framework, the algorithm would output estimations

of link positions approximately every meter (3 seconds). The

employed set of templates extracted from several images can

be seen in Fig. 4.

Fig. 11 shows examples of final detections along the

chain, overlying a link pattern centered at the estimated

center location and rotated according to the estimated link

orientation angle.

Tables I to III summarize the obtained results for each of

the datsets. We report the percentage of detected links with

respect the total number of chain links (13 in this case),

the number of outlier detections and the mean orientation

and center error of the detections. In order to have a ground

truth to compare the accuracy of the estimations we have

manually identified the center and orientation of all the links

detected by the algorithm.

The first thing to be highlighted is that despite the imposed

restrictions that in most of the cases limit the number of the

(a) (b)

Fig. 11: Examples of final link detections, with a link

overlay centered at the estimated center location and rotated

according to the estimated link orientation angle. The lower

link on (b) shows an example of poor accuracy on the

rotation estimation.

TABLE I: Results summary dataset 1

Percentage of detected links 92%
Number of outlier link detections 0
Mean orientation error 6.1± 4.1◦

Mean center location error 3.6± 2.8cm

detections to just one or two links on the individual images,

very few links remain undetected all along the dataset. The

worse case is found in dataset 2, where 2 links remain

undetected giving a percentage of detected links of 84%.

It must be pointed out that almost all cases of undetected

links are located at the beginning of the trajectory in close

sonar ranges. That implies that when the vehicle advances

those links quickly drop out of the sonar field of view

thus appearing in less images and having less chances of

being detected. Moreover, provided that non-detections are

isolated cases, the global mapping stage that follows the link

detection can identify the lack of a link in the global chain

trajectory and interpolate its position.

As a result of using enhanced images and requiring a

TABLE II: Results summary dataset 2

Percentage of detected links 84%
Number of outlier link detections 2
Mean orientation error 6.12± 5.95◦

Mean center location error 5.14± 5.3cm

TABLE III: Results summary dataset 3

Percentage of detected links 92%
Number of outlier link detections 3
Mean orientation error 7.03± 5.21◦

Mean center location error 5.88± 4.90cm



TABLE IV: Results summary dataset 1 (Over individual

frames)

Percentage of detected links 69%
Number of outlier link detections 6
Mean orientation error 14.34± 8.23◦

Mean center location error 9.18± 7.66cm

strong detection support over time, the number of outlier

detections over all the individual images is not significant.

Outlier cases generally arise in those locations where a link

shadow creates a curved area similar to a corner template

and hence if the viewpoint does not change sufficiently they

are consistently detected along several frames. However, that

happens occasionally and it can be also handled by the sub-

sequent global mapping stage. Known link dimensions can

be used to enforce consistency between the link detections on

the map and the upcoming ones thus excluding those outliers

that are far off the chain trajectory.

The accuracy of the obtained detections, specially the link

center location, is reasonably good given the sonar resolution

and the two-dimensional projection assumption. Besides, the

final planning of the link cleaning trajectories can take into

account the uncertainty of the detections and adjust the

trajectories to ensure that a wider area is covered by the

water jet.

It is worth to emphasize the benefit of working with

the enhanced images rather than the raw sonar frames.

Table IV summarizes a test performed on the raw sonar

frames of dataset 1 where it can be clearly seen that the

number of outliers rises considerably and the accuracy drops

significantly.

Regarding computational time, the algorithm has been

implemented in MATLAB and tested on a Intel Core 2

Duo at 3.0Ghz. For the selected sonar configuration and

parameters n and m, new link detections are computed ap-

proximately every 8 seconds while the real-time throughput

should be around 3 seconds. The most time-consuming step

is the computation of the frame registrations that are required

to compute the enhanced images and also to accurately

accumulate the different detections over the image buffer.

For the test datasets, composed of images around 350x450

pixels, a pairwise registration takes 0.2 seconds. Therefore

the generation of each enhanced image takes around 0.6

seconds, which leads to more than 5 seconds to generate

the m enhanced images that are accumulated. However,

this time is a reasonable amount considering a MATLAB

implementation. Hence, with a more efficient implementation

the algorithm has high potential to run in real-time.

V. CONCLUSIONS

We have developed a robust algorithm to automatically

detect chain links from sonar imagery in the context of

an autonomous chain cleaning and inspection scenario. The

algorithm takes advantage of the high frame rate of new

2D-FLS to enforce robustness over time. It includes an

image enhancement procedure by registration of consecutive

frames, a correlation of local templates to improve handling

of occlusions, and a simple heuristics mechanism on a buffer

of clustered detections in order to determine link position

and orientation. The performance of the link detection has

been tested on real sonar data, proving to be robust enough

to handle the challenging characteristics of FLS images,

giving a low rate of outliers and reasonable accuracy while

mantaining the capability to work in real time.

Further work will concentrate on integrating the algorithm

inside the general framework presented on Fig. 1 and devel-

oping the rest of the stages towards an autonomous chain

cleaning and inspection solution.
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