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SLAM with Single Cluster PHD Filters 

Chee Sing Lee, Daniel E. Clark, Joaquim Salvi 

Abstract- Recent work by Mullane, Vo, and Adams has 
re-examined the probabilistic foundations of feature-based 
Simultaneous Localization and Mapping (SLAM), casting the 
problem in terms of filtering with random finite sets. Algorithms 
were developed based on Probability Hypothesis Density (PHD) 
filtering techniques that provided superior performance to 
leading feature-based SLAM algorithms in challenging mea­
surement scenarios with high false alarm rates, high missed 
detection rates, and high levels of measurement noise. We 
investigate this approach further by considering a hierarchical 
point process, or single-cluster multi-object, model, where we 
consider the state to consist of a map of landmarks conditioned 
on a vehicle state. Using Finite Set Statistics, we are able to find 
tractable formulae to approximate the joint vehicle-landmark 
state based on a single Poisson multi-object assumption on 
the predicted density. We describe the single-cluster PHD 
filter and the practical implementation developed based on 
a particle-system representation of the vehicle state and a 
Gaussian mixture approximation of the map for each particle. 
Synthetic simulation results are presented to compare the novel 
algorithm against the previous PHD filter SLAM algorithm. 
Results presented indicate a superior performance in vehicle 
and map landmark localization, and comparable performance 
in landmark cardinality estimation. 

Keywords: Simultaneous Localization and Mapping, 
probability hypothesis density filtering, doubly-stochastic 
processes, estimation. 

I. INTRODUCTION 

Work in SLAM has traditionally focused on repurpos­

ing single target tracking techniques such as the Extended 

Kalman Filter [1] to estimate a single combined state vector 

describing the pose of the vehicle and the map features. 

As a result of this approach, additional data association 

mechanisms are required to correctly identify which portion 

of the state vector generates an individual measurement, or 

whether the measurement originated from an actual target at 

all. A number of different algorithms have been developed, 

including gated nearest neighbor [2], joint compatibility 

branch and bound [3], and I-Point RANSAC [4]. 
In contrast to the data association management strategies, 

the multitarget Bayes filter [5] extends the same principles 

which form the foundation of the single-object filtering 

techniques to estimate multi-object states. By reformulating 

the estimation problem into one where the number of targets 

is also uncertain, it inherently separates true measurements 

from clutter, and determines the most likely association be­

tween measurements and targets. However, for a non-trivial 
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number of targets, this filter is computationally unattainable. 

Instead of propagating the full multi-object posterior, only 

the first-order moment of the multi-target probability density 

is propagated in order to achieve tractability. The resulting 

algorithm is known as the Probability Hypothesis Density 

(PHD) filter [6], due to Stein and Winter's theory of evidence 

accrual [7]. Practical implementations of this filter have been 

presented, which represent the PHD with particles [8] or a 

Gaussian mixture [9]. The Cardinalized PHD filter [10] is an 

extension of the PHD filter that propagates the cardinality 

distribution alongside the first-order moment. This allows 

the multi-target state to be generalized from a Poisson 

process to an independently and identically distributed (i.i.d.) 

process. A Gaussian mixture implementation for the CPHD 

has also been proposed [11]. Recently, Mullane, Vo and 

Adams proposed a SLAM algorithm which combines a 

Rao-Blackwellized particle filter with the Gaussian mixture 

PHD filter for estimation of map landmarks [12]-[14]. In 

comparison to more established SLAM methods, it is most 

similar to the FastSLAM family of algorithms [15], but 

performs much better when faced with increased levels of 

measurement clutter. In that work, the authors arrived at 

their implementation by making a number of approximations 

based on assumed map cardinality. The PHD based SLAM 

algorithm presented is based on a different approximation, 

one which deals with the underlying statistical process gov­

erning the existence of map features. 

The remainder of the paper is organized as follows: 

Section I discusses relevant past work in the field. Sections II 

and III describe the proposed methodology and implementa­

tion respectively. Section IV details simulation experiments 

and discusses the results thereof. Finally, Section V offers 

conclusions and sets a direction for further study. 

II. SINGLE CLUSTER PROCESS SLAM 

In Simultaneous Localization And Mapping (SLAM), a 

compact and convenient representation of the environment 

is a map of point features. These are obtained by abstracting 

measurements from onboard sensors such as sonar or cam­

eras. Such feature abstraction does not always provide correct 

results, especially under adverse environmental conditions, 

and these imperfections are manifested as false positives 

(clutter) or negatives (missed detections). Therefore, it is 

desirable to develop SLAM algorithms that are able to cope 

with poor quality measurements, as robust feature extraction 

may not always be available. In this work, we arrive at such 

an algorithm by first modeling the SLAM problem as a 

doubly-stochastic point process, and then applying a PHD 

filter for the estimation of doubly-stochastic processes. 
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Point processes model the random occurrence of events 

in a given interval of some arbitrary space [16]. Their 

applications span many disciplines, including epidemiology, 

ecology, finance, and telephone queuing. 

In our SLAM algorithm, we propose that the existence 

of map features be modeled as a point process conditioned 

on the vehicle pose, which is also a stochastic process. This 

conditionality relationship is known as a doubly-stochastic 
process, We refer to this process as a single cluster point 
process, where the vehicle state is the parent process, and the 

map state is the daughter process. Our algorithm propagates 

the parent process and the first-order moment of the daughter 

process, known as its Probability Hypothesis Density (PHD), 

or intensity. 

Let Xk be the random vector that represents the vehicle 

state, and Mk be the Random Finite Set (RFS) that repre­

sents the location of map features, which exist in the space 

X <:;;; IRn",. 
Xk = [Xk,l . . .  Xk,nJ (1) 

Mk = {mk,l . . .  mk,Vk} E F(X) (2) 
Where F(X) is the set of all finite subsets of X. In addition, 

the vehicle receives measurements which are represented as 

an RFS Zk taken from the measurement space Z <:;;; IRnz. 
(3) 

This RFS is the union of measurements that originate from 

true targets, and measurements generated by a Poisson false 

alarm process whose PHD is K;(Z) = AU(Z), where A is the 

Poisson rate parameter and U(Z) is the uniform distribution 

over Z. The measurement model Z = h(m, X) relates the 

measurements to landmark locations and the vehicle pose. 

Let Pk ( Xk) = Pk (Xk' Mk) be the joint posterior probabil­

ity distribution of the vehicle state Xk and multi-object map 

state Mk at time step k. From a methodological perspective, 

the estimation problem to solve remains the same as other 

SLAM formulations: the sequential Bayesian estimation of 

Pk( Xk). For brevity, let X = Xk and X' = Xk-1 The 

multiobject Bayes prediction and update formulas are: 

Pklk-l ( XI Z1:k-l) = J 7l"k( XI X')Pk-l ( X') JX' (4) 

( XI Z ) _ 9k( ZkI X)Pklk-l( XI Z1:k-l) Pk l:k 
- J 9k( ZkI X)Pklk-l( XI Z1:k-l) JX (5) 

The difference between the above equations and those of the 

single object Bayes filter is that because Mk is a random 

finite set rather than a random vector, the denominator of 

(5) becomes a set integral [6], which involves an infinite sum 

over all possible joint distributions af different cardinalities. 

These integrals make implementation of the multiobject 

Bayes filter intractable for a variable number of targets. 

Instead, we propagate the first moment of the multi object 

probability distribution. In order to make the resulting al­

gorithm tractable, we make an assumption on the predicted 

daughter process, namely that it can be approximated with a 

Poisson spatial point process. This assumption was made in 

the derivation of the single-cluster PHD filter [17]. 

In the single-cluster Poisson process, the prior PHD of the 

joint vehicle landmark state can be factorized as follows, 

where Sk-l (X) is the intensity of the parent process, and 

Dk-1 (miX) is the intensity of the daughter process. The 

single cluster PHD prediction equation is 

Dk1k-1(X, m) = 

J Sk-l (X')7l"klk-l (XIX')Dk1k-1 (miX') dX' (7) 

Dk1k-1(mIX') = 'Yklk-l(mIX) + 

J Dk-1(m'IX')7Tklk_l(mlm'; X') dm' (8) 

7l"klk-l (XIX') is the Markov transition density for the parent 

process, and 7Tklk_l(mlm', X') is the conditional Markov 

transition density for the daughter process; 'Yklk-l(mIX) is 

the PHD for the daughter birth process. The single-cluster 

PHD update can be separated into a parent update and a 

daughter update. 

( )  LZk (X)sklk-l (X) Sk X = -=---"---'-----

J LZk (X)sklk-l (X) dX (9) 

Dk(mIX) = (1 - PD(mIX))Dk1k_1(mIX) + 

L PD(mIX)Dk1k_1(mIX)gk( zlm, X) 
ZEZk K;k(Z) + J PD(mIX)Dk1k_1(mIX)gk(zlm, X) dm 

(10) 

Where gk(zlm, X) is the single-object measurement likeli­

hood, and LZk (X) is the multi-object measurement likeli­

hood, both conditional on the vehicle state. The multi-object 

likelihood is defined as 

LZk (X) = exp { - J PD(mIX)Dk1k-1 (miX) dm } x 

II (K;k(Z) + J PD(mIX)Dk1k-1 (mIX)gk( zlm; X) dm) 
ZEZk 

(11) 

Note that the equations pertaining to the daughter (8)(10) are 

identical to the conventional PHD filter prediction and update 

equations [6]. These update equations define the primary 

difference between the Single-Cluster PHD filter and the 

previously proposed Rao-Blackwellized PHD filter, 

III. IMPLEMENTATION 

We implement the Single-Cluster PHD filter using a Dirac 

mixture model for the PHD of the parent. Each component 

of the parent mixture model is associated with a Gaussian 

mixture model which represents the PHD of the daughter 

process conditioned on that particular parent component. At 

each iteration of the filter, we begin with the following prior 
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PHDs: 

Nk-l 
" (i) (i) Sk-1(X) = � 'T/k_1c5(X - Xk_1) 
i=l 
J��l 

nCi) (miX) = " w(jli) N(m' ,,(jli) p(jli)) k-1 � k-1 ,rk-1' k-1 
j=l 

(12) 

(13) 

The notation N(m; J.L, P) is used to denote a Gaussian 

distribution with mean vector J.L and covariance matrix P, 
and c5(X - a) denotes the Dirac delta distribution centered 

at a. Mixture models may be conveniently represented by 

the set of their parameters, so we may alternatively express 

the prior PHDs like so: 

(X) {(i) XCi) }Nk-l Sk-1 = 'T/k-1' k-1 i=l 
nCi) (miX) = {W(jli) ,,(jli) p(jli)}���l k-1 k-1' rk-1' k-1 J=l 

A. Map Prediction 

(14) 

(15) 

The prediction for the daughter process is the same as that 

for the standard Gaussian mixture PHD filter. 

- (i) - (i) - (i) Dklk-1(mIXk_1) = Db,klk-1(mIXk_1)+Ds,klk-1(mIXk_1) 
(16) 

The first term is a Gaussian mixture corresponding to births, 

or the appearance of new features in the map. 

Jb,klk-l 

components that ongmate from the same Xii�l can be 

assigned identical copies of the predicted map. 

C. Measurement Update 
Like the prediction, the measurement update for the 

daughter process mirrors that of the standard GM-PHD filter. 

- (i) (i) (i) - (i) (i) Dk (mIXk_1) = (1 - PD(mIXklk_1))Dklk_1 (mIXk_1) 
+ L b£�k(mIXii�l) (23) 

ZEZk 
where 

. . hlk-l (jli)N( . (jli). p(jli)) bet) (mIX(t) ) = 
" Wk m, J.Lk , k D,k k-1 � () ",hlk-l (Iii) j=l "'k Z + L..1=1 wk 

(jli) (jli) (i) Wk = PD(J.Lklk-1IXklk-1) X 
(jli) . (i) (jli) 9k(zlJ.Lklk_1' Xklk-1)wklk-1 

(jli) _ (jli) K(jli)( A(jli)) J.Lk - J.Lklk-1 - k Z - Zk 
p(jli) _ (I _ K(jli) J(jli) )p(jli) k - k k klk-1 
J(jli) - �h(m X) I k - a ' m (jli) (i) m=/Lklk_l,X=Xklk_1 
K(jli) _ p(jli) J(jli)S(jli),-l k - klk-1 k k 

Sjli - J(jli)p(jli) J(jli),T + R k - k klk-1 k k 

(24) 

(25) 
(26) 
(27) 

(28) 

- (i) " (j) (j) (j) Db,klk-1 (mIXk_1) = � wb,klk_1N(m; J.Lb,klk-1' P b,klk-1IX) A (jli) _ h( (jli) XCi) ) Zk - J.Lklk-1' klk-1 

(29) 
(30) 
(31) 

j=l 
(17) 

The parameters for the birth Gaussians are derived from the 

measurement scan of the previous time step. The second term 

in the prediction represents the propagation of features that 

survive from the prior map: 

- (i) DS,klk-1(mIXk_1) = 

JS,klk-l 
Ps L W£�lk_1N(m; J.L£�lk-l' P£�lk_1IX) 

j=l 
(j) (j) wS,klk-1 = Wk-1 
(j) - (j) J.Ls,klk-1 - !(J.Lk-1) 

P(j) F p(j) FT Q s,klk-1 = k k-1 k + k 
B. Vehicle Prediction 

(18) 

(19) 
(20) 
(21) 

The sampling property of the Dirac delta function means 

that substitution of (12) and (13) into (7) results in the 

following sum: 

Nk-l 
Dklk-1(X, m) = L 7rklk-1(XIXii�1)bklk_1(mIXii�1) 

i=O 
(22) 

The Markov transition density is then approximated by 

sampling M particles from it. The result is a new Dirac 

mixture for the parent, containing Nk-1 x M components. 

Because the predicted maps bklk-1 (mIX�) do not depend 

on the current predicted vehicle pose, each of the M parent 

Let FOVk(Xk) E X be the vehicle's sensor field of view at 

time k, dependent on the current vehicle location. Assuming 

a constant probability of detection PD, we have: 

( IX(i) ) _ {PD if m E FOVk(Xi�L1) (32) PD m klk-1 - 0 otherwise 

Consequently, for landmarks outside of the field of view, the 

updated feature will be identical to the predicted one because 

only the first term of (23) will be non-zero. This means that 

only the features within FOVk(Xi�L1) need to be updated, 

and remaining feature estimates can be propagated forward 

untouched. In order to perform the measurement update for 

the parent process, we must first compute the multi-object 

measurement likelihood. 

i _ (jli) (i) (jli) 
{ hlk-l 

} LZk (X ) - exp - t; PD(J.Lklk-1IXklk-1)wklk-1 

( Jklk-l ) 
x 

J

l "'k(Z) + t; W�li) (33) 

With this likelihood in hand, the weights of the Dirac mixture 

can be updated: 

'T/(i) = 
LZk (Xi) 'T/(i) (34) k ",Nklk-1 L (Xl) k-1 

L..1=1 Zk 
At this point we have the updated posterior parent and 

daughter PHDs. However, some steps need to be taken to 
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manage the computational complexity of the filter. During 

the prediction for the parent, each component in the Dirac 

mixture is "shotgunned" into M new components, resulting 

in a new mixture containing M x Nk-1 components. Left 

unchecked, the size of the parent process mixture would grow 

exponentially with every time step. To curb this growth, we 

prune the mixture to the Nk-1 components with the highest 

weights. The Gaussian mixtures for the daughter process 

also have the potential for this exponential growth, as the 

measurement update generates I Z I + 1 new Gaussians for 

each component in the predicted mixture. Many of these 

come from low-likelihood measurement associations and 

contribute little to the updated PHD. We employ Salmond's 

clustering method for Gaussian mixture reduction [18] to 

eliminate or merge these low-weight components to generate 

a more manageable approximation of the PHD. 

It is important to remark that this implementation is not the 

only way to realize the single-cluster PHD SLAM algorithm. 

For example, in [17], a single-cluster PHD filter with a 

Gaussian parent was proposed. However, we have decided 

on this implementation because the Dirac mixture should be 

more able to capture non-linear motion models. 

IV. SY NT HETIC RESULTS 

The Single-Cluster PHD SLAM algorithm was validated 

with simulations on synthetic data. The simulated vehicle 

conforms to the Ackerman steering motion model used in 

[19], and the sensor input consists of range and bearing 

measurements to point features in the environment. The 

standard deviation of the zero-mean Gaussian odometry 

noise was 2 mls for the velocity, and 5° for the steering 

angle. The measurement noise had a std. deviation of 1 m 

and 2° for the range and bearing components respectively. A 

probability of detection PD = 0.95 was used to cull the true 

feature measurements, and false alarm measurements were 

added to the sensor inputs, at an average of A = 5 per scan. 

Figure 1 depicts an example scenario generated with these 

parameters. 

Using a fixed ground truth map and trajectory, 50 Monte 

Carlo runs were executed, with both odometry and sensor 

inputs regenerated for each run. The filter used 64 compo­

nents for the parent mixture, with a shotgun factor of M = 4 
in the prediction. Birth components were computed from the 

previous timestep's vehicle location and measurements, and a 

constant birth weight of Wb = 0.01 was used. The expected 

a posteriori state estimate was taken for the vehicle pose, 

while the maximum a posteriori state estimate was taken 

for the map. The estimated number of map features, Nb was 

determined by summing the weights in the Gaussian mixture 

of the most highly weighted particle, and the Nk most highly 

weighted Gaussians were taken as the map estimate. 

For comparison, the Rao-Blackwellized PHD SLAM algo­

rithm in [14] was also implemented, using the single feature 

map assumption for the particle weight update. As the RB­

PHD SLAM has already been shown to out-perform more 

well established methods such as the Extended Kalman Filter 

and FastSLAM, these were not included in the simulations. 
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Fig. 1: Illustration of the scenario used for simulations, show­

ing the true vehicle trajectory (black solid), dead-reckoning 

trajectory (red dashed), true map landmarks (blue stars), and 

cumulative sensor measurements (gray dots) 

Both algorithms were implemented in C with the CUDA 4.0 

Parallel Computing Toolkit, and the simulation was run with 

an NVIDIA Tesla C2070 GPU. 

Performance in vehicle localization was evaluated using 

Euclidean distance, while mapping performance was evalu­

ated using the OSPA metric [20], with order P = 1 and cutoff 

c = 5 meters. Results are shown in Figures 2 and 3. 

V. DISCUSSION AND CONCLUSIONS 

The results presented in this work indicate that the 

single-cluster PHD filter provides a viable solution to the 

SLAM problem in scenarios with high measurement clutter. 

Compared to previous PHD SLAM methods, it achieves 

superior performance in localizing both the vehicle and 

map landmarks, while estimation of landmark cardinality 

remains comparable. With the Dirac mixture implementation 

for the parent, the implementation of the single-cluster PHD 

SLAM algorithm is closely related to the RB-PHD SLAM, 

the difference being the weight updates for the vehicle 

pose particles. It is likely that the improved performance 

of the algorithm stems from the approximations made in 

order to achieve tractable update formulae. In RB-PHD­

SLAM, Poisson assumptions were made on both the prior 

and posterior, and a further assumption was made on the 

number of features. In the single-cluster PHD SLAM, only 

a Poisson approximation was made on the prior. 

To illustrate these differences, a small experiment was 

performed. Using the same set of sensor inputs, the mea­

surement updates for the two methods were executed on 

identical predicted states. Figure 4 shows the resulting parent 

distributions. It is apparent that the SC-PHD SLAM update 

generates a significantly more focused parent distribution 

than the RB-PHD-SLAM update. This suggests that the 

multi-object likelihood used in the single-cluster derivation 

is more discriminating, and is better able to concentrate 

the parent particles about the true vehicle position. We 
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Fig. 3: Example of resulting trajectories and map from SC-

PHD SLAM (shown in red) 

would also like to remark about computational performance 

of the PHD filter SLAM. As implemented in this work, 

the running time for both algorithms was on the order of 

several minutes per Monte Carlo run. At this point, online 

application appears out of the question. However, as more 

computational resources become available in the future, 

these methods are likely to become increasingly relevant. 

Moreover, because the PHD update is applied only to map 

features within the vehicle's field of view, the SC-PHD 

SLAM will scale suitably to longer missions. A number of 

different research avenues are open to continue this work. We 

feel that the synthetic simulations presented here sufficiently 

validate the SC-PHD SLAM algorithm, but further work 

will reinforce these results using real world datasets. The 

Poisson assumption on the map process introduces a high 

variance in the cardinality estimate. We believe that relaxing 

this assumption to one of an i.i.d. process, by substituting the 

single-cluster PHD filter with a single-cluster CPHD filter, 

will improve the cardinality estimation. 
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