
 

 

 

Abstract 
 

A promising combination of sensors as a laser range 

finder and an omnidirectional camera can be used to 

extract rich 3D information from indoor environments for 

robot mapping and localization. This paper presents an 

implementation of FastSLAM using 3D vertical edges 

retrieved from a range-augmented omnidirectional vision 

sensor. Our sensor model in conjunction with the 

FastSLAM algorithm solves the indoor Simultaneous 

Localization and Mapping problem. The real world 

experiment to validate our approach used a Pioneer-3DX 

mobile robot equipped with a URG-04LX laser range 

finder and an omnidirectional camera. 

 

1. Introduction 

Reliable self-localization and map building plays an 

important role for autonomous navigation in mobile 

robotics. Indoor environments are the scenery where 

service robots are useful for surveillance, inspection, 

delivery and cleaning tasks. Then, the perception system 

of a mobile robot must provide accurate information of the 

robot environment, taking advantage of its surroundings in 

order to reconstruct a consistent representation of the 

environment. In many applications this environment 

representation is not known and the mobile robot has to 

locate itself at the same time using a set of sequential 

observations. This problem is called Simultaneous 

Localization and Mapping (SLAM), which has been 

studied throughout many years and excellent surveys have 

written [1-2]. 

The most relevant solutions to SLAM are focused on 

the feature-based approach, where feature descriptors are 

extracted from laser scans or images to solve the problem 

of matching observations to landmarks. Other alternative 

approaches are: in [3] raw laser range data is used to 

extract saliency using the Iterative Closest Point (ICP) 

algorithm [4]; [5] computes the camera pose and the scene 

structure considering illumination changes using the image 

intensities as saliency. 

In recent years, appearance-based mapping and 

localization has gained special attention since these 

methods use a richer description of the environment giving 

more cues to improve robot mapping and localization [6-

7]. These approaches present a probabilistic framework to 

build appearance-based topological maps. Appearance-

based methods exploit the environment structure as 

vertical and horizontal lines (laser scans or images), doors, 

planes, etc. to obtain a better representation of the robot 

surroundings. In this sense, [8] and [9] proposed solutions 

using only omnidirectional images and bearing 

information of vertical lines to solve SLAM, [10] 

described a system based on a laser range finder (LRF) 

and an omnidirectional camera to obtain a map of the 

environment using scan matching and vertical lines. 

Another option to obtain better environment 

representations concerns sensor fusion. Common available 

laser range finders work in a plane parallel to the ground, 

and then it limits the environment representation to 2D. 

Combining vision sensors with laser range finders increase 

the perceptual information, but monocular or stereo 

cameras have limited field of view affecting their 

perception due to occlusions and feature lifetime 

observation. Omnidirectional cameras have received 

special attention recently due to its long-term landmark 

tracking, its wide field of view, its robustness to 

occlusions, and its ability to be fused with range data. 

Therefore, combining an omnidirectional camera with a 

LRF has many advantages: all the laser trace can be used 

to extract environment features on the image plane, depth 

information can be embedded into the omnidirectional 

image, 3D feature information can be recovered, and once 

the calibration between these sensors is performed for first 

time it can be used in real time. In [11] a sensor fusion 

between an omnidirectional camera and a LRF is 

presented, where the laser trace projected onto the 

omnidirectional image is used to extract salient features on 

the image plane.  

In this paper we present an implementation of the 

FastSLAM algorithm using a sensor model based on the 

extrinsic calibration between a LRF and an 

omnidirectional camera [12]. The main goal of our 

approach is to extract the 3D position of vertical lines in 

indoor environments and use them to solve the SLAM 

problem, instead of using the bearing information only as 
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is done in [8] and [9]. Our approach uses a modified 

version of the joint compatibility branch and bound test 

(JCBB) [13] to solve the data association problem. The 

data association is performed using the features 3D 

position, instead of using local 1D image intensity signals 

as presented in [11]. The experimental validation was 

performed using a dataset collected in the indoors of the 

University of Girona. 

This paper is organized as follows: Section 2 describes 

the SLAM algorithm we implemented. Section 3 concerns 

the description of the sensor, feature extraction and data 

association. Section 4 describes the scenario and the 

experimental results we obtained that validate our 

approach. The paper ends with conclusions presented in 

Section 5. 

2. SLAM algorithm 

One successful solution to SLAM is particle filters. 

Mapping and localization involves non-linear functions 

and unknown error sources, the latter cannot be modeled 

using an exact mathematical representation. In this 

context, particle filters can handle this kind of problems 

sampling from an estimate probabilistic distribution and 

improving it recursively. In this paper we used the 

FastSLAM 1.0 [14-15] algorithm, which uses particle 

filtering and we have adapted it to support our 

measurement model. 

In our implementation the system state is composed of 

the robot position (X =[xR, yR, θR]) and the vertical lines 

position (M), the observations are the range, azimuth and 

elevation of the vertical lines (Z) and the control data (U) 

is obtained from scan matching [4]. As conditionally 

independence can be assumed given the robot poses, the 

posterior can be factored as follows: 

 ���� , �|�	:�, �	:��  ����|�	:�, �	:�� ∏ ����|�� , �	:�����	  

(1) 

 

Where, t is the current time step and N is the current 

number of features. In FastSLAM each particle is denoted 

by: 

 ���  ���� , �	,�� , Σ	,�� , … , ��,�� , Σ�,�� �   (2) 

 

Where, k is the particle index, ��� is the path estimate of 
the robot, and ��,��   and Σ�,��  are the mean and variance of 

the Gaussian representing the n-th feature location of the 

k-th particle which are estimated using independent 

Kalman filters. The filtering process overview is explained 

as follows: 

Getting measures – Vertical lines position with respect 

to the LRF are gathered: zn,t = [ρn,t φ n,t ψ n,t]
T, where ρ n,t, φ 

n,t and ψ n,t are the range, the azimuth and elevation of the 

n-th vertical line at time t. 

Sampling new poses – A new pose xt is sampled using 

scan-matching for each particle in yt-1. This is done 

drawing a sample according to the motion posterior: 

 ���~���������	� , ���   (3) 

 

Where, ���	�  is the posterior estimate for the robot 

location at time t-1 in the k-th particle, and ut is the 

command motion obtained from scan-matching. 

Data association – Given the current set of features for 

the k-th particle, the current set of observations zt and the 

current predicted pose ��� from Equation 3, we use the 
JCBB test [13] in order to find the observed features Ht. 

Update observed features – For each observed feature 

in each k-th particle, the standard EKF expressions were 

applied to obtain the mean (���,�� ) and covariance (Σ��,�� ) of 

these features: 

 ���  Σ��,��	� . !��."#!�� . Σ��,��	� . !��." $ %�&�	
  (4) ���,��  ���,��	� $ ������ ' ���(�  (5) Σ��,��  �) ' ���!���. Σ��,��	�   (6) 

 

Where, !�� is the Jacobian of the measurement model 
with respect to the feature coordinates (see Section 3) and 

Qt is the sensor uncertainty. 

Re-sampling – We use the FastSLAM low variance re-

sampling method, where the importance factor of each 

particle depends on their measurement probability. 

The main goal of this paper is propose an original 

measurement model, which is used in steps 1, 3 and 4 of 

the FastSLAM algorithm described above. The 

measurement model proposed in this paper is explained in 

the next section. 

3. Sensor model 

A central catadioptric camera consists of a perspective 

or orthographic camera, and a mirror. The latter can be 

conic, hyperbolic, or parabolic. Projective models for 

these cameras have been developed by [16] and [17]. In 

the remainder of this paper we adopt the model described 

in [17], which is related to the toolbox described in [18], 

and use it to calibrate our central catadioptric camera.  

The URG-04LX 2D LRF used in this work was 

previously calibrated in order to decrease the range error 

following the procedure described in [10]. The raw 2D 

laser scan data is previously processed using a median 

filter. Our approach was tested using a dataset with the 

robot in motion, for this reason a motion correction is 

performed in the 2D laser scan. 

The observations we used to feed the FastSLAM 

algorithm are the vertical edges with respect to the LRF. 

These observations are the range, azimuth and elevation 

angles, which are obtained thanks to the extrinsic 

281



calibration between the omnidirectional camera and the 

LRF.

3.1.

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

and 

camer

omnidirectional image

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

in [10] the 

followi

and 

and Yaw angles.

3.2.

For self

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be co

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

LRF. 

3.1. Omnidirectional camera / laser range finder 

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

and T

camer

omnidirectional image

 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

 

Using the simultaneous parameter estimation proposed 

in [10] the 

followi

and -1.1075º

and Yaw angles.

3.2. Vertical line detection

For line detection we used a modified version of [1

For self

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be co

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presen

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

 

Omnidirectional camera / laser range finder 

calibration

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

T so that laser points 

camera coordinate system, and then projected onto the 

omnidirectional image

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

in [10] the 

following results: 

1.1075º

and Yaw angles.

Vertical line detection

For line detection we used a modified version of [1

For self-containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be co

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presen

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

calibration

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

so that laser points 

a coordinate system, and then projected onto the 

omnidirectional image

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

in [10] the 

ng results: 

1.1075º

and Yaw angles.

Vertical line detection

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be co

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presen

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

calibration

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

so that laser points 

a coordinate system, and then projected onto the 

omnidirectional image

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

in [10] the R and 

ng results: 

1.1075º, -

and Yaw angles.

Vertical line detection

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be co

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presen

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

calibration

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

so that laser points 

a coordinate system, and then projected onto the 

omnidirectional image

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

and 

ng results: 

3.4829º

and Yaw angles.  

Vertical line detection

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be co

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presen

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

calibration 

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. 

so that laser points 

a coordinate system, and then projected onto the 

omnidirectional image

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

and T 

ng results: T = [

3.4829º

Vertical line detection

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

verified to be considered as a line. Otherwise, it is 

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presen

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

Figure 1 depicts the extr

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

pattern and the camera. The 

so that laser points 

a coordinate system, and then projected onto the 

omnidirectional image. 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

 matrices were found obtaining the 

T = [0.0283

3.4829º and 

Vertical line detection

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

iteratively cut into 2 sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

The approach presented in [1

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

Figure 1 depicts the extrinsic calibration between the 

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

The problem focuses on finding 

so that laser points P

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

0.0283

and -

Vertical line detection

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

iteratively cut into 2 sub-

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

ted in [1

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

PL can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

0.0283 

-94.3732°

Vertical line detection 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

-chains until a sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

ted in [1

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

constraint given by the cross-product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

 -0.1984

94.3732°

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chains until a sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

ted in [19] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

omnidirectional camera and the LRF. 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

0.1984

94.3732° 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chains until a sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

omnidirectional camera and the LRF. There are three 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

0.1984 0.55]

 for the Roll, Pitch 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chains until a sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain. 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

There are three 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

0.55]

for the Roll, Pitch 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chains until a sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

decomposed into more than a single chain.  

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

There are three 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

0.55]T 

for the Roll, Pitch 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chains until a sub

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

There are three 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

 in meters 

for the Roll, Pitch 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chains until a sub-chain is 

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane.

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

There are three 

coordinate systems, those of the laser, the calibration 

problem focuses on finding 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration.

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

in meters 

for the Roll, Pitch 

For line detection we used a modified version of [1

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chain is 

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

projection of the line and the normal ground plane. 

calibration between the omnidirectional camera and the 

Omnidirectional camera / laser range finder 

insic calibration between the 

There are three 

coordinate systems, those of the laser, the calibration 

problem focuses on finding R 

can be represented in the 

a coordinate system, and then projected onto the 

Figure 1. Omnidirectional camera and LRF extrinsic calibration. 

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

in meters 

for the Roll, Pitch 

For line detection we used a modified version of [19]. 

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chain is 

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

 In 

 

 

calibration between the omnidirectional camera and the 

insic calibration between the 

There are three 

coordinate systems, those of the laser, the calibration 

 

can be represented in the 

a coordinate system, and then projected onto the 

 

Using the simultaneous parameter estimation proposed 

matrices were found obtaining the 

in meters 

for the Roll, Pitch 

]. 

containment, here follows just the main idea. This 

algorithm starts detecting edges in the image and building 

chains of connected edge pixels. Then these chains are 

projected on the sphere, where the great circle constraint is 

nsidered as a line. Otherwise, it is 

chain is 

considered a line or its length is too small. Then, a 

merging step is applied because a line might be 

] detects any line; hence 

we modified the pipeline process in order to detect only 

the vertical lines. Besides, we included an additional 

product between the sphere 

In 

 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

sphere.

3.3.

computed. In this figure two typical vertical lines are 

presented. The line 

and the line 

ending points of 

In order to describe the vertical line position method, we 

need to define the following angles: 

∠

Figure 2. Vertical line position measurement.

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

= 0.04) [

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

C

sphere and the a

Then, scene points 

follows:

*

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

sphere.

3.3. 

Figur

computed. In this figure two typical vertical lines are 

presented. The line 

and the line 

ending points of 

In order to describe the vertical line position method, we 

need to define the following angles: 

∠ zO

 

Figure 2. Vertical line position measurement.

 

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

= 0.04) [

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

CL1 are found on the image plane, they are projected to the 

sphere and the a

Then, scene points 

follows:

 

*+	 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

sphere. 

 Vertical line position

Figure 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

presented. The line 

and the line 

ending points of 

In order to describe the vertical line position method, we 

need to define the following angles: 

zOAL1

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

= 0.04) [

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

sphere and the a

Then, scene points 

follows:

 ,���

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

 

Vertical line position

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

presented. The line 

and the line 

ending points of 

In order to describe the vertical line position method, we 

need to define the following angles: 

L1 and 

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

= 0.04) [20

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

sphere and the a

Then, scene points 

follows: 

,�-�-�-.

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

Vertical line position

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

presented. The line 

and the line L

ending points of 

In order to describe the vertical line position method, we 

need to define the following angles: 

and θ

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

20] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

sphere and the a

Then, scene points 

.  /

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

Vertical line position

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

presented. The line 

L2 does not. 

ending points of L

In order to describe the vertical line position method, we 

need to define the following angles: 

θC1 = 

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

sphere and the angles 

Then, scene points 

. / 010123

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

Vertical line position

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

presented. The line L

does not. 

L1. B

In order to describe the vertical line position method, we 

need to define the following angles: 

= ∠

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

ngles 

Then, scene points 

/ 1cos
1sin' 9:;

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

Vertical line position

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

L1 crosses the LRF trace (dotted line) 

does not. 

BL1 

In order to describe the vertical line position method, we 

need to define the following angles: 

∠ zO

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

ngles θL1

Then, scene points AL1

cos �=sin �=>9:; �

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a 

computed to accelerate the image point projection on the 

Vertical line position

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

does not. A

 is the LRF

In order to describe the vertical line position method, we 

need to define the following angles: 

zOCL1

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

θL1, θ

L1 and 

=+	�=+	�>?�@AB�

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

the camera calibration a look

computed to accelerate the image point projection on the 

Vertical line position 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

AL1 and 

is the LRF

In order to describe the vertical line position method, we 

need to define the following angles: 

L1.  

Figure 2. Vertical line position measurement.

The vertical lines detected are 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

θA1 

and 

�
�
C  

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

look

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

and 

is the LRF

In order to describe the vertical line position method, we 

need to define the following angles: 

Figure 2. Vertical line position measurement.

The vertical lines detected are spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

 and 

and CL1

C  

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

look-up

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

and CL1

is the LRF point associated to 

In order to describe the vertical line position method, we 

need to define the following angles: θ

Figure 2. Vertical line position measurement.

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

and θC

L1 can be expressed as 

C  

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

up-table

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

L1 are the initial and 

point associated to 

In order to describe the vertical line position method, we 

θL1 = 

Figure 2. Vertical line position measurement. 

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

θC1 can be computed. 

can be expressed as 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

table 

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

are the initial and 

point associated to 

In order to describe the vertical line position method, we 

= ∠

 

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points 

are found on the image plane, they are projected to the 

can be computed. 

can be expressed as 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

 (LUT) was 

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

are the initial and 

point associated to 

In order to describe the vertical line position method, we 

∠ zOB

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

in Figure 2). Once the corresponding points AL1

are found on the image plane, they are projected to the 

can be computed. 

can be expressed as 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

(LUT) was 

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

are the initial and 

point associated to 

In order to describe the vertical line position method, we 

zOBL1

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LR

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

L1, B

are found on the image plane, they are projected to the 

can be computed. 

can be expressed as 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

(LUT) was 

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

are the initial and 

point associated to 

In order to describe the vertical line position method, we 

L1, θA

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

filter out. Next, using the range uncertainty of the LRF (

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (

, BL1 

are found on the image plane, they are projected to the 

can be computed. 

can be expressed as 

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

(LUT) was 

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

are the initial and 

point associated to L1. 

In order to describe the vertical line position method, we 

θA1 = 

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

F (σρ

] each vertical line is associated to the nearest 

LRF point projected onto the omnidirectional image (BL1

 and 

are found on the image plane, they are projected to the 

can be computed. 

can be expressed as 

(7)

addition, to improve the computing time the edge and 

chain detection were implemented in MEX files; and using 

(LUT) was 

computed to accelerate the image point projection on the 

e 2 shows how the vertical line position can be 

computed. In this figure two typical vertical lines are 

crosses the LRF trace (dotted line) 

are the initial and 

. 

In order to describe the vertical line position method, we 

= 

 

spread in the 360º field of 

view of the omnidirectional image. However, the LRF has 

a limited field of view of just 240º. Then those vertical 

lines on the image out of the field of view of the LRF are 

ρ 

] each vertical line is associated to the nearest 

L1 

and 

are found on the image plane, they are projected to the 

can be computed. 

can be expressed as 

(7) 

282



 

 

D+	  ,�E�E�E .  / 01cos �=+	�01sin �=+	�23 ' >?9:; �@FB�
C  (8) 

 

Where, ρB is the distance to the vertical line extracted 

from the corresponding LRF point and T3 is the third 

element of the translation vector between the 

omnidirectional camera and the LRF. Using these scene 

points the observation model can be computed as: 
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Where, rn, φn and ψn are the observed range, azimuth 

and elevation of the middle point mL1 = [mx, my, mz] of 

line L1 given the current robot position Xt = [xR, yR , θR]. 

To update the observation at step 4 of Section 2, EKF 

requires a linearized measurement model with additive 

Gaussian noise (Qt in Equation 4). The Taylor 

approximation of this measurement model is: 
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Where, !�� is the Jacobian with respect to the feature 
coordinates, X9d is the robot state of the k-th particle, ���,��	fffffffff is the feature mean location in the previous time 
step, dx = �O ' �P, dy = �R ' �P, dz =�S , d = ��O '�P�Q $ ��R ' �P�Q $ �SQ and f = N�k/k�Q� ' 1. In our 
implementation of the FastSLAM algorithm we also 

update the robot position. Proceeding in the same way as 

before, the Taylor approximation is: 
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Where, n�� is the Jacobian with respect to the robot state 
(X9d), X9dfff is the predicted robot state, and dx, dy, d and f 

have the same meaning as in Equation 11. 

3.4. Data association 

In our implementation we considered JCBB to solve the 

data association problem [13], such that the correlations 

between innovations are explicitly taken into account to 

determine the joint compatibility of a set of pairings. Each 

particle in the particle filter holds the robot path and the 

estimated positions of the vertical lines. A key advantage 

of using a particle filter is that each particle can perform 

its own data association decisions based on its robot path 

and landmark position estimates. 

The measurement model proposed in this paper is 

focused on finding the range, azimuth and elevation of the 

vertical line middle point. However, this measure and the 

innovation gate distance metric used in JCBB do not 

exploit other landmark attributes, which may be useful for 

disambiguation. For this reason, additionally we extract 

the direction of the vertical line which includes: the initial 

point, the ending point and its length. Using Equations 7 

and 8, we can define the line direction uL1 of the vertical 

line L1: 
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Where, l varies from 0 to the vertical line length, which 

is defined by the norm of the vector *+	 ' D+	ssssssssssssssssssst. Once the 
feature correspondences are given by JCBB, we search 

those ambiguous correspondences and we filtered them 

out using the following criteria: 

 uvwx�  minz{ |�}��  (16) |�}��  !Dk~���}�� �+�z{��A��+�z{���+�z{��A� �  (17) 

 

Where, ck is the list of potential ambiguous 

correspondences, JCdist(ck) is the joint compatibility 

associated to the map feature, L(ck)MAP is the vertical line 

length stored in the map and L(ck)Ht is the observed 

vertical line length. In this way not only the correlations 

between innovations are taken into account, but also other 

landmark attributes as its length is considered. 

4. Real experiments 

We tested our approach on a Pioneer 3DX mobile robot 

equipped with an onboard computer at 1.5 GHz, an 

omnidirectional vision setup composed of a 

RemoteReality parabolic mirror with a diameter of 74mm, 

a UI-2230SE-C camera with a resolution of 1024x768 

pixels, and a URG-04LX laser range finder (Figure 3). 

We collected our data set at the PIV building of the 

University of Girona which has three floors. These data 
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