
Integrating individual and social
intelligence into module-based agents

without central coordinator

Bianca INNOCENTI a,Beatriz LÓPEZ a and Joaquim SALVI a

a Institute of Informatics and Applications, University of Girona

Abstract. Robots are complex entities that can be modeled as multi-agent systems.
The multi-agent paradigm provides an integrated intelligence framework such as a
path planning agent that uses search techniques interacts with a fuzzy-based agent
that moves the robot to a given location. Agent coordination is required to achieve
the appropriate global behavior. When there is no central agent that coordinates the
overall architecture, the intelligence required for social interaction should therefore
be deployed at the agent level. In such a situation, individual intelligence (how to
reach a goal) and social intelligence (how to collaborate or compete for resource
with other agents) should be integrated at the agent level. In this paper we propose
the use of module-based agents to achieve this integration. The whole multi-agent
robot architecture, ARMADiCo, has been implemented with several module-based
agents and tested on a Pioneer 2DX of ActivMedia. Some preliminary results are
shown and discussed.

Keywords. Robotics, Agents

Introduction

Artificial Intelligence Robotics concentrates on how a mobile robot should handle unpre-
dictable events in an unstructured world (conversely to Industrial Robotics that is con-
cerned on dynamics and kinematics of a robot [10]). For this purpose, some researchers
are involved in a long term effort to integrate perception, navigation, planning and uncer-
tainty management methods in a single robot architecture. Traditionally, most researchers
focus on a module based approach, in which each robot component is implemented in a
module [2,1,15].

More recently, several researchers are concerning about the significant impact of
agent technology on the world of robotics [8,7]. Most of them focus on the one-to-one
mapping from robots to agents, while keeping the module approach implementation in-
side a robot. Trying to capture all robot capabilities in a single agent seems unfeasible,
thus some of the recent architectures consider multi-agent approaches inside a single
robot [12,3,13]. The modeling of the whole robot architecture in a higher abstract level,
as a collection of agents (multi-agent system), facilitates the design [11,16].

One of the advantages of using agents is that they have their own autonomy to deploy
their tasks. So, if an agent receives a request, it could do it or not depending on its current
state and information (priorities, danger, etc.). One of the disadvantages, however, is



the need of a coordination mechanism that takes into account the physical actuation of
the robot in the environment, so that the final decisions that emerge from the agents
interactions do not result in a folly robot behavior. Coordination can be achieved by a
central arbiter, as in [3]. However, decentralized coordination can also be considered so
that it avoids having a bottleneck agent that governs the overall architecture. This is an
important issue when intelligent robots should have a considerable number of agents to
cover all the aspects of intelligence.

Moreover, since robots concern physically grounded resources, this coordination
should take into account possible disruptions in the robot behavior. Thus, the coordina-
tion mechanism should handle all the complexities involved in the resource exchange
from the control of one agent to the other one.

Consistently, in a decentralized scenario, each agent has to deal locally with, at least,
two kinds of intelligences: individual and social. On one hand, individual intelligence
enables the agent to achieve its assigned goals (as for example, planning a trajectory
for achieving a target point). On the other hand, social intelligence enables the agent to
understand and manage with other agents.

In this paper we present a way of integrating both kinds of intelligence in a module-
based agent belonging to a multi-agent robot architecture with no central coordinator. So,
a module architecture is kept inside an agent, while the multi-agent approach is followed
for the global architecture design. As a consequence, intelligence integration is achieved
in two levels: at the agent and at the multi-agent levels. At the agent level, individual
and social intelligence is integrated. Each agent follows the most adequate artificial in-
telligence approach in order to achieve its individual goal. There are some agents that
use search methods to achieve their goals, while others employ probabilistic reasoning,
fuzzy techniques and others. Each agent uses a utility based and fuzzy based reasoning
approach to deal with social interactions. At the multi-agent level, all these artificial in-
telligence techniques are integrated and thus, as the final interaction of all the agents, the
robot has an emergent behavior that achieves the missions proposed by humans.

From our understanding, there is no previous work in which a decentralized coor-
dination is presented for controlling a single robot, as well as the inclusion of a coordi-
nation mechanism that takes into account the physically grounded characteristic of the
robot resources. Thus, dealing with social coordination at the agent level is not a trivial
task, and so, considering artificial intelligence techniques both, at individual and social
levels, is necessary.

This paper is organized as follows. First, in section 1 the multi-agent architecture is
outlined. Then, in section 2 the module-based architecture is described. Then we continue
by giving some experimental results in section 3, some related work in section 4 and we
end with the conclusions.

1. The multi-agent robot architecture with distributed coordination

ARMADiCo (Autonomous Robot Multi-agent Architecture with Distributed Coordina-
tion) can be described according to the main components required in classical Hybrid
Deliberative/Reactive Architectures [10]. That is, the main components that any au-
tonomous robot should include are the following: a deliberative component to reason
about how to achieve high level goals; a reactive component to deal with the environ-
ment; perception and actuators to deal with the physical world (see Figure 1 top).



Figure 1. Top: Classical robot components. Bottom: A robot architecture based on a multi-agent system.

Moving downwards the next abstraction level, each component can be modeled by
a set of agents. In Figure 1 (bottom) the previous component model is detailed in several
agents that built up the different robot desired capabilities. First, perception is set up by
a set of agents. An agent is designed for each sensor (encoder, sonar, battery sensor).
Second, actuators are itemized in a set of physically grounded agents. Although a single
robot actuator agent is shown in this figure, that deals with robot motors and sensor
readings, more agents can be incorporated. For example, an agent that is in charge of
a robot arm could be included. Third, the reactive capabilities are detailed in a set of
behavioral agents. There is a behavioral agent for each basic behavior as for example go
to a point, avoid obstacles, go through a narrow space, etc. Fourth, deliberative capacities
are set up by cognitive agents as the task planning, the path planning, the battery charger
and the localization agents. Much more agents could be added in order to provide to
the robot with higher cognitive capabilities as learning, decision making, etc. Finally, an
interface agent is defined to facilitate the robot interaction with either humans or other
robots, and a set of back agents to deal with other functionalities required to give support
to the overall multi-agent system.

ARMADiCo follows a distributed coordination approach to share the system
resources. Being a distributed coordination mechanism, the global system behavior
emerges from individual agents (micro level behaviors). For such kind of systems, de-



sign is still an open issue [4]. One of the current proposals consists in the use of agent’s
design patterns [17], and we have followed such approach in the design of ARMADiCo.
The agent’s design pattern captures common features of the agents and facilitates the
incorporation of new agents in the architecture. Our current pattern follows the schema
shown in Table 1.

Table 1. Agent’s design pattern

Internal State: Mechanism used by the agent in order to know about
the progress of its goals, and to update the information of the
environment.

Goal:

Goal configuration: Agent’s goals.
Goal methods: Methods that implements the agent’s goals.

Competition: List of possible conflicting agents due to resource
sharing, and list of shared resources.

Collaboration: List of agents from/to exchange messages (request,
information).

Coordination

Utility computation: Method (with the required parameters)
used to compute the utility value for achieving a coor-
dination agreement.

Resource exchange: Method used to exchange resources
from one agent to another.

Helper methods : All supporting methods that help the agent in reg-
istering in the system, communicating, starting up, etc. They
are the same for all the agents.

In the agent’s design pattern we can perceive information regarding resources (com-
petition and collaboration slots). An agent in ARMADiCo could use a resource and could
be a resource, depending on the situation. For example, when the goto agent sends a
request to the robot agent to move the robot to a given linear and angular velocities, the
robot agent is actuating as a resource. This resource is shared with the avoid agent which
can, at the same time, send another linear and angular velocities to the robot agent in
order to avoid some obstacle. In this case, we say that the robot agent is a physically
grounded resource because its actuation modifies the environment. Conversely, when the
task planning agent sends a trajectory to the goto agent, it is the goto agent which is
acting as a resource. The battery charger agent could also send another trajectory to the
goto agent at the same time. So, the goto agent is a shared resource of the task planning
and the battery charger agents.

Figure 2 shows two agent’s design pattern instances that illustrates these situations.
The competitor agent for the task planning agent is the battery charger agent, and be-
tween brackets, the resources in conflict are shown. While the goto agent has as com-
petitors the Avoid and GoThrough agents, regarding the robot agent as a resource. In
this figure, it can also be seen that the interface, the localization and the battery charger
agents are used as a resource by the task planning agent, but without conflict. For this
reason, this kind of resource usage is pointed out in the collaboration slot.



Agent Pattern Task Planning Goto Agent
Design Agent

Internal State Maintain mission Maintain motion
progress information progress information

Goal: Configuration Achieve mission Drive the robot
to goal position

Methods Decomposition into tasks Fuzzy collaborative
(procedural reasoning) control system

Competition Battery charger agent Avoid, GoThrough
(path planning, goto) agents (robot)

Collaboration Interface, localization Encoder, task planning
battery charger agents battery charger agents

Utility Based on mission Based on distance
Coordi Computation priority to goal position
nation: Resource Trajectory merging Fuzzy-based

Exchange smoothing method
Helper Methods

Figure 2. Pattern Design of two agents

Figure 3. Example of module-based agent distributed coordination.

2. The module-based agent approach for integrated intelligence

In Figure 2 it is possible to distinguish the methods used by the agents both to achieve
their goals and to coordinate when there are competitive resources. Agents in AR-
MADiCo can maintain different lines of reasoning at the same time according to their
current states. For example, the goto agent, can continuously run its goal method in order
to position the robot to a given target point, while coordinating with the avoid agent the
control over the robot agent (shared resource), and executing a resource exchange with
the goThrough agent (see Figure 3). For this purpose, a module-base approach has been
followed as the basis of the architecture inside each agent.

The main modules in the architecture are the goal module (related to individual
intelligence) and the coordination modules (related to social intelligence). An agent can
have more than one goal module whenever it has more than one goal. Similarly, it can
have more than one coordination module if it competes for resources with more than one
agent.



2.1. Individual intelligence modules

The goal method of each agent specifies the kind of intelligence reasoning technique em-
ployed by the agent in order to fulfill its goal. Several techniques have been used, accord-
ing to the different levels of reasoning required: cognitive, perceptual, and behavioral
(see Figure 1).

2.1.1. Cognitive agents: Procedural reasoning, search and statistics methods

There are three agents with cognitive capabilities, that we want to highlight regarding
the intelligent methods they use: the task planning agent, the path planning agent and the
localization agent.

The task planning agent’s goal is to plan the sequence of tasks to reach the robot’s
mission based on the information provided by the interface and the localization agents,
and to assure that the mission is achieved. The method employed to decompose a mission
into tasks is based on a procedural approach similar to PRS [5]. The task planning agent
needs two robot resources: the path planning agent and the goto agent. On one hand,
when the task planning agent has to deal with a positioning task, it requests to the path
planning agent about a plan for moving from the current position to the destination one.
On the other hand, as stated above, the task planning agent could request to the goto
agent to follow a trajectory (see Figure 2).

The path planning agent has two main goals: the calculation of a free of non-moving
obstacles trajectory to the goal, and the estimation of the energy consumption of the
planned trajectory. The optimal trajectory calculation is obtained in two steps: first with
a graph method to obtain a general sequence of destinations (considering only rooms
and hallways), and second, with a grid method to find the path between two consecutive
destinations (considering all the non-moving obstacles). In both methods a search algo-
rithm is used. For the first one, we use the Dijkstra’s algorithm and for the second one,
the A* search algorithm. Once the trajectory is determined, the estimation of the energy
consumption is made based on the cruising speed.

The localization agent’s goal is to locate the robot in the global map. It receives in-
formation from the sonar agent and the encoder agent. In order to accomplish the agent’s
goal, a MonteCarlo technique is used to determine the position and the orientation of the
robot. With this agent, the encoder agent can correct accumulative errors produced by
the encoder’s readings.

2.1.2. Behavioral agents: Fuzzy reasoning for the goto agent

The goto agent has the goal of driving the robot to a destination point, according to the
trajectories requested by either the task planning or the battery charger agents. Given
a desired position (x, y) and an orientation θ, and according to the actual position and
heading (obtained thanks to the collaboration with the encoder agent), the goto agent
calculates the linear and angular speeds to drive the robot to the destination position.
Speeds are calculated using PID controllers. Actually, there are two different PID, one
tuned to be very fast but unprecise and the other tuned to be very precise but slow. Both
PID’s are combined using a Sugeno fuzzy approach that takes into account the distance
to the destination point. According to this distance the system determines if the robot is
"far" or "close" to the destination; then, the Sugeno system outputs the desired speed as



Figure 4. Local map of sonar agent.

a linear combination of both PID’s speeds, without having to design a complex model
based control system.

2.1.3. Perception agents: Probabilistic reasoning for the sonar agent

The sonar agent’s goal is to create a local map to locate obstacles based on the readings
of the 8 ultrasonic sensors following a probabilistic approach. It gets the different mea-
surements from the robot agent and treats them in order to find the obstacles in the path
of the robot. It also has to update a map as the robot moves on. To create the map, a zone
around the robot is split into cells as shown in Figure 4. Cells are obtained dividing the
circle around the robot in 18 circular sectors that represent the ultrasonic sensor visibil-
ity zones, and each circular sector in 10 parts representing different distances from the
robot. This organization in cells is useful for dealing with noise and fictitious obstacles
detected by ultrasonic sensors. If an object is detected in a cell several times, then the
probability associated to the cell increments, indicating the presence of the object. So,
each cell is labeled by a probability regarding the fact that an obstacle has been detected
inside. Probabilities are incremented when an obstacle is sensed in the cell and decre-
mented otherwise. In this way, we introduce some "memory" to sensors. At each sample
time, this agent first applies the movement to the map (to move objects according to the
robot motion), then updates the sonar information and sets it to the map. After that, and
using probabilities, this agent finds the closest point (center of the cell where an object
has been detected) to the robot and the closest point in front of the robot (they can be
the same or not). Depending on the situation one or both points must be eluded, so their
coordinates are sent to the avoid agent in order to be used for speed calculation.

2.2. Social intelligence modules

When a resource is shared by more than one agent, a conflict can arise. In order to coor-
dinate shared resource usage, ARMADiCo uses a peer-to-peer coordination mechanism,
that is, between the agent that is currently controlling the resource and the agent that wins
the resource. No central arbiter decides upon the resource usage. Thus, agents needs to
reason about coordination issues. Moreover, since robots concerns physically grounded
resources, this coordination should take into account possible disruptions in the robot
behavior.



Figure 5. Goto Module interaction.

We propose, then, to split the coordination process in two different parts: winner
determination, and resource exchange. In the former part, the agents that wish to use the
resource determine, without any arbiter, who will use it. In the second part, the agent
who wins the resource changes the current state of the resource to the desired one by
avoiding undesired global behaviors of the robot.

2.2.1. Winner determination method

In case of conflict on a resource usage, each agent involved in the conflict computes an
utility value of its action. The agent with the highest utility wins the resource. Each agent
has its own utility method, but all the utility values are in the [0,1] interval, so they are
comparable. For example, the goto agent calculates its utility ug as a function of the
distance that remains to reach the destination location. Similarly, the avoid agent calcu-
lates its utility ua as a function of the distance to the closest obstacle. Both utilities can
be compared, and the agent who has the highest one takes the control of the resource.
The agent that is controlling the resource sends periodically its utility value to the other
agents with whom share the resource. When one agent has a higher utility value, it in-
forms the rest with this value and takes the control over the resource. Thus, our coor-
dination mechanism is decentralized. For coordination issues, only the agents that share
the resource communicate among themselves. It is important to note that only one agent
at the time (the one that has the resource) sends messages to the other agents involved in
the conflict; there is no broadcast to all the agents in the architecture.

2.2.2. Fuzzy-based method for resource exchange

As desired actions requested by the agent that looses the resource control and the agent
that wins it can be very different, the winner agent needs to reason about how to perform
the change from the current state of the resource to the desired one, avoiding undesired
global behaviors. The change from one state to the other is performed based on a window
time frame that depends on whether this change is critical or non-critical. For critical
changes the window time frame depends on a fixed value (for example, the time to a col-
lision) while for non-critical changes it is calculated using a Sugeno fuzzy system. The
input variables of the system are the action differences (for example, the linear velocities
differences); the output variable is the number of cycles needed to change from the cur-
rent resource state to the desired one. The information related to velocities is provided
by the goal module (see Figure 5).

Once the window time frame is calculated, a weighted mean is applied to compute
the parameters that modify the state of the resource for each robot cycle, from 1 to the
end time determined by the computed window frame. Weights vary along time depending



on the utility values of the agents in conflict and the current fraction of time. The utility
value of the winner agent (the agent in charge of performing the resource exchange) is
obtained through the winner determination module while the other utility is modified
according to a decreasing function (see more details in [6]).

3. System Demonstration

In order to test the synergies of the overall set of methods implemented both, at the agent
and multi-agent levels, we have developed a prototype of ARMADiCo. For doing so, we
have implemented an ad hoc multi-agent platform, programmed in C++ on Linux be-
cause the majority of the commercial platforms have an agent that centralizes the func-
tioning of entire platform and because they are not capable of dealing with systems that
need to respond in real time. The robot used for experimentation is a Pioneer 2DX of
ActivMedia Robotics.

3.1. Experimental Setup

In order to demonstrate intelligence integration at the agent level and the different agents
interactions, we propose the following experimental scenario: the robot is on room A
and its goal is to move to room E (see Figure 6). The active agents in the platform are
the interface agent, the path planning agent (search methods), the task planning agent
(procedural reasoning), the goto agent (fuzzy method), the avoid agent, the sonar agent
(probabilistic method), the encoder agent and the robot agent. The goto agent and the
avoid agent are sharing the robot agent and they are using the fuzzy-based coordination
to control the resource.

3.2. Results

In this scenario, the following agent’s interactions happen. After receiving from a human
operator the mission, the interface agent requests the desired destination (coordinates
xd,yd and θd of Room E) to the task planning agent, and informs the initial position (co-
ordinates xi,yi,θi of Room A) in the global map to the encoder agent. The task planning
agent, recognizes the current robot mission as a simple positioning task, and it requests
the desired position to the path planning agent. This latter agent, computes the trajectory
needed to achieve the destination and informs back about it to the task planning agent.
Then, the task planning agent sends this trajectory to the goto agent, which at the same
time receives information about the current position from the encoder agent. Concur-
rently, the avoid agent receives information from the sonar agent, and coordinates with
the goto agent the speeds commands to be sent to the robot agent. Finally, it is the robot
agent the one that connects with the real robot to obtain the sensor readings and to exe-
cute the speeds commands. Figure 6 shows how this mission is achieved by the robot that
follows a smooth trajectory, dodging the obstacles, crossing doors, and moving through
a corridor.

Figure 7 shows the interaction of the different intelligences integrated in the module-
based architecture of the goto agent. At the beginning, the goto agent is running its in-
dividual fuzzy reasoning to achieve the different target points of the trajectory provided
by the path planning. Concurrently, the coordination method with the avoid agent is also



Figure 6. Robot task execution with ARMADiCo.

Figure 7. Module activation in the Goto module-based agent.

running: the goto agent is always the winner until that time. In the Goto/Avoid Coordi-
nation line, it can be seen the time dedicated to coordination. Then, at the 40 second,
the avoid agent gets the resource control; thus, the goto agent dedicates most of its effort
for getting back the control again. When it gets it, the goto agent is using its individual
reasoning for achieving further points in the trajectory. And so on, until the time when
the robot has fulfilled its mission.

4. Related work

The application of multi-agent system to robotics has been mainly concerned to multiple
robot system. For example, in [14] several soccer robots coordinate their activities based
on case-based retrieval.



Regarding the development of multi-agent architectures for a single robot, there are
fewer works. For example, the multi-agent architecture proposed for the reactive level
by [12] has two types of agents: elemental, with basic skills, and high-level, responsible
for integrating and coordinating various elemental agents. In [3], a multi-agent system is
proposed for the navigation system, in which five agents (map manager, target tracker,
risk manager, rescuer, and communicator) are coordinated by means of a bidding mech-
anism to determine the action to be carried out. In [13], a multi-agent architecture is also
proposed to deploy an intelligent wheelchair. The agents considered in this architecture
are the sensor handler, the collision detector, the corridor recognizer and the drive con-
troller. The behaviors implemented in the system are obstacle avoidance, door passage
and wall following. Specifically, the collision detector, responsible for the safety of the
robot, is fuzzy-based. The input of the agent is the linear distance, and the velocity and
turn-angle are the output.

Regarding coordination, other approaches, as the organization and strategic alliances
architectures proposed by [9], follow a central arbiter; while our approach follows a
distributed mechanism. This has triggered our research on the integration of different
kinds of intelligence at the agent level, since most of the previous approaches, that rely
on central arbiters, leave few room to local reasoning methods for coordination.

5. Conclusions

The complexity involved in the design of an autonomous robot with integrated intel-
ligence implies the use of a flexible model that allows the integration of basic control
functions, as avoiding obstacles, with higher cognitive capabilities, as performing a task.
When tackling such a work, multi-agent systems offer the appropriate abstraction level.

As in any multi-agent approach, conflicts due to shared resource usage can be solved
by means of either a central or a decentralized way. By following a decentralized way,
social intelligence issues should be considered at the agent level (local) in addition to the
individual intelligence ones (that allow agents achieve their goals). In this paper, we have
proposed a module-based agent as a way of integrating different artificial intelligence
methods to achieve both kinds of intelligences locally, at the agent level.

Regarding individual intelligence, some of the agents follow a search-based method,
others a fuzzy logic reasoning, while others a probabilistic approach. Regarding social
intelligence, a two steps method has been proposed. In the first step, each agent uses its
own private utility method to determine who is the winner of the conflicting resource.
In the second step, a Sugeno fuzzy system is used for resource exchange that takes into
account the physically grounded features of some of the resources.

All the agents in the architecture follow the same agent-pattern that determines its
modular architecture and that makes explicit all the intelligence methods required for a
given agent. All agents, at the same time, are integrated in the ARMADiCo multi-agent
architecture with no central arbiter. Thus, when dealing with distributed coordination, a
module-based agent approach affords us the integration of individual and social intelli-
gence for achieving a single robot feature (goto a point, plan a path) that can be flexible
and appropriately used inside the global robot architecture (thanks to the social intelli-
gence). At the multi-agent level, from the interaction of all the module-based agents, the
robot achieves its mission based on the combination of several features.



Our architecture has been implemented in a Pioneer 2DX robot of ActivMedia
Robotics, and the experimental results show the viability of our approach. As a future
work, we need to extend the experiments to much more scenarios, with more agents in
the architecture that use other AI techniques, and to compare our approach to other archi-
tectures. Although this latter issue is a difficult challenge, due to the fact that architecture
replication depends on too many parameters, we should, at least, test our architecture in
the same scenarios published in the literature, and extract solid conclusions on our work.

Acknowledgements

This work was partially supported by the Spanish MEC Project DPI2006-09370 and by
the DURSI Automation Engineering and Distributed Systems Group, 00296.

References

[1] R. C. Arkin, Behavior-Based Robotics, The MIT Press, 1998.
[2] R. Brooks, A robust layered control system for a mobile robot, IEEE Journal of Robotics and Automation

2 (1),14–23,1986.
[3] D. Busquets; C. Sierra; and R. López de Màntaras, A multiagent approach to qualitative landmark-based

navigation, Autonomous Robots 15, 129–154, 2003.
[4] T. De Wolf, Panel discussion on engineering self-organising emergence,

http://www.cs.kuleuven.be/ tomdw/presentations/presentationSASOpanel2007.ppt, SASO 2007 10-07-
2007, MIT, Boston/Cambridge, MA, USA, 2007.

[5] M. Georgeff and A. Lansky, Procedural knowledge, Proceedings of the IEEE 74(10), 1383–1398, 1986.
[6] B. Innocenti; B. López and J. Salvi, Resource Coordination Deployment for Physical Agents, From

Agent Theory to Agent Implementation, 6th Int. Workshop, May 13, AAMAS 2008, 2008.
[7] G. A. Kaminka, Robots are agents, too!, in Proceedings of the 6th International Joint Conference on

Autonomous Agents and Multiagent Systems, Invited talk, 2007.
[8] G. A. Kaminka, Robots are agents, too!, AgentLink News, 16–17, December 2004.
[9] M. Kolp; P. Giorgini and J. Mylopoulos, Multi-agent architectures as organizational structures, Au-

tonomous Agents and Multi-Agent Systems 13, 1–2, 2006.
[10] R. Murphy, Introduction to AI Robotics,The MIT Press, 2000.
[11] R. Murray; K. Åström; S. Boyd; R. Brockett and G. Stein, Future directions in control in an information-

rich world, IEEE Control Systems Magazine 23(2), 20–33,2003.
[12] M. C. Neves and E. Oliveira, A multi-agent approach for a mobile robot control system, Proceedings

of Workshop on "Multi-Agent Systems: Theory and Applications" (MASTA’97 - EPPIA’97) - Coimbra
-Portugal, 1–14, 1997.

[13] Y. Ono; H. Uchiyama and W. Potter, A mobile robot for corridor navigation: A multi-agent approach,
ACMSE’04: ACM Southeast Regional Conference. ACM Press, 379–384, 2004.

[14] R. Ros Espinosa and M. Veloso, Executing multi-robot cases through a single coordinator, Proceedings
of AAMAS’07, the Sixth International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Honolulu, Hawaii, May 2007, 2007.

[15] J. K. Rosenblatt, DAMN: A Distributed Architecture for Mobile Navigation, Ph.D. Dissertation, Robotics
Institute at Carnegie Mellon University, 1997.

[16] O. Sauer and G. Sutschet, Agent-based control, IET Computing & Control Engineering, 32–37, 2006.
[17] Y. Tahara; A. Ohsuga and S. Honiden, Agent system development method based on agent patterns, ICSE

’99: Proceedings of the 21st international conference on Software engineering, 356–367, 1999.


