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Abstract

The three-dimensional reconstruction of real objects is an important topic in computer vision. Most of the acquisition systems are
limited to reconstruct a partial view of the object obtaining in blind areas and occlusions, while in most applications a full reconstruction
is required. Many authors have proposed techniques to fuse 3D surfaces by determining the motion between the different views. The first
problem is related to obtaining a rough registration when such motion is not available. The second one is focused on obtaining a fine
registration from an initial approximation. In this paper, a survey of the most common techniques is presented. Furthermore, a sample of
the techniques has been programmed and experimental results are reported to determine the best method in the presence of noise and
outliers, providing a useful guide for an interested reader including a Matlab toolbox available at the webpage of the authors.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Surface registration is an intermediate but crucial step
inside the whole computer vision complexity. Registration
benefits by previous steps such as basically surface recon-
struction and view pose estimation without ignoring image
processing and camera calibration, and it is the input for
further steps such as object model computation. The vari-
ety of applications is worthwhile: reverse engineering and
mould fabrication in the manufacturing process, artifact
reproduction and 3D modeling of carving pieces and sculp-
tures both with applications in the souvenir industry and
virtual museums, and many others such as augmented real-
ity in graphics and map building in robotics.
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There are many sorts of range finders involved in surface
reconstruction which are based on time-of-flight lasers [1],
laser scanning [2], stereovision [3], and pattern projection
[4]. All of these range finders have their pros and cons
and different fields of applications but all of them provide
a more or less accurate reconstruction of a surface. In all
the cases, the reconstruction does not represent the entire
object due to occlusions and the limited field of view of
the sensor. In order to solve this problem a set of range
images taken from different positions are acquired and then
must be fused. Many devices to overcome this task exist in
the market, which are basically based on calibrated
mechanics to compute the geometry between the views
such as rotating tables and robot arms. However, these
devices are still limited due to the fact that the object must
be located inside the device or close to the working area.
Many applications involved with large surfaces or simply
with the complexity of moving the object to the scanning
system demand a process of accurate registration without
a previous knowledge of the pose of the views. This is the
aim of this paper, which presents a comprehensive survey
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of surface registration including a new classification, the
description of every category and comparative experimen-
tal results with both synthetic and real data.

Other interesting overviews are already available in the
literature. For instance, Rusinkiewicz and Levoy [5] pub-
lished a paper involved on comparing the ICP techniques
specially centered in the point-to-point and point-to-plane
correspondences and different methods involved in sam-
pling the control points. Although some coarse registration
techniques are explained, the paper is incomplete because
multi-view registration is neglected. Furthermore, only syn-
thetic data is used in comparing the different techniques
without bringing in some of the problems involved using
real images in the tests and all the views used in the exper-
iments have overlapping regions which easies the registra-
tion. Besides, Dalley and Flynn [6] presented another
study centered in pair-wise registration and especially in
the different techniques involved in removing the outliers
such as basically the Schtz’s distance threshold [7] and
the Zhang’s statistical outlier [8]. Our paper is a completing
survey and an extension of these previous works because it
analyses the different techniques in both pair-wise and mul-
ti-view registration and contributes with experimental
results with real range images.

The remainder is organized as follows. First, a new classi-
fication is presented in Section 2. Second, coarse registration
techniques are presented and compared in Section 3, while
fine registration is discussed in Section 4. Next, experimental
results compare the surveyed techniques in the presence of
both synthetic data and real data acquired some of them
from real scanners and others provided by other authors.
The article ends with the conclusions, which includes a dis-
cussion of the advantages and drawbacks of every group
of techniques sort out in the new classification proposal.

2. Classification of registration methods

The goal of registration is to find the Euclidean motion
between a set of range images of a given object taken from
different positions in order to represent them all with
respect to a reference frame. The proposed techniques differ
as to whether initial information is required, so that a
rough registration can only be estimated without an initial
guess. If an estimated motion between views is available, a
fine registration can then be computed. The classification
of the surveyed methods is revealed in Table 1.

In coarse registration, the main goal is to compute an
initial estimation of the rigid motion between two clouds
of 3D points using correspondences between both surfaces,
as explained in Section 3. These methods can be classified
in terms of (a) the kind of correspondences used; (b) the
method used to compute the motion; (c) the robustness
of the method; (d) the registration strategy (see Table 1).
In general, the most common correspondence method used
is point-to-point, such as the Point Signature method (see
Section 3.1) and the method of Spin Image (see Section
3.2). However, there are other methods that align lines, like
methods of bitangent curves (see Section 3.6) and others
that match the surfaces directly, like the algebraic surface

model (see Section 3.5). Another important aspect of coarse
registration is the way of computing the motion when cor-
respondences are found. Robustness in the presence of
noise is another important property, because there are usu-
ally no corresponding regions between views. Most meth-
ods are robust, looking for the best combination of
correspondences [9–11]. Other methods may converge to
a local solution [12], and in theory this increases the speed
of the method but the solution is not always the best, and
in some cases it is far from the right solution. In general,
coarse registration methods are iterative, usually maximiz-
ing the rate of overlapping points. However, a few provides
linear solutions, like the methods based on Principal Com-

ponent Analysis or the Algebraic Surface model (see Sec-
tions 3.3 and 3.5, respectively).

In fine registration, the goal is to obtain the most accu-
rate solution as possible. These methods use an initial esti-
mate of the motion to first represent all range images with
respect to a reference system, and then refine the transfor-
mation matrix by minimizing the distances between tempo-
ral correspondences, known as closest points. Table 1 also
classifies fine registration methods in terms of: (a) the reg-
istration strategy; (b) the use of an efficient search method,
such as k-d trees in order to speed up the algorithm; (c) the
way of computing the minimization distance, either point-
to-point or point-to-plane; (d) the way of computing the
motion in each iteration; (e) the robustness of the method.

The registration strategy can differ according to whether
all range views of the object are registered at the same time
(multi-view registration) or the method registers only a pair
of range images in every execution (pair-wise registration).
Moreover, fine registration methods need a lot of process-
ing time to decide which is the closest point. In order to
deal with this problem, several proposals to increase the
searching speed have been presented, such as the use of
k-d trees to alleviate the problem of searching neighbors.

Another important parameter is the distance to mini-
mize. Most methods use the distance between point-corre-
spondences, while others use the distance between a given
point in the first range image and the corresponding tangent
plane in the second. The problem of point-to-point distance
is that the correspondence of a given point in the first view
may not exist in the second view because of the limited num-
ber of points acquired by the sensor, especially on low res-
olution surfaces. To address this problem, some authors use
the point-to-plane distance. In this case, a tangent plane in
the second view is computed at the position pointed by the
given point in the first view. The distance between the point
in the first view and that tangent plane in the second is the
minimization distance. Theoretically, point-to-plane con-
verges in less iterations than point-to-point.

Finally, robust methods can cope with noise and false
correspondences due to the presence of non-overlapping
regions. In real images, the robustness is very important,
especially when only a small part of the first view has a



Table 1
Classification of the registration methods
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correspondence in the second, that is in the presence of a
reduced overlapping region.

3. Coarse registration methods

Coarse registration methods search for an initial esti-
mate of the motion between pairs of consecutive 3D views
leading to the complete registration of the surface. In
order to compute this motion, distances between corre-
spondences in different views are minimized. Features
from both surfaces are usually extracted with the aim of
matching them to obtain the set of correspondences,
whereas other techniques find such correspondences with-
out any feature extraction but with some Euclidean invar-
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iants. The most common correspondences are points,
curves and surfaces.

In some situations, coarse registration techniques can be
classified on shape features or matching methods. The first
group searches for characteristics of points, using usually
neighborhood information, in order to search for corre-
spondences. Examples of this group are Point Signature,
Spin Image, etc. Matching methods are based on the pro-
cess of matching points from both surfaces, as Ransac or
Genetic Algorithm. In some situations both techniques
can be combined to find correspondences, as Brunnström
[13], who used the normal vectors at every point to define
the fitness function of the genetic algorithm. On the other
hand, techniques of both groups can be used independently
as Ransac which do not use features in the matching pro-
cess or Point Signature that when points are characterized
only a comparison between features from both surfaces is
required to detect correspondences.

3.1. Point signature

Point signature is a point descriptor introduced by Chua
[9] and used to search for correspondences. Given a point
p, the curve of the surface that intersects with a sphere of
radius r centered to p gives the contour of points (C). These
points are then represented in a new coordinate frame cen-
tered at p. The orientation axes are given by the normal
vector (n1) at p, a reference vector (n2) and the vector
obtained by the cross-product. All points on C are project-
ed to the tangent plane giving a curve C 0. The vector n2 is
computed as the unit vector from p to a point on C 0 which
gives the largest distance. Thus, every point on C can be
characterized by: (a) the signed distance between its own
correspondence in C 0; and (b) a clockwise rotation angle
h from the reference vector n2. Depending on the resolu-
tion, different Dhs are chosen. Then, the point signature
can be expressed as a set of distances in each h from 0�
to 360�. Finally point signatures from two views are com-
pared to determine potential correspondences. The match-
ing process is very fast and efficient.

The main drawback of the algorithm is the process to
compute the point signature. The intersection of a sphere
to the surface is not very easy, especially when the surface
is represented as a cloud of points or a triangulated surface.
In this situation interpolation is required, incrementing the
computing time and decrementing the quality of the point
signature. Moreover the computation of the reference vec-
tor is very sensible to noise, and errors in this computation
effects the point signature descriptor obtained considerably.

3.2. Spin image

Spin image is a 2D image characterization of a point
belonging to a surface [14]. Like point signature, spin
image was initially proposed for image recognition. How-
ever, it has been used in several registration applications
since then.
Consider a given point at which a tangent plane is com-
puted by using the position of its neighboring points. Then,
a region around the given point is considered in which two
distances are computed to determine the spin image: (a) the
distance a between each point to the normal vector defined
by the tangent plane; (b) the distance b between this point
to the tangent plane; obtaining:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� pk2 � ðnðx� pÞÞ2

q
ð1Þ

b ¼ nðx� pÞ ð2Þ

where p is the given point, n is the normal vector at this
point, and x is the set of neighboring points used to gener-
ate the spin image. Using these distances, a table is gener-
ated representing a on the x-axis and b on the y-axis. Each
cell of this table contains the number of points that belong
to the corresponding region. In order to choose the size of
the table that determines the resolution of the image, the
double length of the triangle mesh is selected.

Some spin images are computed in the first view and
then, for each one, the best correspondences are searched
for in the second view. When the point-correspondences
are found, outliers are removed by using the mean and
the standard deviation of the residual as a threshold. The
rigid transformation is finally computed from the best cor-
respondence found.

The main problem of this method is that the spin image
strongly depends on the resolution of the method. In order
to solve this problem, Carmichael et al. [15] proposed the
face-based spin image in which a set of points are interpo-
lated inside every triangular mesh with the aim of uniform-
ing the number of points in every spin image computation.
In addition, other approaches have been presented to solve
the problem of false mesh triangles given by surface bound-
aries and occlusions [16]. In this case, the method is used as
a filter to remove such false triangles before registration.

Finally, using the variants of spin image, good results
can be found in Range Image Registration. The spin image
feature is very robust, except in case of symmetries or
repeated regions in the object. However this is a problem
present in most part of coarse registration techniques.

3.3. Principal component analysis

This method is based on using the direction of the main
axis of the volume given by the cloud of points of the range
image to align the sequence of range images between them.
If the overlapping region is large enough, both main axes
should be almost coincident and related to a rigid motion
so that registration may succeed. Therefore, this transfor-
mation matrix is found to be the one that aligns both axes
by only applying a simple product (see Eq. (5)). This
method is very fast with respect to others that identify
point or curve correspondences. However, the overlapping
region must be a very important part of the view in order to
obtain good results. Chung and Lee [17] proposed a regis-
tration algorithm using the direction vectors of a cloud of
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points (a similar approach was used by Kim et al. [18]). The
method involves calculating the covariance matrix of each
range image as follows:

Cov ¼ 1

N

XN�1

i¼0

ðpi � �pÞðpi � �pÞT ð3Þ

where N is the number of points, �p is the center of mass of
the cloud of points, and pi is the ith point of the surface.
Then, the direction Ui of the main axis can be computed
by singular value decomposition:

Covi ¼ U iDiU T
i ð4Þ

The rotation is determined by the product of the eigenvec-
tor matrices:

R ¼ U 1U�1
2 ð5Þ

and the translation is determined by the distance between
the centers of mass of both clouds of points, expressed with
respect to the same axis:

t ¼ l2 � Rl1 ð6Þ
Principal component analysis is very fast. However, it can
only be used with effectiveness when there is a sufficient
number of points. In addiction, this method obtains accu-
rate solutions when most part of the points are common.
Results are less accurate when the overlapping region con-
stitutes a smaller part of the image. In practice, a 50% over-
lapping of the region is critical. However, the solution
obtained can be used as an initial guess in a further fine reg-
istration. The main problem of principal component anal-
ysis is its limitation in coping with surfaces that contain
symmetries. Thus, if the eigenvalues obtained representing
two axes are similar, the order of these axes can change in
the matrix Ui, and the final result obtained is completely
different from the correct solution. Although PCA provides
a fast solution, in most cases this one is far from the
expected.

3.4. Ransac-based darces

This method is based on finding the best three point-cor-
respondences between two range images to obtain an esti-
mation of the Euclidean motion. Three points are the
minimum required to compute the motion between both
surfaces if no other information is used [10]. As will be
commented in Section 3.8, Feldmar used only a single
point but also considered the normal vector and the princi-
pal curvature to obtain enough information to compute the
rigid motion [12].

Three points (primary, secondary and auxiliary) in the
first view are characterized by the three distances between
them (dps, dpa and dsa). Each point in the second view is
hypothesized to be the correspondence of the primary
point (p 0). Next, the secondary point is searched for among
the points located at a distance dps from p 0. If there are not
any points in that position, another primary point is tested.
Otherwise, a third point in the second view that satisfies the
distances defined in the triplet is searched. Once a triplet is
identified, the rigid transformation between both points
can be determined. This search is repeated exhaustively
for every satisfied triplet between both views and a set of
potential Euclidean motions is obtained. The correct trans-
formation is the one that obtains the largest number of cor-
responding points between both views.

A modification of this method focused on decreasing the
computing time related to the search of correspondences
was proposed [19]. The results obtained were very good
because of its robustness even in the presence of outliers.
However, it can only be used when the number of points
in each view is relatively small. Theoretically it is a good
method. However, the precision depends on the resolution
of the surface and the time increases considerably with the
number of points, so that it can only be used in applica-
tions where time is not critical.

3.5. Algebraic surface model

Tarel et al. [20] proposed a method to estimate the
motion between surfaces represented as a polynomial mod-
el. First, two implicit polynomial models are determined
from all the points of both range images using 3L Fitting,
a linear algorithm based on Least Squares. In general,
the algorithms used to obtain a model are iterative, and
require a lot of processing to compute the polynomial func-
tion. However, the linear algorithm does not require so
much computational time and offers better repeatability
compared to other implicit polynomial fitting methods.

This method is based on obtaining a function of the dis-
tance between the polynomial model and the points, where
these distances are nearly zero. In order to improve the
accuracy of this method, fictional points are added to the
range image located at distances of +c and �c from the
surface.

As this method does not need points or curve correspon-
dences, the computation time is faster compared to others.
However, a normal vector at each point is required to esti-
mate the model, which it is not easy to compute when only
points are available. If the range scanner gives this infor-
mation, the computing time decreases considerably. The
principal drawback of this method is the requirement that
a large part of both images must belong to the overlapping
region. The author reports good results with less than 15%
of non-overlapping region, which is quite unusual in range
image registration.

3.6. Line-based algorithm

Some authors proposed to use lines to find pairs of cor-
respondences. Examples are the straight line-based method
proposed by Stamos and Leordeanu [21] and the curved
line-based method proposed by Wyngaerd [22].

The former is based on the extraction of straight seg-
ments directly in the range images which are further regis-
tered with the aim of computing the motion between the
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different views. The algorithm is applied to large and struc-
tured environments such as buildings in which planar
regions and straight lines can be easily found. The segmen-
tation algorithm determines a set of border lines and their
corresponding planes. First, a robust algorithm is used to
efficiently search pairs of lines based on line length and
plane area. Then, the rotation and translation among
potential pairs is computed. Finally, the one that maximizes
the number of planes is taken as the solution.

Some years later, the same authors changed the
approach used in computing the motion between straight
lines [23]. As most part of lines in a structured environment
is contained in the three planes of a coordinate system, they
proposed to compute first the three main directions of
every view. Hence, 24 combinations arise to potential align
both views. Then, the rotation matrix is computed for
every combination and, finally, the one that maximizes
the number of diagonal elements is selected as the rotation
solution. The rest of rotation matrices are kept because
final results are supervised by an operator. Translation vec-
tors are computed as the one that connect midpoints of two
pair of segments. The more repeated vector is selected to
become the solution. Finally, the registration is refined by
using an ICP-based method.

The algorithm obtains good results even considering
that it is classified into coarse registration. The main draw-
back is the difficulty to segment the straight segments as
well as the supervisor required to check the final results
given by the method. Both drawbacks decrease the number
of applications but the method has performed very well in
the registration of buildings.

The general case of line-based matching is the consider-
ation of curved lines in order to register free-form surfaces

Vanden Wyngaerd [22] proposed a rough estimation of
motion by matching bitangent curves. A bitangent curve is
a pair of curves composed by the union of bitangent points,
which are simultaneously defined as a pair of points tan-
gent to the same plane. The bitangent curves are found
by means of a search in the dual space.

The main idea is that all bitangent points are coincident
in the dual space. In order to do the search, it is necessary
to represent the four parameters of any plane using only
three components or coordinates. So, the normal vectors
at each point of the range image are computed and their
norms are set to one. Using these vectors and the coordi-
nates of their points, it is easy to compute the four para-
meters of the plane (a, b, c and d) tangent to that point.

Since the norms of the normal vectors are set to one, it is
possible to represent this vector using just two parameters.
The author used a and b to parameterize the normal vector.
In theory, it is possible to construct the dual space using a,
b and d. However, it is necessary to normalize the para-
meter d between �1 and +1 to scale the values.

Once all the bitangent curves present in a range image are
extracted from the dual space, the matching between these
curves with the curves in the next range image starts. In this
way, an invariant description of a pair of bitangent curves is
used with the goal of matching only the most representative
curves, i.e. the 15 longest ones. The invariant used is defined
as the set of distances between bitangent points.

In order to increase efficiency, the curve is divided into
segments of equal length. Once a correspondence is found,
four corresponding points, that is the two end-points of
both bitangent segments, are obtained. With these four
correspondences, the Euclidean transformation can be
computed, and then the error can be analyzed by trans-
forming all the points with respect to the reference system.
The matching of bitangent segments that correspond to the
minimum error is selected as the best one among all the
potential matches.

Compared to other methods in which the correspon-
dence is based on points, this method has the advantage
that the range image is previously transformed into the
dual space before the search for possible matches starts.
This transformation decreases the computing time and
increases the robustness. However, depending on the shape
of the object, the number of bitangent points can be insuf-
ficient to ensure good results.

3.7. Genetic algorithm

Brunnström and Stoddart [13] used a genetic algorithm
to solve the problem of searching for correspondences
between two range images. The interest in this method is
centered on defining the vector that contains the n index
of correspondences between both range images, where the
size of the vector is set to n, i.e. the number of points in
the second range image (the image that is matched with
respect to the first). Genetic algorithms require a fitness
function to measure the quality of each potential solution.
In order to determine this fitness function, four invariants
between the two pairs of correspondences are used:

k v!ijk ¼ k r!j � r!ik ð7Þ

cosðhijÞ ¼
nj
!� vij
!

k n!jk � k v!ijk
ð8Þ

cosðhjiÞ ¼
ni
!� vji
!

k n!ik � k v!jik
ð9Þ

cosðbjiÞ ¼
ð n!j � v!ijÞ � ð n!i � v!ijÞ
k n!ik � k n!jk � k v!ijk2

ð10Þ

where ri and rj are the position of two points belonging to
the same surface and ni and nj are the normal vectors at
both points, respectively.

Using these invariants, the quality of the correspondences
is computed analyzing the distance error and the error in
the normal parameters as follows:

qdðai; ajÞ ¼ e�
½k v!aiaj k�k v!ijk�2

2r2 ð11Þ

qnðai; ajÞ ¼ e
ðhai ;aj�hijÞ2þðhaj ;ai�hjiÞ2þðbai ;aj�bijÞ2

2l2 ð12Þ
Qðai; ajÞ ¼ qdðai; ajÞqnðai; ajÞ ð13Þ
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where r and l are experimental parameters that must be
estimated; i and j are the indexes that determine two points
in the second range image; and ai and aj represent the
indexes of two other points in the first range image. Then,
the quality of a correspondence ai can be computed as the
sum of the qualities of every pair of correspondences be-
tween ai and the rest of the points.

QðaiÞ ¼
X
j 6¼i

Qðai; ajÞ ð14Þ

The previous function indicates the quality of a pair of cor-
respondences, while the fitness function indicates the global
matching quality, which is expressed as a function of Q (ai)
as follows,

f ð a!Þ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
QðaiÞ

p
ð15Þ

When the fitness function is defined, the cross-over and
mutation probabilities are fixed to characterize the algo-
rithm. The mutation is not very important when searching
for correspondences because nearby indexes do not imply
nearby points in the space. Therefore, the author set the
probability of mutation at 1%, with a cross-over of 90%.

Finally, the stopping criteria, which it is not a very well-
studied problem in genetic algorithms, must be defined.
Three different approaches were presented: (a) setting a %
of good correspondences (computed starting from the clos-
est points); (b) supervising the fitness function so that it does
not increase after a certain number of iterations; (c) counting
iterations until a certain number. When the algorithm finish-
es, the Euclidean motion might be computed because the
chromosome that maximises the fitness function contains
the point-correspondences. However, some correspondences
in the chromosome might be wrong, which means that these
bad correspondences must be previously removed in order
to guarantee the computation of a good Euclidean Motion,
using SVD, for instance. So, only the 30% of the correspon-
dences that maximize Q (ai) are used in the computation. As
in most genetic approaches, the results obtained are quite
good but the computing time is expensive, specially in the
presence of a large number of points, where exists lots of
potential correspondences. As Ransac-based algorithm, it
is not appropriate when time is critical.

3.8. Principal curvature

Feldmar and Ayache [12] proposed that use of the differ-
ential of points characterized by the principal curvature in
the matching process. This method only needs a single cor-
respondence to compute the Euclidean motion between
two range images. It characterizes a point by its principal
curvatures (k1,k2). Principal curvatures are the maximum
and the minimum curvature of the surface at a point. Addi-
tionally, the normal vector and the principal direction cor-
responding to the principal curvature are also considered.
In order to facilitate the search, points of the second range
image are organized in a table indexed by their curvature
values. Then, considering a point M in the first view, whose
curvatures are (k1,k2), the set of points in the second view,
whose curvatures are close to (k1,k2), can be quickly found
and evaluated as the corresponding point. For every poten-
tial matching, the Euclidean motion that aligns
P 1 ¼ ðM1; e!11; e!21; n!1Þ with P 2 ¼ ðM2; e!12; e!22; n!2Þ is
computed, where Mi is a 3D point in the i image,
e!1i; e!2i are the principal directions of the curvature at

the Mi point, and ni
! is the normal vector at that point.

Thus, two rigid displacements, D and D 0, are computed,
where D corresponds to align P1 to P2, while D 0 aligns
P1 to P 02 ¼ ðM2;� e!12;� e!22; n!2Þ. Finally, the transforma-
tion matrix (R, t) defining the Euclidean motion between
both views can be easily computed as follows:

D ¼ ðBAt;M2 � BAtM1Þ ð16Þ
D0 ¼ ðB0At;M2 � B0AtM1Þ ð17Þ

where A is the 3x3 matrix whose columns are
ð e!11; e!21; n!1Þ, B is ð e!12; e!22; n!2Þ and B 0 is
ð� e!12;� e!22; n!2Þ. Then, every transformation matrix is
evaluated. A ratio is computed by considering the number
of points in the transformed surface (computed from the
Euclidean motion) which have a corresponding point in
the second surface at a distance smaller than a threshold
related to the total number of points of the range image.
If both D and D 0 do not reach the termination criteria,
the algorithm is repeated using an alternative initial point.
Otherwise, the transformation matrix computed is consid-
ered to be a good estimation.

Although the curvatures and principal directions are not
always known, the author described a method to determine
them based on the use of a parameterization of the surface
similar to the polynomial fitting of Tarel (see Section 3.5).

The main problem of this method is that it is not robust.
Only a good correspondence is search for, and when a pos-
sible solution is found, the algorithm stops. However, as
the correspondence is not validated, it might be a false
matching, obtaining a bad initial registration that may sat-
isfies the rate of overlapping.

4. Fine registration methods

The term fine registration is used when an estimation of
the motion is previously known and used as an initial guess
to iterate and converge to a more accurate solution. In
order to solve this problem, a distance function is mini-
mized. Some authors used the distance between point-cor-
respondences, while others used the distance of a given
point in the first view to a plane tangent to its closest point
in the second view. In recent years, some methods have
been presented: (a) iterative closest point; (b) Chen’s
method; (c) signed distance fields; and (d) genetic algo-
rithms, among others.

In the registration process, different methodology can be
used independently of the technique chosen, which are
hereafter briefly related:
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4.1. Control points

Although some authors use all points in the registration
step [24,25], others use Uniform subsampling [26,27], Ran-
dom Sampling [28] or Normal Sampling [5]. In the com-
mon case, the better solution is the Normal Sampling for
two reasons. As a sampling is applied, the time required
is smaller. Furthermore, as points from significant parts
of the surfaces are more important compared to parts of
uniform surfaces, usually better results are obtained, spe-
cially in cases where the surfaces are not very shaped.

4.2. Points weight

Although in some situations all points have the same
weight [24], in other situations weights are introduced
depending on: distance between point-correspondences
[29], compatibility of normals [29] and the uncertainty of
the covariance matrix [30], among others.

4.3. Rejecting pairs

Some authors used all point-correspondences to deter-
mine the motion because they usually work with image-
to-model registration. However, when an image is not a
subset of the following in the sequence, some correspon-
dences are outliers and must be rejected.

Now, the surveyed fine registration techniques are dis-
cussed in the following sections.

4.4. Iterative closest point (ICP)

The ICP method was presented by Besl and McKay [24].
The goal of this method is to obtain an accurate solution
by minimizing the distance between point-correspondences,
known as closest point. When an initial estimation is
known, all the points are transformed to a reference system
applying the Euclidean motion. Then, every point in the
first image (pi) is taken into consideration to search for
its closest point in the second image (mi), so that the dis-
tance between these correspondences is minimized, and
the process is iterated until convergence (see Eq. (18)).

f ¼ 1

Np

XNp

i¼1

kmi
!� Rð q!RÞ p!i � t!k2 ð18Þ

In order to minimize the previous equation, a symmetric
4 · 4 matrix QðRpmÞ is defined as follows,

QðRpmÞ ¼
trðRpmÞ DT

D Rpm þ RT
pm � trðRpmÞI3

" #
ð19Þ

where tr is the trace, D = [A23A31A12]T is computed from
the anti-symmetric matrix Aij ¼ ðRpx � RT

pxÞij, DT is the
transpose of D, I3 is the identity matrix and Rpm is the
cross-covariance matrix of the points P and M given by:

Rpx ¼
1

Np

XNp

i¼1

½ p!i m!i� � l!p l!m ð20Þ
The unit eigenvector q!R ¼ ½q0 q1 q2 q3�
t corresponding to

the maximum eigenvalue of the matrix Q is selected
as the optimal rotation expressed in quaternions. Once R

is computed (see Eq. (21)), the translation vector can be
easily computed (see Eq. (22)) and the motion determined
by R and t.

R ¼
q2

0 þ q2
1 � q2

2 � q2
3 2ðq1q2 � q0q3Þ 2ðq1q3 þ q0q2Þ

2ðq1q2 þ q0q3Þ q2
0 � q2

1 þ q2
2 � q2

3 2ðq2q3 � q0q1Þ
2ðq1q3 � q0q2Þ 2ðq2q3 þ q0q1Þ q2

0 � q2
1 � q2

2 þ q2
3

2
64

3
75
ð21Þ

t ¼ lm � Rlp ð22Þ

The motion is applied to the first surface and the process is
repeated until distances between corresponding points de-
crease below a threshold. ICP obtains good results even
in the presence of Gaussian noise. However, the main
drawback is that the method can not cope with non-over-
lapping regions because the outliers are never removed.
Moreover, when starting from a rough estimation of the
motion, the convergence is not guaranteed.

Some modifications of ICP have been presented in
recent years. In 2001, Greenspan and Godin [31] applied
the Nearest Neighbor Problem to facilitate the search of
closest points. The first range image is considered as a ref-
erence set of points, which is preprocessed in order to find,
for every point, the neighborhood of points in the second
view located at a certain distance. The points of the neigh-
borhood are sorted according to that distance. The use of
this pretreatment leads to consider the closest point of
the previous iteration as an estimation of the correspon-
dence in the current iteration. If this estimation satisfies
the spherical constraint, the current closest point is consid-
ered to belong to the neighborhood of the estimate. A
property of the spherical constraint holds that any point
that is closer to q! (a point in the second range image) than
the current estimate pc

! (the closest point obtained in the
last iteration) must be located inside a sphere centered at
pc
!with a radius of 2k q!� pc

!k. This pretreatment decreases
the computing time drastically. A year later, Jost and Hugli
[32] presented the Multi-resolution Scheme ICP algorithm,
which is a modification of ICP for fast registration. The
main idea of the algorithm is to solve the first few iterations
using down sampled points and to progressively increase
the resolution by increasing the number of points consid-
ered. The author divides the number of points by a factor
in each resolution step. The number of iterations in each
resolution step is not fixed, so that the algorithm goes to
the next resolution when the distance between correspon-
dences falls below a threshold.

In the same year, Sharp et al. [33] proposed the ICP

using invariant features ICPIF. In this case, points are
matched using a weighted feature distance as follows,

daðp;mÞ ¼ deðp;mÞ þ a2df ðp;mÞ ð23Þ
where de is the Euclidean distance, df is the distance in the
feature space between each correspondence points and a
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controls the relative contribution of the features. Different
invariant features were proposed: (a) curvature; (b) mo-
ment; (c) spherical harmonics. Experiments reported by
the author pointed out that the spherical harmonics pro-
vided the best convergence rate, while the traditional ICP
provided the worst one.

One year before, Godin et al. [34] presented a similar
work, where color and curvature were used as feature
information. As color is used as a matching constraint,
symmetric objects can be well registered. However the
author only presents results with simple objects without
shadows, occlusions or luminance changes.

In addition, other authors proposed some improvements
to increase the robustness of ICP. For instance, Trucco
et al. [35] implemented the RICP method making use of
the Least Median of Squares approach. The method is
based on executing the registration with just a sample of
random points (m points), computing this operation a suf-
ficient number of times with the aim of finding a registra-
tion without outliers. The Monte Carlo algorithm was
used to estimate the number of executions. Once all the
potential registrations were computed, the one that mini-
mizes the median of the residuals is chosen as the solution.
Finally, the correspondences with a residual larger than
2.5r were removed and the transformation between both
views was computed using only the remaining points
(inliers). Note that r was estimated by using a robust stan-
dard deviation [36].

Moreover, Zinsser et al. [37] proposed a robust method
based on outlier thresholding known as the Picky ICP algo-
rithm. The main difference with respects to the previous
methods is that at every iteration only the pairs of corre-
spondences with the smallest distances are used in the
motion computation. The threshold was fixed at a given
multiple of the standard deviation.

Overall, ICP is the most common registration method
used and the results provided by authors are very good.
However, this method usually presents problems of conver-
gence, lots of iterations are required, and in some cases the
algorithm converges to a local minimum. Moreover, unless
a robust implementation is used, the algorithm only can be
used in surface-to-model registration.

4.5. Method of Chen

In 1991, Chen and Medioni [25] proposed an alternative
to the ICP algorithm, which was based on minimizing the
distance between points and planes. The minimization
function was selected to be the distances between points
in the first image with respect to tangent planes in the sec-
ond. That is, considering a point in the first image, the
intersection of the normal vector at this point with the sec-
ond surface determines a second point in which the tangent
plane is computed.

Despite other authors that considered this algorithm just
an improvement of ICP, we have considered it a new tech-
nique for several reasons. First, the paper was presented at
the same time of Besl’s approach. Second, the search of
correspondences is an important aspect of the algorithm,
consequently it should be considered a different method.

A new algorithm to find these intersections between lines
and range images was proposed, bearing in mind that the
intersection of a given line with a cloud of points requires
a high computational cost. A more accurate technique to
find such a distance was proposed by Gagnon et al. [38].

Finally, once the distances between points and planes
were obtained, the motion that minimizes these distances
was estimated by least squares. The process was repeated
until convergence was attained.

In 2001, Rusinkiewick and Levoy [5] presented several
variations of this algorithm to improvement the precision
of the algorithm. The author proposed the Normal Space

Sampling. The main idea is to select more points in the
region where the normal is different from the other parts
of the surface. Using this sampling technique better results
are obtain in low shaped surfaces.

Point-to-plane distance is normally more difficult to
compute compare to point-to-point. When no normal
information is given, the plane must be computed using
neighborhood information, which requires a lot of time
to detect this neighborhood, and not always with sufficient
accuracy in the estimation of the normal vector. However,
nowadays this estimation can be obtained directly from
most part of range finders. This method is more robust
to local minimum and, in general, results are better.
Despite no robust method are applied, this method is less
sensible in the presence of non-overlapping regions. The
reason is that only the control points that their normal vec-
tor intersects the second view are considered in the match-
ing. Moreover, point-to-point distance ensures a
correspondence unless a distance threshold or other robust
identifier is used. Chen’s approach usually requires less iter-
ations than the ICP approach.

4.6. Matching signed distance fields

In 2001, Masuda [27,39] presented a new registration
algorithm, which was based on the matching signed distance
fields. The method was a robust one so the outliers were
removed, and all the views of a given object were registered
at the same time, which means a multi-view registration.

First, all views (a) were transformed to a reference coor-
dinate system using the initial estimation of the motion. A
set of key points was generated on a 3D grid of buckets
with a fixed size d. Then, the closest point from every key
point was searched for in order to establish the correspon-
dences, limiting the distance between points to

ffiffiffi
3
p

d.
The process was composed by the following steps:

(1) Initialization: Compute the initial values of the
motion parameters, T a

0 ¼ ½Ra
0ta0�:

(2) Determine the closest point pa
i to every key point p.

(3) Compute the new motion parameters T a
iþ1 using the

correspondences between p and pa
i :
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Steps 2 and 3 are repeated until there is convergence and
an integrated model of the object made by the p points is
obtained.

At every iteration the closest point was computed as
follows:

pa
i ¼ ðT a

i Þ
�1p � ðnaT

p ðT a
i Þ
�1p � ka

pÞna
p ð24Þ

where na
p represents the normal vector of p and ka

p repre-
sents the signed distance, which is computed as:

ka
p ¼ naT

p ca
p � dp ð25Þ

where ca
p is the closest point to each key point for every

range image a, and dp is the average distance between the
point p and each ca

p.

dp ¼
1P

16a6NR

wa
p

X
16a6NR

wa
pda

p ð26Þ

where da
p represents the distance between point p and the

nearest key point and wa
p is the weight of point p.

Finally, once the solution has converged, it is possible to
compute the points (signed distance field) and their normal
vectors, obtaining the final model as follows:

SDF p ¼ p þ npdp ð27Þ

np ¼
P

16a6NR
wa

pRana
p

k
P

16a6NR
wa

pRana
p

ð28Þ

The advantage of this method is that it registers all the
views at the same time, which implies a more robust solu-
tion and avoids the error propagation problem present in
pair-wise registration methods. On the other hand, this
algorithm can not be used in real time as localization and

mapping because not all views are already available when
the motion must be computed.

Another advantage of this algorithm is that the final
result is directly an integrated model, compared to pair-
wise registration techniques that require and off-line algo-
rithm to eliminate the overlapping region and triangulate
all the registered surfaces.

4.7. Genetic algorithms

Chow et al. [40] presented a dynamic genetic algo-
rithm to solve the registration problem. The goal of this
method is to find a chromosome composed of the 6
parameters of the motion that aligns a pair of range
images accurately. The chromosome is composed of
the three components of the translation vector and the
three angles of the rotation. In order to minimize the
registration error, the median is chosen as the fitness
function, as follows:

F ðTÞ ¼MedianðEiÞ ð29Þ
Ei ¼ minjTpi � mjj ð30Þ

where T is the transformation matrix composed by 6 mo-
tion parameters and pi and mi the points of both surfaces.
Therefore, only a sample of points of the first image
were used to compute the error with the aim of decreasing
the computing time. The cross-over operation consisted of
combining genes made by two chromosomes to create a
new chromosome. The author randomly selected the num-
ber of genes to be swapped. The cross-over operation
works well when the chromosome is far from the final solu-
tion but it is useless for improving the solution in a situa-
tion close to convergence. Therefore, the mutation
operation was defined as follows: a gene is randomly select-
ed and a value randomly obtained between the limits
[�MV,+MV] is added. The limits are very wide at the
beginning and become narrower at every step in order to
guarantee the convergence in the final steps.

A similar method was proposed the same year by Silva
et al. [41]. The main advantage of this work is that a more
robust fitness function is used and the initial guess is not
required. The author defined the Surface Interpenetration
Measure (SIM) as a new robust measurement that quanti-
fies visual registration errors. Another advantage of
Chow’s method is the multi-view registration approach.
Finally, the hillclimbling strategy was used to speed up
the convergence.

Overall, the use of genetic algorithms has the advantage
of avoiding local minima which is a common problem in
registration, especially when the initial motion is not pro-
vided or it is given with low precision. This algorithm also
works well in the presence of noise and outliers given by
non-overlapping regions. The main problem of this algo-
rithm is the time required to converge. Additionally, fitness
function must be theoretically computed using real corre-
spondences, however, as they are unknown, temporally
correspondences are used using the estimated motion.
However, as the motion change iteratively, correspondenc-
es must be searched several times (for example, every time a
better result is found), resulting again in a lot of computing
time.

5. Experimental results

Although many authors evaluated the accuracy of their
methods, very few provided a comparison between already
published approaches [5,6,42]. In order to provide such a
useful comparison, some methods to evaluate the accuracy
have been tested which allow us to decide the best method
in every situation. The computing time has also been con-
sidered, which might be critical in some applications. The
measures used to determine the accuracy are the following:
rotation error, translation error and RMS (root mean

square).
In order to evaluate the accuracy in rotation, it is repre-

sented as a directional vector and a rotating angle around
such a vector, which both can be easily extracted from any
rotating matrix. Then, the estimated rotation is compared
to a real one. So, the error is determined as the angle
between both directional vectors (c) and the discrepancy
between both angles of rotation (a–b). The translation
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error is defined as the distance between the origin of the
coordinate system estimated by registration with respect
to the real one, that is, the norm of the difference between
both translation vectors. The RMS error is defined as the
mean of the distances between point-correspondences con-
sidering all views in the same reference frame.

In order to compare the main algorithms, synthetic data
is used to evaluate the registration errors. First of all, syn-
thetic test scenes are generated. Additionally more realistic
synthetic data is used, and finally experiments with real
data are realized.

The first test scenes used are Wave and Fractal landscape

(see Fig. 1). These surfaces have been used by other authors
[37,5] to test their algorithms. These surfaces are contained
in a range of 1 in X and Y-axis and approximately 0.5 in Z-
axis. Although these scenes certainly do not cover all sort
of scanned objects, they are quite representative of many
real scannings. Several experiments are performed to eval-
uate the precision in front of different error sources, as
shape measurement error (noise, surface sampling, etc.),
and correspondence error (occlusion, outliers, etc.), among
others. Although it is very difficult to distinguish these
error sources, because they are usually related, these exper-
iments are organized to show basically the effects of each
source of error.

As final results can change depending on the implemen-
tation of the algorithm, details of this implementation are
briefly commented. Ransac-based approach is pro-
grammed using a subset of 5% of the points of the first view
to search for correspondences using all the points in the
second view. Moreover, as distances between primary, sec-
ondary and auxiliary points can not be exactly found, a
variation of a 2% of such a distance is permitted. Further-
more, the distance between the 3 control points is limited to
a 15% of the maximum distance to speed up the process. In
the spin image algorithm, the number of correspondences
searched is fixed to the 5% of the number of points, and
25% of points are used to compute the spin image. In the
implementation of the genetic algorithm of Brunnström,
Fig. 1. Test scenes used t
only 5% points of one surface are searched in the second.
In this situation, the second surface have all points, differ-
ing from the author that used only 50 points in every sur-
face. However, it is still difficult to work with accuracy
using such large number of points.

In fine registration algorithms, a threshold of 0.00001 is
fixed to guarantee convergence. However, a maximum
number of iterations is fixed to 20 in all the algorithms,
except in the case of Chow which number of iterations is
fixed to 600 due to the fact that the method is based on
genetic algorithms.

In order to evaluate the effects of shape measurement
error, two experiments have been done. First of all, Gauss-
ian noise is independently added into the test scenes.
Experiments are performed using different values of stan-
dard deviation error; the first with an error of 1% of the
range dimension in each angle direction, and in the second
one with 2% of standard deviation.

In Coarse registration algorithm fractal surface and
wave surface are subsampled to 512 points. The motion
between both surfaces is a rotation of 45� in each angle
and a displacement of 1 unity in each axis.

The results obtained shown that the final result is not
very influenced by the noise, because this noise is negligible
with respects to the errors in coarse registration techniques.

In order to test the fine registration algorithms, a
sequence of surfaces of 2000 points are registered. Every
surface is related to the previous by a rotation of 5� around
every axis and a displacement of 0.2 unities in the Z-axis.
This initial motion is similar to the pre-alignment used by
Rusinkiewicz and Levoy [5]. The same percentage of noise
is independently added in each surface.

Results obtained in Fig. 2 shown that while the error
obtained by Chen algorithm is directly related to the noise
introduced, Besl and Chow have always a residual error
not depending on the noise introduced. This error is usual-
ly consequence of the convergence to a local minima. As
Chen approach solves better the problem of local minima,
excellent results are obtained without noise.
hroughout this paper.
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Fig. 2. Effects of Gaussian noise in fine registration algorithms.

Table 2
Fine registration errors in subsampled fractal surface (500 points)

Method RMS error Translation error a–b (rad) Time (s)

Besl 0.052 0.029 �0.0297 5.47
Zinsser 0.006 0.28 �0.013 2.08
Trucco 0.053 0.056 �0.028 3.48
Chen 0.022 0.006 �0.001 2.96
Chow 0.043 0.033 �0.146 473.47
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Another case of misalignments is the surface sampling.
Theoretically when surfaces are scanned with low resolu-
tion, worse results are obtained. As surfaces have less
points, points correspondences are found with low preci-
sion. In order to test the effects, original surfaces are inde-
pendently subsampled into different resolutions: (a) (12.5%
and 25% of the initial size (2048 points) in coarse registra-
tion; and (b) 12.5% and 25% of the initial size (4096 points)
in fine registration).

As is shown in Fig. 3, errors in Fine registration algo-
rithms extremely depends on the sampling surface. While
the variations in Trucco, Besl and Chow are not significa-
tive, in Chen and Zinsser algorithms, the errors using sur-
faces of 2000 points are approximately the half than using a
subsampling of 500 points.

Furthermore, in the case of low sampling (500 points),
Zinsser and Chen algorithms presented the best solutions.
As the Chen approach use a point-to-plane distance, the
accuracy is better compared to point-to-point because the
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Fig. 3. Evolution of the RMS error in fine registration algorithms in wave
surface with respects to the surface sampling.
plane interpolation decrements the effects of the subsam-
pling. Although Zinsser algorithms presents similar results
in RMS errors, the rotation errors of Zinsser’s are consid-
erably larger compared to Chen’s (see Table 2). The fact is
that not always RMS errors are representative of a correct
registration, especially in robust variant when correspon-
dences related with large distances are removed, and only
the correspondences with small distances remains.

On the other hand, in most part of results obtained with
Coarse Registration methods, sampling does not effect con-
siderably the final results, and low resolution surfaces can
be used in this situation. In this experiment only Ransac-
based is clearly effected by the sampling. This is because
it is difficult to find 3 points in both surfaces that corre-
sponds exactly to the same position. Besides, PCA does
not use directly the points to computed the motion, and
spin image and the genetic algorithm use more points
reducing the error in the motion estimation. However,
experiments realized with more complex objects show that
in this situation, results are more influenced by the
sampling.

In both experiments realized, 100% of overlapping area
is used. However, in most part of real applications both
surfaces contains non-overlapping regions. In these situa-
tions, false correspondences are very common, and they
affect considerably the final resolution. In this experiment,
several percentages (5%, 10%, 20% and 50% of the surface)
of non-overlapping region are introduced.

Results obtained shown that the presence of non-over-
lapping regions do not effect significantly coarse registra-
tion techniques. In general, coarse registration techniques
only use a few part of points to obtain the motion, and,
if these points are correctly selected, the result is similar
to the one obtained without outliers. On the other hand,
Principal Component Analysis obtained similar eigen-
values from the surfaces with or without non-overlapping
regions because they are almost planar.

In fine registration techniques, errors in Besl and Chow
algorithms increase directly proportional to the percentage
of non-overlapping region. This change is specially signifi-
cant with 50% of outliers (see Fig. 4). On the other hand,
Zinsser algorithm can cope with 5% and 10% of outliers,
however, the accuracy decreases. Finally, Chen approach
is robust to outliers. This is because point-correspondences
are computed using the projection of points in a grid Z
space, and points whose projection belongs to an empty



Table 3
Experimental results using synthetic data obtained by coarse registration
methods

Points Method Translation error (mm) a–b (rad) Time (s)

200 Ransac-based 50.613 0.98573 1.062
PCA 21.229 2.9533 0.016
Spin image 149.84 2.8911 7.969
GenAlg 81.359 0 4.281

400 Ransac-based 21.394 0.30569 106.08
PCA 18.777 3.0037 0.016
Spin image 81.19 2.3465 50.703
GenAlg 33.537 1.6721 122.56

700 Ransac-based 27.557 0.096427 32820
PCA 16.566 0.21871 0.016
Spin image 64.254 0.90339 169.76
GenAlg 18.017 2.9687 249.89

Table 4
Experimental results using synthetic data obtained by fine registration
methods

Points Method Translation
error (mm)

a–b (rad) RMS
error (mm)

Time (s)

700 Besl 0.37 0.01 1.59 0.91
Zinsser 0.25 0.003 2.64 3.28
Jost 0.82 0.006 4.85 0.38
Trucco 0.87 0.011 2.27 4.13
Chen 0 0 1.49 25.03

1500 Besl 0.41 0.007 1.48 4.77
Zinsser 0.093 0.002 1.75 9.28
Jost 0.257 0.009 4.22 1.30
Trucco 0.768 0.016 5.44 112.8
Chen 0 0 1.68 145.06

6000 Besl 0.166 0.002 0.71 47.86
Zinsser 0.169 0.002 1.86 406.05
Jost 0.801 0.019 3.01 8.51
Trucco 0.458 0.015 2.91 198.28
Chen 0 0 1.36 1217.3

Table 5
Experimental results using real range images obtained by coarse registra-
tion methods

Points Method Translation
error (mm)

a–b (rad) c (rad) Time (s)

250 Ransac-based 69.406 2.3562 1.3855 2.86
PCA 67.464 1.9923 1.2985 0.016
Spin image 53.861 0.91301 1.9844 24.156
GenAlg 72.094 2.1475 1.5708 44.766

500 Ransac-based 127.03 2.3562 1.5708 2.453
PCA 69.87 1.9703 1.3306 0.016
Spin image 40.147 0.54215 0.68824 101.59
GenAlg 82.698 2.1988 1.5708 243.94

1000 Ransac-based 40.53 0.17204 1.5236 1657.7
PCA 69.893 1.9236 1.3262 0.203
Spin image 23.133 0.54339 1.5708 565.45
GenAlg 38.059 1.7571 0.85619 1051.6
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Fig. 4. Effects of outliers in the quality of the fine registrations algorithms.
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cell are not considered. Most part of outliers are removed
and motion is only computed using points belonging to
both surfaces.

Other experiments are realized using more realistic
objects. Tables 3 and 4 show the experimental results
obtained by using synthetic clouds of 3D points of
Fig. 6, taken from the database of RapidForm2004.

Finally, real scanned objects are used to take into
account the effects of the shape measurement error. Results
are shown in Tables 5 and 6. It can be shown in Fig. 5 that
the executing time of Ransac algorithm is surprisingly
smaller in the case of 500 points compared to the case of
250 points. This is because in the case of 250 points, the dis-
tance between three points is larger compare to the case of
500 and no good correspondences might be found without
increasing the searching distance.

Although the time required is very important, all the
methods have been programmed using Matlab 6.5 in a Pen-
tium IV 2,6 GHz because we are just interested in the com-
parison among the methods and Matlab guarantees an
easy implementation. Furthermore kd-tree or other veloci-
ty improvements are not used in these experiments to easy
again the comparison.

The 3D clouds of points have been acquired using a
Minolta Vivid 700 laser scanner, obtaining up to 8 views
of a given object. The registration results obtained are
shown in Fig. 10.

The real positions of the object are known and so the
accuracy of the methods compared because the real objects
have been scanned on a turnable table with a the precision
of less than 1�.

Several objects have been registered and we have
observed that the shape of the object affects the accuracy
of the registration considerably and independently of the
registration method used. Overall, when the views have
poor details, planarity or symmetry, the registration does
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Fig. 5. Evolution of the fine registration RMS error in each iterations.
Note that Trucco algorithm stops because the error difference between
consecutive iterations is very small. On the other hand, Chow algorithm
needs a lot of iterations (a maximum of 600 is fixed), however only the first
ones are represented.

Fig. 6. 3D Model from RapidForm2004 used in the synthetic
experiments.

Table 6
Experimental results using real range images obtained by fine registration
methods

Points Method Translation
error (mm)

a–b (rad) RMS
error (mm)

Time (s)

500 Besl 3.34 �0.09 4.18 1.41
Zinsser 0.68 �0.06 2.35 1.95
Jost 2.01 �0.07 4.54 0.36
Trucco 2.87 �0.05 3.93 19.33
Chen 1.3373 �0.008 2.1608 18.391
Chow 0.27 0.0 4.60 154.05

1000 Besl 3.47 �0.09 3.78 5.22
Zinsser 0.47 �0.02 1.42 7.97
Jost 2.38 �0.08 3.70 1.38
Trucco 2.71 �0.05 5.13 33.95
Chen 0.29957 0.003 1.7305 67.954
Chow 0.12 �0.01 4.51 281.61

5000 Besl 3.12 �0.08 3.20 57.36
Zinsser 0.26 �0.02 0.85 281.58
Jost 2.24 �0.09 2.83 9.14
Trucco 2.57 �0.05 1.77 149.59
Chen 1.2535 �0.015 1.2543 993.09
Chow 0.06 0.0 3.57 1776.00
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not converge (see Fig. 9). Moreover, a robust method is
essential to register real range images. See, for instance,
Fig. 10a compared to the rest of registrations (b, c and d)
in which the registrations are more accurate because only
the points belonging to the overlapping region have been
used in the computation.

Although this paper is focused on pair-wise registration
so that the interest is centered in the alignment of two
views, the same algorithms may be used to register large
surfaces. The topic of large surface registration is focused
on the registration of several views among them with the
aim of obtaining a complete model, but then we have to
make additional considerations besides of just a change
of resolution. First, information of vicinity is required to
know which pairs of views contain enough overlapping
area. Second, the drift or error propagation problem has
to be considered to reduce the residual in the registration.
With the aim of solving both difficulties, multi-view regis-
tration techniques appeared. Basically, these techniques
register a set of views simultaneously and the drift is dis-
tributed between the views [27,43]. However, classic
multi-view algorithms are not the best option because in
large surfaces there are lots of views without overlapping
area. So, some authors proposed to build adjacent graphs
to determine loops which are further register using a
multi-view algorithm [44]. Fig. 11 shows the registration
of a large object composed of 27 different views (see
Fig. 12). The algorithm implemented is based on the graph
of adjacencies which is built from consecutive pair-wise
registration. Then, a multi-view algorithm is applied to
minimize the drift of every loop in the graph Fig. 13.

6. Conclusions

In this paper, most representative Range Image Reg-
istration algorithms have been surveyed, programmed
and tested with different surfaces: synthetic images, test
scenes used by other authors and real images. Experi-
ments performed shown the main characteristics of each
method.

Coarse registration techniques are used when an initial
estimation of the Euclidean motion is unknown. The main
interest in these techniques is the algorithm used to find the
correspondences between clouds of points, which can be
based on points, curves, surfaces and directional vectors.
Besides, fine registration methods are based on converging
to a solution from an initial estimation of the rigid motion.
Depending on the method used, a quite accurate initial
guess is required because some methods have convergence
problems due to the presence of local minima.



Fig. 7. Coarse registration obtained by the Ransac-based method of Chen: (a) Synthetic data; (b) Real data.

Fig. 8. Influence of the number of points in the accuracy provided by the spin image method: (a) using 400 points; (b) using 1500 points.

Fig. 9. Inaccurate pair-wise registration of two real range images in the presence of surfaces with few shape details: (a) method of Besl; (b) method of
Zinsser.
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In this paper, the surveyed methods are explained in
detail focusing the analysis on the main contribution of
each technique and especially detailing the pros and cons
between them. Experimental results using both synthetic
and real data are reported providing a useful comparison
of the methods, which is a worthwhile information that is
not usually provided by authors.

Analyzing the results of coarse registration methods,
we conclude that in the presence of low resolution views
Chen’s Ransac-based method is the one that obtains bet-
ter results, especially in synthetic models where the points
are coincident and only related to a transformation
matrix. Besides, in real images where points might not
coincide, the results obtained are less accurate (see
Fig. 7). Moreover, when the amount of points used in
the registration increases, the computing time required
to get the estimation is really a problem. In this case
the best method becomes spin image, whose accuracy



Fig. 10. Pair-wise registration of two real range images using some of the most frequently used fine registration methods: (a) method of Besl; (b) method of
Zinsser; (c) method of Trucco; (d) method of Chow.

Fig. 11. Registration of a 3D object by means of the alignment of 27 range
images.

J. Salvi et al. / Image and Vision Computing 25 (2007) 578–596 593
depends on the number of points used (see Fig. 8) while
the computing time remains important. If computing time
is critical, the Principal Component Analysis is the best
fast method. The problem of this method is that it is
based on aligning the three principal axes of the cloud
of points, so that the given solution may suffer from sym-
metries of 90� or 180�. This problem can be solved mod-
ifying the method to find the solution that maximizes the
number of overlapping points. However, in this case, the
solution obtained is very bad when the overlapping region
is not significant. Finally, a genetic algorithm is robust to
noise and the results are quite good, but again a lot of
time is required to reach a solution.

In addition, considering all the fine registration meth-
ods, the Chen method is the best one from our point of
view. This method solves the local minima problem pre-
sented by ICP variants. Although the point-to-plane dis-
tance is theoretically difficult to compute, the iterative
algorithm proposed by Chen is very fast and efficient.
Furthermore, this method can work with non-overlapping
regions, because points whose projection is far from the
correspondences are not considered.

On the other hand, results provided by the method of
Besl have the problem of local minima, presenting errors
even without the presence of noise. Moreover, Besl’s
approach can not work with non-overlapping regions. In
order to solve this problem, it is necessary to use a robust
method like the ones proposed by Zinsser or Trucco. The
main difference between the two of them is the way of com-
puting the overlapping region. Although both strategies are
good, the results obtained indicate that Zinsser’s method
is more accurate than the one proposed by Trucco’s.
However, Trucco’s method is faster in the presence of high



Fig. 12. Set of 27 range images used in the registration.
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resolution surfaces. The variant proposed by Jost obtains
good results considering that the process has been sped
up considerably.
A useful Matlab toolbox including all the programmed
methods and test algorithms is available at http://
eia.udg.es/~cmatabos/research.htm.

http://eia.udg.es/cmatabos/research.htm.
http://eia.udg.es/cmatabos/research.htm.


Fig. 13. Picture of the large scale object used in multi-view registration.
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