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Abstract of the Thesis

The Artificial Intelligence (AI) community has carried out a great deal of work on

how AI can help people to find out what they want on the Internet. As a result,

the idea of recommender systems has been widely accepted among users. The main

task of a recommender system is to locate items, information sources and people

related to the interest and preferences of a single person or a group of people. This

involves the construction of user models and the ability to anticipate and predict

user preferences.

This thesis focusses on the study of AI techniques which improve the performance

of recommender systems. Initially, a detailed analysis of the current state-of-the-art

in this field has been carried out. This work has been organised as a taxonomy

where existing recommender systems on the Internet are classified into 8 general

dimensions. This taxonomy provides us with an indispensable knowledge base from

which to design our proposal.

Secondly, this thesis proposes a new CBR approach to recommendation. Case-

based reasoning (CBR) is a paradigm for learning and reasoning through experience

suitable for recommender systems due to its being based on human reasoning. We

provide a forgetting mechanism for case-based profiles that controls the relevance

and age of past experiences. Experimental results show that this proposal better

adapts the profiles to users and solves the utility problem of CBR systems.

Thirdly, this thesis proposes the “agentification” of recommender systems in

order to take advantage of interesting agent properties such as proactivity, encap-

sulation or social ability. Recommender systems sharply improve the quality of

results when information about other users is utilised when recommending a given

user. Collaboration among agents is performed with the opinion-based filtering

method and the collaborative filtering method through trust. Both are based on a

social model of trust making agents less vulnerable to others while collaborating.

Experimental results show that our collaborative recommender agents improve the

performance of the system while preserving the privacy of the user’s personal data.

Finally, this thesis also proposes an evaluation procedure for recommender sys-

tems that allows a scientific discussion of the results. This proposal simulates the

users behaviour over time based on real user profiles. We hope this new evaluation

methodology will contribute towards the progress in this area of research.
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Resum de la Tesi

La comunitat cient́ıfica que treballa en Intel·ligència Artificial (IA) ha dut a terme

una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el

que volen dins d’Internet. La idea dels sistemes recomanadors ha estat extensament

acceptada pels usuaris. La tasca principal d’un sistema recomanador és localitzar

ı́tems, fonts d’informació i persones relacionades amb els interessos i preferències

d’una persona o d’un grup de persones. Això comporta la construcció de models

d’usuari i l’habilitat d’anticipar i predir les preferències de l’usuari.

Aquesta tesi està focalitzada en l’estudi de tècniques d’IA que millorin el rendi-

ment dels sistemes recomanadors. Inicialment, s’ha dut a terme un anàlisis detallat

de l’actual estat de l’art en aquest camp. Aquest treball ha estat organitzat en forma

de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en

8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement

indispensable pel disseny de la nostra proposta.

En segon lloc, aquesta tesi planteja una nova proposta de CBR aplicat al camp de

la recomanació. El raonament basat en casos (CBR) és un paradigma per aprendre

i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus

fonaments en el raonament humà. Proposem un mecanisme d’oblit per perfils basats

en casos que controla la rellevància i edat de les experiències passades. Els resultats

experimentals demostren que aquesta proposta adapta millor els perfils als usuaris

i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR.

En tercer lloc, aquesta tesi proposa l’agentificació dels sistemes recomanadors per

tal de treure profit de propietats interessants dels agents com ara la proactivitat, la

encapsulació o l’habilitat social. Els sistemes recomanadors milloren espectacular-

ment la qualitat dels resultats quan s’utilitza informació sobre els altres usuaris al

recomanar a un usuari concret. La col·laboració entre agents es realitza a partir del

mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir

de confiança. Els dos mètodes es basen en un model social de confiança que fa que

els agents siguin menys vulnerables als altres quan col·laboren. Els resultats de-

mostren que els agents recomanadors col·laboratius proposats milloren el rendiment

del sistema mentre que preserven la privacitat de les dades personals de l’usuari.

Finalment, aquesta tesi també proposa un procediment per avaluar sistemes

recomanadors que permet la discussió cient́ıfica dels resultats. Aquest procediment

simula el comportament dels usuaris al llarg del temps a partir de perfils d’usuari

reals. Esperem que aquesta nova metodologia d’avaluació contribueixi al progrés en

aquesta àrea de recerca.
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Chapter 1

Introduction

This chapter describes the motivation leading to the presentation of this thesis. The

objectives of this thesis and the subjects included in this document are briefly ex-

plained. The chapter ends describing the structure and contents of this thesis.

1.1 Motivation

The development of the Internet has resulted in a global information society with

a growing number of users around the world. Yet, because of this avalanche of

information at our door step, there is a rapidly increasing difficulty in finding what

we want when we need it and in a manner which best meets our requirements. Users

are constantly confronted with situations in which they have too many options to

choose from, where they need help to explore and filter out their preferences from

the myriad possibilities. Internet Search Engines, designed originally to be helpful,

now commonly find many thousands of potentially relevant sites, thus losing their

usefulness.

Recently, in the Artificial Intelligence (AI) community, there has been a great

deal of work on how AI can help to solve this problem. The idea of recommender

systems [Resnick 97] has been widely accepted among users who require assistance in

searching, sorting, classifying, filtering and sharing the vast amount of information

now available on the Web. The main task of a recommender system is to locate

items, information sources and people related to the interest and preferences of a

single person or a group of people. This involves the construction of user models

1
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and the ability to anticipate and predict user preferences.

In addressing these types of tasks, recommender systems draw on previous re-

sults from machine learning and other AI technology advances. Among the vari-

ous machine-learning technologies, our research group has been traditionally con-

centrated on Case-Based Reasoning (CBR) [Aamodt 94] as a paradigm for learn-

ing and reasoning through past experiences as humans do. Particularly, we have

successfully applied CBR to process supervision and automatic control because of

its maintainability, explicability, robustness and exception handling features (i.e.,

[Meléndez 01, Pous 03, Macaya 02, Meléndez 03]), which make CBR perform bet-

ter than any other knowledge representation scheme. From such experience on the

system engineering domain, we think on taking advantage of these CBR properties

in other domains such as Internet, in which the interest of the research group has

recently shifted. Then, our purpose is to design a recommender system based on the

CBR methodology. However, when we apply CBR to recommender systems, several

drawbacks arise. Among them, the adaptation of the system to the users’ chang-

ing interests and the uncontrolled growth of the number of past experiences. With

these problems at hand, we start to develop a mechanism to control the relevance

of experiences on a CBR basis.

If, on the basis of our experience, we explore the use of AI techniques (i.e., CBR)

in recommender systems, it is true that we would be also convinced that the system

engineering insights could be also transferred to AI. In this sense, we know that

systems can be controlled and become stable after a transition phase. At the stable

position, the response of the system cannot be improved unless some perturbation

is applied to the system. Such perturbation is an unexpected signal from outside

the system and its control. We then analyse a similar behaviour in recommender

systems: after an initial phase, the system becomes stable as much as it knows the

preferences of the user, up to some degree, and the recommendations generated are

always of the same kind and with the same degree of success. Then, in order to

improve recommender systems, we believe that some inputs outside the system and

its user should be incorporated as a perturbation. Analysing such situation, we found

that AI researchers have focussed on the development of collaborative recommender

systems that can recommend items to a user based on information about other

users. Collaborative recommender systems allow the collaboration among users in a

selection process, as in real life happens. Society in general, but specially our friends,
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help us to find new amazing things. Often our friends tell us about an interesting

product, movie, book or restaurant, helping us in the selection process.

In a collaborative environment, social patterns should be also modeled together

with the particular user preferences. Under such perspective, intelligent agents

[Maes 94] provide users with a means for managing information in a rational way.

Agent properties such as encapsulation or social ability make agents suitable for

dealing with the recommendation task. The encapsulation of user’s personal in-

formation allows recommender agents to maintain privacy, while the social ability

provides agents with a mechanism to collaborate, transforming recommender sys-

tems to multi-agent systems of collaborative recommender agents [Klusch 01].

Collaborative recommender agents take advantage of the collaborative world in

which users can share information about their interests and preferences in order

to find similar users who can help them. However, a serious trade-off between

privacy and collaboration should be generated. That is, the broadcasting of personal

information raises privacy concerns. In this thesis, we also define an alternative to

deal with this trade-off and we propose a mechanism of collaboration based on trust

[March 94] so that users maintain their privacy while benefiting from personalised

collaboration. Trust techniques have proved useful in making agents less vulnerable

to others, a fundamental need in open environments such as the Internet.

1.2 Objectives

The objectives of this thesis can be encompassed in four general purposes: the

study of existing recommender systems, the application of CBR to recommender

systems, the design of a mechanism of collaboration among users and the evaluation

of recommender systems.

In a relatively short time, many recommender systems have been developed on

the Internet, all of which take advantage of a particular set of AI techniques. The

first general purpose of this thesis consists of bibliographic research into these sys-

tems. The study of the different AI techniques used to recommend to the user will

provide us with a general view of recommender systems. We should then be able to

generate a taxonomy that classifies the different techniques. The dimensions of this

taxonomy will encompass how the information about the user is stored and how this
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information can be used in order to recommend to the user.

According to our experience, CBR seems a suitable technique to be applied to

recommender systems. Thus, our second general purpose consists of the adaptation

of the CBR methodology to the recommendation field. We also want to propose

a “forgetting mechanism”, based on the human brain, as a technique to control

the relevance of past experiences and forget the irrelevant ones. The aim of this

mechanism is to better adapt the representation of the user’s interests to the user

and to control the uncontrolled growth of the past experiences stored.

Recommender systems often combine the information about the interests of the

users in order to perform a collaboration among them. However, this requires the

revelation of personal information. Our third general purpose is to design a mecha-

nism of collaboration that maintains the privacy of user’s personal data. In partic-

ular, we count on the utilisation of collaborative agents, since properties like their

encapsulation and their social ability give us a suitable tool to achieve our pur-

pose. When and with whom to collaborate are aspects to take into serious account.

The concept of trust in other agents could provide us with a useful instrument to

handle these issues. Thus, we will transform the typical centralised recommender

system to a distributed world of recommender agents who collaborate by means of

a mechanism based on trust.

Finally, our proposals will be evaluated. To date, it is very difficult to determine

how well recommender systems work, since this involves purely subjective assess-

ments. Our final purpose is to design an evaluation procedure for recommender

systems as similar as possible to an evaluation performed with real users. Such a

procedure should be based on the combination of information about real users and

a simulator. Thanks to this simulator, we will be able to carry out repeatable and

perfectly controlled experiments in order to show the performance of our CBR and

collaborative approaches to recommender systems.

1.3 Outline of the Thesis

This document is structured in 5 chapters with a bibliography section at the end.

Chapter 2 details the study of existing recommender systems. In particular,

37 recommender systems have been deeply analysed. This analysis has resulted in
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the identification of 8 dimensions in which recommender systems can be classified.

These dimensions, together with their possible values, constitute a taxonomy of

recommender systems. Thus, this chapter provides us with a state-of-the-art de-

scription of recommender systems; indispensable information before designing our

proposals.

Chapter 3 describes our CBR approach to recommender systems. The different

phases of the CBR cycle have been redefined in order to adapt the methodology

to the recommendation task. A “forgetting mechanism” is then proposed in order

to better adapt case-based profiles to the user’s interests and to solve the utility

problem of CBR systems. In order to evaluate this proposal, an evaluation method,

which we call the profile discovering procedure, is proposed. This method simulates

the recommendation process from information about real user’s interests. Thanks to

the profile discovering procedure, the results of our proposal to CBR recommender

system are obtained and analysed in this chapter.

Chapter 4 presents our proposal of collaborative recommender agents. Users

have a personal agent in charge of recommending interesting items to them. In

order to collaborate, recommender agents exchange information by means of the

opinion-based filtering method, which is based on a model of trust. Moreover, the

typical collaborative filtering method is improved by means of this model. Both

methods and the trust model are thoroughly explained in this chapter. Then, this

proposal is evaluated through an extension of the profile discovering procedure that

contemplates the collaboration between users.

Finally, chapter 5 concludes this document restating the main contributions of

this thesis and listing further work. A list of related publications and prizes is

included.
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Chapter 2

Survey On Recommender Systems

Recently, Artificial Intelligence techniques have proved useful in helping users to han-

dle the large amount of information on the Internet. The idea of personalised search

engines, intelligent software agents, and recommender systems has been widely ac-

cepted among users who require assistance in searching, sorting, classifying, filtering

and sharing this vast quantity of information. In this chapter, we present a state-

of-the-art taxonomy of recommender systems on the Internet. We have analysed 37

different systems and their references and have sorted them into a list of 8 basic

dimensions. These dimensions are then used to establish a taxonomy under which

the systems analysed are classified. Finally, we conclude this chapter with a cross-

dimensional analysis with the aim of providing a starting point for researchers to

construct our own recommender system.

2.1 Introduction

In this chapter, we carry out a comprehensive and systematic study of recommender

systems [Sanguesa 00]. Analysing the different systems, we have identified a list of

8 dimensions in which recommender systems can differ and possible values for these

dimensions, therefore providing a taxonomy.

The intention of this chapter is to present state-of-the-art elements organised into

a simple classification, explain the methods used and describe their advantages and

disadvantages. Thus, the main purpose is to provide a starting point for researchers

to construct their own recommender systems.

7
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NAME REFERENCES DOMAIN

ACR News [Mobasher 00] Netnews Filtering
Amazon [Amazon 03] E-commerce
Amalthaea [Moukas 97] Web Recommender
Anatagonomy [Sakagami 97] Personalised Newspaper
Beehive [Huberman 96] Sharing News
Bellcore Video Recommender [Hill 95] Movie Recommender
Casmir [Berney 99] Document Recommender
CDNow [CDNow 03] E-commerce
Fab [Balabanovic 97] Web Recommender
GroupLens [Resnick 94] Netnews Recommender
ifWeb [Minio 96, Asnicar 97] Web Recommender
InfoFinder [Krulwich 95, Krulwich 96] Information Recommender
INFOrmer [Riordan 95, Sorensen 97] Netnews Filtering
Krakatoa Chronicle [Kamba 95] Personalised Newspaper
LaboUr [Schwab 01] Document Recommender
Let’s Browse [Lieberman 99] Web Recommender
Letizia [Lieberman 95] Web Recommender
LifeStyle Finder [Krulwich 97] Purchase, Travel and Store Recommender
MovieLens [Good 99] Movie Recommender
News Dude [Billsus 99] Netnews Recommender
NewsWeeder [Lang 95] Netnews Recommender
NewT [Sheth 93] Netnews Filtering
Personal WebWatcher [Mladenic 96] Web Recommender
PSUN [Sorensen 95] Netnews Recommender
Re:Agent [Boone 98] E-mail Filtering
Recommender [Basu 98] Movie Recommender
Ringo/FireFly [Shardanand 94, Shardanand 95] Music Recommender
SIFT Netnews [Yan 95] Netnews Filtering
SiteIF [Stefani 98] Web Recommender
Smart Radio [Hayes 99, Hayes 00] Music Lists Recommender
Syskill&Webert [Pazzani 96, Pazzani 97] Web Recommender
Tapestry [Goldberg 92] E-mail Filtering
Webmate [Chen 98] Web Recommender
WebSail [Chen 00] Web Search Filtering
WebSell [Cunningham 01] Purchase Recommender
Websift [Cooley 99] Web Recommender
WebWatcher [Armstrong 95, Joachims 97] Web Recommender

Table 2.1: Domain of the Analysed Systems.
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This chapter is organised as follows. First, we present the dimensions that con-

stitute the taxonomy, which we group in two blocks: dimensions regarding profile

generation and maintenance and dimensions related to profile exploitation. In sec-

tions 2.3 and 2.4 we provide the classification of the systems according to dimen-

sions of profile generation and maintenance and profile exploitation respectively.

We continue by performing a cross-dimensional analysis in section 2.5 and end with

section 3.7 in which several conclusions are presented.

2.2 The Taxonomy

In a relatively short time, several recommender systems have been developed and

there is a wide variety of such systems, all of which take advantage of a partic-

ular set of AI techniques. We have followed two main approaches in this study

of recommender systems: spatial and functional. The spatial approach produces

a classification of systems according to the application domain (see Table 2.1 for

the domains of the various systems analysed). The functional approach produces a

classification based on the different task-achievement techniques used in the system.

This latter approach allows us to study the systems systematically and consequently,

we have spent more time on it.

Consistently, when analysing how a recommender system makes recommenda-

tions or assesses a user, the key issue is the user profile. User profile generation and

maintenance requires five design decisions which constitute the first five dimensions

of our taxonomy: the profile representation technique, the technique used to gen-

erate the initial profile, the source of the relevance feedback which represents the

user interests, the profile learning technique and the profile adaptation technique.

Figure 2.1 shows the relationships between these techniques in the generation and

maintenance of user profiles.

The profile representation is the first step to take into account in a recommender

system since the other techniques depend on it. Once this step is decided, the other

techniques can be defined. A recommender system cannot begin to function until

the user profile has been created. Furthermore, the system needs to know as much

as possible from the user in order to provide him/her with satisfactory results from

the very beginning. Therefore, systems need to use a suitable technique in order to
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Figure 2.1: Profile Generation and Maintenance.

generate an accurate initial profile.

To generate and maintain the user profile, the system needs relevant information

about the user’s interests. When users interact with a computer, they provide

a great deal of information about themselves. Successful interpretation of these

data streams is necessary for computers to tailor themselves to each individual’s

behaviour, habits and knowledge. As for the interaction of the user with these

applications, the system can gather relevance feedback to learn his tastes, interests

and preferences. Relevance feedback is then a main dimension for recommender

systems. Typically, the feedback, given explicitly or implicitly by the user, has no

sense in itself. Therefore, there is a need for a profile learning technique which

extracts the relevant information and structures this information depending on the

representation of the profile.

User tastes usually change as time goes on. Therefore, the user profile should

also be changed in order to retain the desired accuracy in its exploitation. Hence,

the need for a technique to adapt the user profile to new interests and to forget old

ones.
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Figure 2.2: Profile Exploitation for Recommendation.

Once there is a user profile available, recommender systems exploit it to recom-

mend either products or actions to a user. Recommender systems make decisions

according to the information available. Such information includes data about items

as well as different profiles of other users on the web. Since there is so much in-

formation, a fundamental issue is to select the most appropriate information with

which to make decisions. In other words, an information filtering method is essential.

There are three information filtering approaches for making recommendations: de-

mographic filtering, content-based filtering and collaborative filtering. Demographic

filtering uses descriptions of people to learn the relationship between a particular

item and the type of people who like it. Content-based filtering uses descriptions

of the content of the items to learn the relationship between a single user and the

description of the items. Several user profile-item matching methods can be used

in order to compare the user’s interests and the items. Collaborative filtering uses

the feedback from a set of people concerning a set of items in order to make recom-

mendations, but ignores the content of the items. Various methods are used by the

systems to match user profiles and find users with similar interests.
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TAXONOMY OF RECOMMENDER SYSTEMS

Profile Generation and Maintenance Profile Exploitation

User Profile Representation Information Filtering Method
Initial Profile Generation User Profile-Item Matching Technique
Profile Learning Technique User Profile Matching Technique
Relevance Feedback
Profile Adaptation Technique

Table 2.2: Dimensions of the Taxonomy.

In terms of profile exploitation, then, three main dimensions characterise recom-

mender systems: the information filtering method (demographic, content-based and

collaborative), the item-profile matching (when content-based) and the user profile

matching techniques (when collaborative). See Figure 2.2 for a general view.

All in all, we have identified, from a functional viewpoint, 8 classification dimen-

sions for recommender systems, 5 in terms of profile generation and maintenance

and 3 in terms of profile exploitation (see Table 2.2). We will now go on to discuss

these in further detail.

2.3 Profile Generation and Maintenance

Five design decisions should be taken to generate and maintain a user profile: the

representation, the technique to generate the initial profile, the source of the rele-

vance feedback which represents the user interest, the profile learning technique and

the profile adaptation technique (see Figure 2.1).

2.3.1 User Profile Representation

Constructing accurate profiles is a key task since the system’s success will depend,

to a large extent, on the ability to represent the user’s current interests. Accurate

profiles are vital for both the content-based component (to insure recommendations

are appropriate) and the collaborative component (to insure that users with similar

profiles are indeed similar).

Several approaches have been taken to represent user profiles, such as a history

of purchases, web navigation or e-mails, an indexed vector of features, a n-gram,

a semantic network, an associative network, a classifier including neural networks,
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NAME TECHNIQUE

ACR News Frequent Itemsets, URL Clusters
Amazon Purchase History with Ratings
Amalthaea Weighted Feature Vector
Anatagonomy Weighted Feature Vector
Beehive Clusters(Weighted Feature Vector)
Bellcore Video Recom User-Item Ratings Matrix
Casmir Weighted Feature and Document Network
CDNow Purchase History with Ratings
Fab Weighted Feature Vector
GroupLens User-Item Ratings Matrix
ifWeb Multivalued Weighted Attributes, Weighted Semantic Network
InfoFinder Decision Tree
INFOrmer Weighted Associative Network
Krakatoa Chronicle Weighted Feature Vector
LaboUr Probabilistic Feature Vector, Boolean Feature Vector
Let’s Browse Weighted Feature Vector
Letizia Weighted Feature Vector
LifeStyle Finder Demographic Features
MovieLens Weighted Feature Vector, Inducted Rules
News Dude Short Term: Weighted, Long Term: Boolean Feature Vector
NewsWeeder Weighted Feature Vector
NewT Weighted Feature Vector
Personal WebWatcher Probabilistic Feature Vector
PSUN Weighted N-Grams
Re:Agent Weighted Feature Vector, Neural Network
Recommender Inducted Rules
Ringo / FireFly User-Item Ratings Matrix
SIFT Netnews Boolean Feature Vector, Weighted Feature Vector, Decision Tree
SiteIF Weighted Semantic Networks
Smart Radio User-Item Ratings Matrix
Syskill & Webert Probabilistic Feature Vector, Boolean Feature Vector, Decision Tree,

Weighted Feature Vector
Tapestry Indexed Messages and Annotations
Webmate Weighted Feature Vector
WebSail Boolean Feature Vector
WebSell Interesting/Not Interesting Products
Websift Inducted Rules, Patterns, Statistics
WebWatcher Boolean Feature Vector

Table 2.3: Profile Representation Technique of the Systems.

decision trees, inducted rules or Bayesian networks, a matrix of ratings and a set

of demographic features. Table 2.3 shows the user profile representation techniques

used by the different systems analysed.

History-Based Model

Some systems keep a list of purchases, the navigation history in WWW or the

content of e-mail boxes as a user profile. Additionally, it is also common to keep the

relevant feedback of the user associated with each item in the history.

A historical approach is most commonly used in e-commerce, in which systems

keep a list of purchased products and user ratings, as a user profile. This is the
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case in the two most popular state-of-the-art recommender systems in e-commerce:

Amazon.com [Amazon 03] and CDNow.com [CDNow 03]. A similar approach is used

in WebSell [Cunningham 01], in which the profile is defined by using two lists, one

with purchased products rated as interesting and another with uninteresting ones.

Another approach is implemented in Tapestry [Goldberg 92], an e-mail filtering

system which builds a profile while keeping track of messages and annotations given

by the user.

Vector Space Model

In the vector space model, items are represented with a vector of features, usually

words or concepts, with an associated value. This value can be a Boolean or a real

number. The Boolean value represents the presence of the value of the feature, and

the real number represents the frequency, relevance or probability of the feature,

which is calculated using information indexing techniques (see section 2.3.3).

For example, Webmate [Chen 98] utilises a multiple feature vectors representa-

tion. The basic idea is to represent each document as a vector in a vector space so

that documents with similar content have similar vectors. Each dimension of the

vector space represents a word and its weight, calculated as a combination of the

statistics term frequency (see section 2.3.3).

Weighted N-Grams

In weighted n-grams, items are represented with a net of words with weights in the

nodes and edges. For example, PSUN [Sorensen 95], based on the assumption that

words tend to occur one after another a significantly high number of times, extracts

fixed length consecutive series of n characters and organises them with weighted

links representing the co-occurrence of different words. Therefore, the structure

achieves a context representation of the words.

Weighted Semantic Networks

Semantic networks [Potter 88] are able to store the meanings of words, so the

human-like use of these meanings is possible. Minio and Tasso, in the ifWeb sys-

tem [Minio 96], implement such an approach. In IfWeb, a semantic network base
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contains a collection of semantic networks describing a typical pattern of topics of

interest to the user. The Stefani and Strapparava approach in the SiteIF system

[Stefani 98] represents every node as a word or an interesting concept and the arcs

between nodes are the co-occurrence relation between two words; every node and

every arc has a weight representing a different level of interests to the user.

Weighted Associative Networks

An associative network consists of a set of nodes which represent primary terms,

concepts or words, in which a user is interested. A set of weighted links establishes

the organisation of these terms into relevant phrases. Associative networks differ

from the semantic networks because semantic networks have different generic link

types such as synonymy, superclass-subclass, and also possibly disjunctive and con-

junctive sets of links. In contrast, associative networks have only a single link type,

a weighted edge, the semantics being implicit in the structure of the network and

the parameters associated with the processing [Riordan 95].

Classifier-Based Models

Systems using a classifier as a user profile learning technique retain the structure of

the classifier as a profile. This is the case in neural networks, decision trees, inducted

rules and Bayesian networks.

A neural network is a network of input and output cells, based upon neuron func-

tions in the brain. Neural networks create a compact representation that responds

to queries quickly. However, they can be slow to train. For example, Re:Agent

[Boone 98] filter e-mails through a neural network previously trained with feature

vectors of past messages.

A decision tree is another way to classify data. It consists of a set of nodes and

a set of directed edges that connect the nodes (tree structure). The internal nodes

represent questions about the parameters, and the edges represent answers to those

questions, i.e. values for the parameters. The leaf nodes represent a final decision.

For example, InfoFinder [Krulwich 96] recommends documents based on a decision

tree.

Association rules have been used for many years in merchandising, both to anal-
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yse patterns of preference across products, and to recommend products to consumers

based on other products they have selected. Association rules can form a compact

representation of preference data which improve efficiency of storage as well as per-

formance. For example, an association rule expresses the relationship that a certain

movie is often purchased along with others [Basu 98].

A Bayesian network is a directed acyclic graph in which nodes represent propo-

sitional variables and arcs represent dependencies [Jensen 96]. A node’s value is a

function of the values of the nodes it depends upon. Leaf nodes represent proposi-

tions, which can be determined by observation. The resulting model is very small,

very fast and essentially as accurate as nearest neighbours methods [Breese 98].

User-Item Ratings Matrix

Some collaborative filtering systems maintain a user-item ratings matrix as a user

profile. The user-item ratings matrix contains historical user ratings on items. Each

cell (u, i) of the matrix contains a rating representing the evaluation of the user u

to the item i, and an empty value if there is no evaluation.

These systems do not use any learning profile technique (see section 2.3.3) but

bring together all the processes in the user profile matching techniques (see sec-

tion 2.4.3).

Demographic Features

Demographic filtering systems create a user profile through stereotypes. There-

fore, the user profile representation is a list of demographic features which repre-

sent the kind of user. None of these systems use any learning profile technique

(see section 2.3.3) but they bring together all the processes in stereotype reasoning

[Kobsa 01].

2.3.2 Initial Profile Generation

It is desirable to learn as much as possible from the user so that the recommender

systems provide satisfactory results from the very beginning. However, the user is

not usually willing to spend much time in defining his interests to create his profile.
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NAME TECHNIQUE
ACR News Training Set
Amalthaea Manual
Amazon Empty
Anatagonomy Empty
Beehive Empty
Bellcore Video Recom Training Set
Casmir Unknown
CDNow Empty
Fab Empty
GroupLens Empty
ifWeb Training Set, Stereotyping
InfoFinder Training Set
INFOrmer Training Set
Krakatoa Chronicle Empty
LaboUr Training Set
Let’s Browse Training Set
Letizia Empty
LifeStyle Finder Stereotyping
MovieLens Training Set
News Dude Training Set
NewsWeeder Training Set
NewT Training Set
Personal WebWatcher Manual
PSUN Training Set
Re:Agent Manual, Training Set
Recommender Training Set
Ringo / FireFly Training Set
SIFT Netnews Training Set
SiteIF Empty
Smart Radio Training Set
Syskill & Webert Manual, Stereotyping
Tapestry Empty
Webmate Empty
WebSail Empty
WebSell Empty
Websift Training Set
WebWatcher Manual

Table 2.4: Initial Profile Generation Technique of the Systems.

Moreover, users’ interests may change over time, making the profiles difficult to

maintain. For these reasons, starting up and maintaining user profiles is a difficult

aspect in the design and development of recommender systems. The degree of

automation in the acquisition of user profiles can range from manual input, to semi-

automatic procedures (stereotyping and training sets), to the automatic recognition

by the systems themselves. Table 2.4 shows the initial profile generation techniques

used by the different systems analysed.

Empty

Some systems do not bother with the initial profile and start with an empty profile

structure (e.g., [Chen 98, Balabanovic 97, Cunningham 01]). There is no initial
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phase, the profile structure is filled through an automatic recognition method when

the user begins interaction with the system.

Manual

A manual system asks users to register their interests in the form of keywords, topics

and so on. One of the advantages of this method is the transparency of the system

behaviour. When items have been delivered to a user, he/she can usually easily

guess why each item was delivered. One problem with this method though, is that

it requires much effort on the part of the user. Another problem is that people

cannot necessarily specify what they are interested in, because their interests are

sometimes still unknown.

Stereotyping

Stereotyping is based on the fact that creating an initial model is, in a sense, a clas-

sification problem, aimed at generating initial predictions about the user [Kobsa 01].

The user model is initiated by classifying users in stereotypical descriptions [Rich 79],

representing the features of classes of users. The use of stereotypes in computer sys-

tems for maintaining models of their users was introduced by Rich with the Grundy

system. Typically, the data used in the classification is demographic and the user is

asked to fill out a registration form: record data (name, address, etc.), geographic

data (area code, city, etc), user characteristics (age, sex, etc.), psychographic data

(e.g., lifestyle), etc.

An example is the method implemented by Krulwich in the LifeStyle Finder

[Krulwich 97] which uses a commercially available database of demographic data

which encompasses the interests of people nationwide.

The main shortcoming of this technique is the difficulty of acquiring personal

data from the users. Internet users normally avoid engaging in a relationship with

Internet sites. This is mostly due to a lack of faith in the privacy policy of today’s

web sites. Normally, users either withhold personal data or provide false data.



2.3 Profile Generation and Maintenance 19

Training Set

The training set is a collection of user interaction examples which is used to infer

the initial user profile. One practical way to establish the training set is to ask the

user to rate some concrete examples as relevant or irrelevant to their interests (e.g.,

[Sorensen 95] and [Boone 98]). A similar approach is to ask the user to rate a set of

predefined examples (e.g., [Good 99] and [Shardanand 94]). In both cases, once the

user has given the appropriate information, the system processes the data with one

of the learning techniques explained in section 2.3.3.

This mode has the advantage of simplified handling. It has the disadvantage,

and the danger, that someone has to select the examples which are not always rep-

resentative and the results are less precise. Some of the systems using this technique

are ACR News [Mobasher 00], FireFly [Shardanand 95] and LaboUr [Schwab 01].

2.3.3 Profile Learning Techniques

The previous section described sources of information potentially representative of

user interests, mainly the training sets. Profile learning techniques build a user

profile through these data. These techniques can be seen as a preliminary step in

representing a user profile.

It is important to note that when the learning data is composed of text without

structure, it is necessary to pre-process the information in order to get structured,

relevant information. Some systems simply use an information indexing technique to

build a profile and represent it as a structure of indexed words, although information

indexing techniques cannot be considered artificial intelligence techniques.

Some systems have an off-line phase during which they learn a model of a user

behaviour, and then an online phase during which they apply the model in real time.

Most systems, however, use a lazy learning approach (online), in that they build and

update the model while making recommendations in real time. Off-line learning

methods may prove practical for environments in which knowledge of consumer

preferences changes slowly with respect to the time needed to build the model, but

they are not suitable for environments in which consumer preference models must

be updated rapidly or frequently.

In this section, we will first briefly explain some typical systems for which profile
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NAME TECHNIQUE

ACR News Induction Rule Learning, Clustering
Amazon Not Necessary
Amalthaea Feature Selection(Stemming), Information Indexing (TF-IDF)
Anatagonomy Information Indexing(TF-IDF)
Beehive Clustering
Bellcore Video Recom Not Necessary
Casmir Simple Positive Reinforcement, Simple Positive Reinforcement with Query Keyword

Overriding, Positive and Negative Reinforcement, Positive and Negative Reinforcement
with Query Keyword Overriding

CDNow Not Necessary
Fab Information Indexing(TF-IDF)
GroupLens Not Necessary
ifWeb Feature Selection(Stop-Words, Stemming, ...)
InfoFinder Feature Selection(Heuristics), Decision Tree(ID3)
INFOrmer Feature Selection(Stop-Words, Stemming, ...)
Krakatoa Chronicle Information Indexing(TF-IDF)
LaboUr Information Indexing(Boolean)
Let’s Browse Information Indexing(TF-IDF)
Letizia Information Indexing(TF-IDF)
LifeStyle Finder Not Necessary
MovieLens Information Indexing(TF-IDF), Induction Rule Learning (Ripper)
News Dude Short Term: Information Indexing(TF-IDF), Information Indexing(Boolean)
NewsWeeder Information Indexing(TF-IDF), MDL
NewT Feature Selection(Stop-Words, Stemming), Information Indexing(TF-IDF)
Personal WebWatcher Information Indexing(TF-IDF)
PSUN Feature Selection(Stemming), N-Gram Induction
Re:Agent Feature Selection(Stop-Words), Information Indexing(TF-IDF), Clustering, Neural

Network
Recommender Induction Rule Learning (Ripper)
Ringo / FireFly Not Necessary
SIFT Netnews Information Indexing(Boolean), Information Indexing(TF-IDF)
SiteIF Feature Selection(Stop-Words, Stemming, ...)
Smart Radio Not Necessary
Syskill & Webert Feature Selection(Stop-Words), Information Indexing(Boolean), Information

Indexing(TF-IDF), Decision Tree(ID3)
Tapestry Not Necessary
Webmate Information Indexing(TF-IDF)
WebSail Information Indexing(TF-IDF)
WebSell Not Necessary
Websift Induction Rule Learning
WebWatcher Information Indexing(TF-IDF), Winnow, WordStat, Random

Table 2.5: Profile Learning Technique of the Systems.

learning techniques are not necessary. Then, we summarise the information retrieval

techniques used to preprocess information. Finally, we look at the most commonly

used profile learning techniques are reviewed: clustering and classifiers. Table 2.5

shows the profile learning techniques used by the different systems analysed.

Not Necessary

Some systems keep information directly acquired from the system as a user profile,

therefore, they do not need a profile learning technique. There are three main kinds
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of systems do not need a profile learning method:

• Systems which acquire user profile information from a database. For instance,

electronic commerce systems ([Amazon 03, CDNow 03, Cunningham 01]) which

extract the information from a database of products and keep a purchase list

as a profile (see section 2.3.1).

• Collaborative filtering systems ([Goldberg 92, Resnick 94, Shardanand 95])

which keep a matrix with the user-item ratings as a profile (see section 2.3.1).

• Systems which create an initial profile through stereotyping (see section 2.3.2)

and do not modify it ([Krulwich 97]). This is the case in demographic filtering

systems (see section 2.4.1).

Systems that do not need a profile learning technique concentrate information fil-

tering tasks on the profile-item (see section 2.4.2) or profile-profile (see section 2.4.3)

matching techniques.

Structured Information Retrieval Techniques

When information has no structure (e.g. text), some kind of pre-processing step is

needed to extract structured relevant information. Typically, this process comprises

two main steps: feature selection and information indexing.

Feature selection can be achieved through different approaches which reduce the

number of words: stop-words, pruning, stemming, etc (see [Salton 83]).

Information indexing uses the frequency word occurrence to calculate the po-

tential relevance of an item. TF-IDF is one of the most successful and best-tested

techniques. A document is represented as a vector of weighted terms (see sec-

tion 2.3.1). The computation of the weights reflects empirical observations regarding

text. Terms frequently appearing in a document (TF=term-frequency), but rarely

on the outside (IDF=inverse-document-frequency), are more likely to be relevant to

the topic of the document.

TF-IDF has two popular variants: the boolean method and the probabilistic

method. The boolean method is a simplistic approach where the profile is repre-

sented as a vector of words with a boolean value indicating their presence in the text.
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The probabilistic method is a generalisation of the exact match technique. In this

method, documents are ranked by the probability that they satisfy the information

need rather than by making a shape decision. Bayesian inference networks have

proven to be a useful technique for computing this probability (see section 2.3.3).

Clustering

The basic idea of this technique is clustering similar user information into groups

based on data. Then, these clusters are matched against actual information to

conclude whether it is interesting or not.

For example, in ACR News [Mobasher 00] user transactions are mapped into a

multi-dimensional space as vectors of URL references. This space is partitioned into

clusters (usage clusters) representing a group of transactions that are similar, based

on co-occurrence patterns of URL references. Finally, clusters are matched against

an active user session to recommend interesting URLs.

Traditional collaborative filtering techniques are often based on matching the

current user profile against clusters of similar profiles obtained by the system over

time from other users (see section 2.4.3).

Classifiers

Classifiers are general computational models for assigning a category to an input.

To build a recommender system using a classifier means using information about

the item and the user profile as input, and having the output category represent

how strongly to recommend an item to the user. Classifiers may be implemented

using many different machine learning strategies including neural networks, decision

trees, association rules and Bayesian networks.

Learning in neural networks is achieved by training the network with a set of data.

Each input pattern is propagated forward through the network and active output

cells represent the interest of the user. When an error is detected it is propagated

backward adjusting the cell parameters to reduce the error, thus achieving learning.

For instance, Jennings and Higuchi employed a neural network for constructing a

user’s profile [Jennings 93].

Decision tree learning is a method for approximating discrete-valued target func-
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tions, in which the learned function is represented by a decision tree. The learned

trees can also be represented as a set of if-then rules. Decision tree learners build a

decision tree by recursively partitioning examples into subgroups, obtaining source

classes of items which can be classified, for example, into interesting and not inter-

esting [Krulwich 95]. The most widely-used decision tree learner applied to profiling

is the ID3 [Quinlan 83].

The discovery of association rules by inductive learning [Mobasher 00] is one of

the best-known classifier examples. The association rule discovery methods initially

find groups of items occurring frequently together in many transactions. Such groups

of items are referred to as frequent item sets. Association rules capture the relation-

ships among these items based on their patterns of co-occurrence across transactions.

Association rules can form a very compact representation of preference data which

may improve efficiency of storage as well as performance. Some examples of induc-

tive learning techniques are Ripper [Cohen 95], Slipper [Cohen 99], CN2 [Clark 89]

and C4.5rules [Quinlan 94].

A Bayesian network learner algorithm is applied to a set of training data, search-

ing over various model structures in terms of dependencies for each item. In the

resulting network, each item will have a set of parent items that are the best pre-

dictors of its votes. The model can be built off-line in a matter of hours. Thus, this

technique may prove practical for environments in which knowledge of consumer

preferences changes slowly with respect to the time needed to build the model.

2.3.4 Relevance Feedback

Human interests change as time passes. For example, a new father may be interested

in infant care just after childbirth, but this interest gradually decreases over time.

Therefore, the recommender system needs up-to-date information to update the user

profile automatically. In this section, several ways to obtain this information, which

we call relevance feedback, are presented. Then, in section 2.3.5 we will see how to

use this information to update user profiles.

Typically, it is possible to distinguish two kinds of relevance feedback: positive

information (items liked by the user) and negative information (i.e., inferring fea-

tures which the user is not interested in [Holte 96]). The authors claim that negative

information produces a dramatic improvement in the system’s performance. How-
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ever, there are a few systems which cannot take into account negative information

because the system’s accuracy is likely to decrease (e.g., [Schwab 00]). So, it all

depends on the system.

The two most common ways to obtain relevance feedback is to use information

given explicitly or to get information observed implicitly from the user’s interaction.

Moreover, some systems propose implicit/explicit hybrid approaches. Table 2.6

shows the relevance of feedback techniques used by the different systems analysed.

No Feedback

Some systems do not update the user profile automatically and, therefore, they do

not need relevance feedback. For example, all the systems which update the user

profile manually (see section 2.3.5). Of course, systems which never modify the

profile do not need relevance feedback either.

For instance, SIFT Netnews [Yan 95] creates an initial profile of the user and

does not update it automatically over time. However, the user can modify his

profile manually.

Explicit Feedback

In several systems, users are required to explicitly evaluate items. These evalua-

tions indicate how relevant or interesting an item is to the user, or how relevant or

interesting the user thinks an item is to other users [Rich 79].

There are three main approaches to get explicit relevance feedback: like/dislike

(e.g., [Chen 00, Billsus 99]), ratings (e.g., [Shardanand 95, Moukas 97]) and text

comments (e.g., [Resnick 94, Goldberg 92]). In like/dislike systems, users are re-

quired to explicitly judge items on a binary scale, i.e., classify an object as ”inter-

esting” or ”not interesting”, as ”relevant” or ”not relevant” or as ”like” or ”hate”.

The ratings approach requires users to provide a judgement on a discrete scale. The

rating scale is typically numeric (e.g., the web bookstore Amazon.com offered users

the opportunity of rating books in various categories on a 5-point scale) or symbolic

with mapping to a numeric scale (e.g., in Syskill&Webert [Pazzani 96] users have

the possibility of rating a Web page as ”hot”, ”lukewarm”, or ”cold”). Finally, sev-

eral sites encourage textual comments from their users (e.g., Grouplens [Resnick 94]
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NAME TECHNIQUE

ACR News Implicit(Navigation History)
Amazon Explicit(Ratings), Implicit(Purchase History)
Amalthaea Explicit(Ratings)
Anatagonomy Explicit(Ratings), Implicit(Scrolling, Enlarging)
Beehive Implicit(Mail History)
Bellcore Video Recom Explicit(Ratings)
Casmir Explicit(Ratings)
CDNow Explicit(Ratings), Implicit(Purchase History)
Fab Explicit(Ratings)
GroupLens Explicit(Ratings, Text Comments), Implicit(Time Spent)
ifWeb Explicit(Ratings)
InfoFinder Explicit(Ratings)
INFOrmer Explicit(Ratings)
Krakatoa Chronicle Explicit(Ratings), Implicit(Saving, Scrolling, Time Spent,

Maximising, Resizing, Peeking)
LaboUr Implicit(Links, Time Spent)
Let’s Browse Implicit(Links, Time Spent)
Letizia Implicit(Links, Time Spent)
LifeStyle Finder Explicit(Ratings), Implicit(Purchase History)
MovieLens Explicit(Ratings)
News Dude Explicit(Like/Dislike, I already know this, Tell me more)
NewsWeeder Explicit(Ratings)
NewT Explicit(Like/Dislike)
Personal WebWatcher Implicit(Links)
PSUN Explicit(Ratings)
Re:Agent No Feedback
Recommender Explicit(Ratings)
Ringo / FireFly Explicit(Ratings)
SIFT Netnews Explicit(Like/Dislike)
SiteIF Implicit(Links)
Smart Radio Explicit(Ratings), Implicit(Saving)
Syskill & Webert Explicit(Ratings)
Tapestry Explicit(Like/Dislike, Text Comments), Implicit(Forwarding)
Webmate Explicit(Like/Dislike)
WebSail Explicit(Like/Dislike)
WebSell Explicit(Unknown)
Websift Implicit(Navigation History)
WebWatcher Explicit(Goal Reached), Implicit(Links)

Table 2.6: Relevance Feedback Technique of the Systems.
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and Tapestry [Goldberg 92]). Systems gather comments about a single item and

present them to the users as a means of facilitating the decision-making process.

While textual comments are helpful, they require a fair amount of processing by the

targeted user. Users must read text and interpret to what degree it is positive or

negative.

Explicit feedback has the advantage of simplicity. Several papers have demon-

strated the high performance of systems using explicit relevance feedback [Salton 90,

Buckley 95]. However, in practical applications, explicit feedback has three serious

drawbacks:

• First, the relevance of information is always relative to the changing infor-

mation need of a user, and information relevance judgements of individual

items are typically assumed to be independent when, in fact, they are not

(e.g., the third article presented on the same topic may simply be rated lower

because the first two items satisfied information need and the user is judging

incremental relevance at this point).

• Another problem is that numeric scales may not be adequate for describing

the reactions humans have to items.

• The last problem is that computer users do not supply enough feedback, par-

ticularly negative feedback. Pazzani et al. report that only 15% of users would

supply feedback even though they were encouraged to do so [Pazzani 97]. Users

are generally very reluctant to perform actions not directed towards their im-

mediate goals if they do not receive immediate benefits, even when they would

profit in the long run [Carroll 87].

Implicit Feedback

Implicit feedback means that the system automatically infers the user’s preferences

passively by monitoring the user’s actions. Chatterjee et al. prove empirically in

[Chatterjee 98] that the user’s interests can be inferred from his behaviour. Their

results are important because motivating web consumers to provide personal data

in an explicit way is proving very difficult. Conclusions about the user’s interests

should therefore not rely on user explicit feedback very much, but rather take passive

observations about users into account as far as possible.
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Implicit feedback was defined some years ago by Rich [Rich 79], and the first

system was implemented by Mitchell et al. [Mitchell 85]. Since then, many sys-

tems have implemented implicit user feedback in their approaches (e.g., [Stefani 98,

Schwab 01]) and some systems have even combined it with explicit feedback (see

hybrid approach in section 2.3.4).

Most implicit methods obtain relevance feedback by analysing the links fol-

lowed by the user (e.g., [Lieberman 95, Mladenic 96]), a history of purchases (e.g.,

[Amazon 03, CDNow 03, Krulwich 97]), the navigation history (e.g., [Cooley 99,

Mobasher 00]), e-mail boxes (e.g., [Huberman 96]) and the time spent on a partic-

ular web page (e.g., [Morita 94, Konstan 97, Kobsa 01, Sakagami 97]).

There are many other examples of confirmatory actions. For documents like Web

pages, news articles or e-mail messages, it is interesting to find out if the user takes

any further processing action, such as saving a document ([Kamba 95]), printing a

document, bookmarking a Web page, deleting a document, replying to or forwarding

an e-mail [Goldberg 92], or scrolling, maximising, minimising or resizing the window

containing the document or the Web page ([Kamba 95, Sakagami 97]). Since these

actions are performed under the control of the application, they can be registered

and evaluated to learn the user’s profile.

However, Kobsa et al. [Kobsa 01] do not recommend a universal logging of

usage data on the micro-interaction level, such as the tracking of mouse movements

within applets, unless the purpose of the login has already been specified (e.g.,

for determining user’s interest in page segments [Sakagami 97]). The amount of

data collected is very large, the computation needed to derive recommendations for

adaptations is extensive, and the confidence in the suitability of these adaptations

is likely to be relatively low. However, experimentation with such data in smaller,

laboratory contexts to drive the development of new methods in the area of implicit

feedback seems promising.

Hybrid Approach

The limited evidence available on implicit feedback suggests that it has great poten-

tial but its effectiveness remains unproven. As is common in many technologies, the

best performing system results in combining several existing technologies. In this

field, implicit feedback can be combined with explicit feedback systems in a hybrid
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system. Providing implicit feedback greatly decreases the user’s efforts, whereas

providing explicit feedback helps the system to infer user preferences accurately.

One approach with this combination involves using implicit data as a check on

explicit ratings [Nichols 97]. For instance, if a user is explicitly rating an item, then

there should be some implicit data to confirm that he has actually examined it. If

there is no evidence to suggest this, then perhaps its rating should be ignored or

reduced in importance. Conversely, an evaluation with a relatively long ”examine

time” may be increased in importance.

A different case is Anatagonomy [Sakagami 97]. Giving explicit feedback is op-

tional and should only be used when users wish to show explicit interest. Web-

Watcher [Joachims 97], Krakatoa Chronicle [Kamba 95], GroupLens [Resnick 94],

LifeStyle Finder [Krulwich 97], CDNow [CDNow 03] and Amazon [Amazon 03] also

use hybrid relevance feedback.

2.3.5 Profile Adaptation Techniques

Since recommender systems typically involve interaction over long periods of time,

user interests cannot be assumed to stay constant. This normally means that the

most recent observations gathered through what we have called relevance feedback

represent the user’s current interests better than older ones. Therefore, there is a

need for a technique that will adapt the user profile to new interests and forget old

ones.

There are several approaches to this: manually (simply adding the new infor-

mation), with a time window, aging examples, combining a short-term and a long-

term model, a gradual forgetting function or the natural selection for ecosystems

of agents. Table 2.7 shows the profile adaptation techniques used by the different

systems analysed.

Manual

In some systems, the user has to change the profile when he/she is interested in

updating it. For instance, in Sift Netnews [Yan 95], when the user wants to in-

clude/exclude one of the interests contained in his profile, he has to modify it man-

ually.
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NAME TECHNIQUE

ACR News Add New Information
Amalthaea Natural Selection, Gradual Forgetting
Amazon Add New Information
Anatagonomy Add New Information
Beehive Add New Information
Bellcore Video Recommender Add New Information
Casmir Add New Information
CDNow Add New Information
Fab Natural Selection
GroupLens Add New Information
ifWeb Gradual Forgetting
InfoFinder Add New Information
INFOrmer Add New Information
Krakatoa Chronicle Add New Information
LaboUr Gradual Forgetting
Let’s Browse Add New Information
Letizia Add New Information
LifeStyle Finder Add New Information
MovieLens Add New Information
News Dude Short-Term and Long-Term Models
NewsWeeder Add New Information
NewT Natural Selection
Personal WebWatcher Add New Information
PSUN Natural Selection
Re:Agent Manual
Recommender Add New Information
Ringo / FireFly Add New Information
SIFT Netnews Manual
SiteIF Gradual Forgetting
Smart Radio Add New Information
Syskill & Webert Add New Information
Tapestry Add New Information
Webmate Add New Information
WebSail Add New Information
WebSell Add New Information
Websift Add New Information
WebWatcher Add New Information

Table 2.7: Profile Adaptation Technique of the Systems.

As in manual initial profile generation (see section 2.3.2), this approach has two

important problems: it requires much effort on the part of the user and people

cannot necessarily specify what they are interested in because their interests are

sometimes still unknown. Therefore, manual updating turns out to be difficult

when requirements change quickly.

Add New Information

This approach is the most commonly used in current systems. The idea is to update

the user profile adding new information extracted from the user relevance feedback.

Thus, the profile is adapted to the new user’s interests. The main drawback, how-

ever, is that old interests are not forgotten.
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Gradual Forgetting Function

The concept of gradual forgetting was introduced by Webb and Kuzmycz in [Webb 96]

with the main idea being that natural forgetting is a gradual process. Therefore, a

gradual forgetting function can be defined. It should produce a weight for each ob-

servation according to its location in the course of time. Webb and Kuzmycz suggest

a data aging mechanism which places an initial weight of 1 on each observation. A

set proportion discounts the weight of every observation each time another relevant

observation is incorporated into the model. Thus, the most recent observations be-

come more ”important”, assuming they better represent the current users’ interests

than the older ones. Hence, the system becomes more noise resistant without losing

its sensitivity to real changes in interest [Schwab 01].

Koychev proposes a linear gradual forgetting function [Koychev 00], but it can

be approximated with any function (e.g., logarithmic or exponential).

A particular case of the gradual forgetting function is the time window approach.

It is the most frequently-used approach in dealing with the problem of forgetting

old interests. It consists of learning the description of the user’s interests from

only the latest observations. The training examples are selected from a so-called

time window, i.e. only the last examples are used for training [Mitchell 94]. An

improvement on this approach is the use of heuristics to adjust the size of the window

according to the current predictive accuracy of the learning algorithm [Widmer 96].

Maloof and Michalski implemented a variation of the time window approach

[Maloof 00]. Instances older than a certain given age are deleted from the partial

memory. Like the time window, the system only takes into account the last examples.

However, this approach does forget observations outside the given window or older

than a certain age.

Natural Selection

The natural selection approach is associated with systems implementing an ecosys-

tem architecture of agents based on genetic algorithms. An ecosystem of specialised

agents competing in parallel, gives recommendations to the user. The ecosystem

evolves in the following way: agents producing the best results are reproduced

with the crossover and mutation operators and others are destroyed. Amalthaea
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[Moukas 97], Fab [Balabanovic 97], NewT [Sheth 93] and PSUN [Sorensen 95] use

this approach.

2.4 Profile Exploitation

To recommend either products or actions to a user, a recommender system makes

decisions according to the information available (items, profiles of other users on the

web, etc). Thus, it is vital to select the most appropriate information with which to

make decisions. Information filtering methods are based on user profile-item match-

ing techniques and user profile matching techniques. So, regarding exploitation,

three main dimensions characterise recommender systems: the information filtering

method (demographic, content-based and collaborative), the item-profile matching

(when content-based) and the user profile matching techniques (when collaborative).

See Figure 2.2 for a general view.

2.4.1 Information Filtering Methods

There are three main information filtering methods: demographic, content-based

and collaborative. Table 2.8 shows the information filtering techniques used by the

various systems analysed.

Demographic Filtering

Demographic filtering approaches use descriptions of people to learn the relationship

between a single item and the type of people who like it. The user profiles are

created by classifying users in stereotypical descriptions [Rich 79], representing the

features of classes of users. Personal data about the user is required and is used to

classify users in terms of these demographic data. Classifications are used as general

characterisations for the users and their interests. Commonly, the personal data is

asked of the user in a registration form (see section 2.3.2). The resulting profiles

span the range of information contained in the demographic database.

For instance, the method implemented by Krulwich in the LifeStyle Finder

[Krulwich 97] uses a demographic system called PRIZM from Claritas Corpora-

tion which divides the population of the United States into 62 demographic clusters
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NAME METHOD

ACR News Content-Based Filtering
Amazon Hybrid
Amalthaea Content-Based Filtering
Anatagonomy Hybrid
Beehive Collaborative Filtering
Bellcore Video Rec Collaborative Filtering
Casmir Hybrid
CDNow Hybrid
Fab Hybrid
GroupLens Collaborative Filtering
ifWeb Content-Based Filtering
InfoFinder Content-Based Filtering
INFOrmer Content-Based Filtering
Krakatoa Chronicle Hybrid
LaboUr Hybrid
Let’s Browse Content-Based Filtering
Letizia Content-Based Filtering
LifeStyle Finder Demographic Filtering
MovieLens Hybrid
News Dude Content-Based Filtering
NewsWeeder Hybrid
NewT Content-Based Filtering
Personal WebWatcher Hybrid
PSUN Content-Based Filtering
Re:Agent Content-Based Filtering
Recommender Hybrid
Ringo / FireFly Collaborative Filtering
SIFT Netnews Content-Based Filtering
SiteIF Content-Based Filtering
Smart Radio Collaborative Filtering
Syskill & Webert Content-Based Filtering
Tapestry Collaborative Filtering
Webmate Content-Based Filtering
WebSail Content-Based Filtering
WebSell Hybrid
Websift Hybrid
WebWatcher Hybrid

Table 2.8: Information Filtering Method of the Systems.
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according to their purchasing history, lifestyle characteristics and survey responses.

A demographic filtering system has two principal shortcomings:

• Demographic filtering is based on a generalisation of the user’s interests, so

the system recommends the same items to people with similar demographic

profiles. As every user is different, these recommendations prove to be too

general.

• The demographic approaches do not provide any individual adaptation to

interest changes. The user’s interests tend to shift over time [Koychev 00], so

the user profile needs to adapt to change.

Nevertheless, demographic information can be a useful technique if combined

with other approaches.

Content-Based Filtering

Content-based filtering approaches recommend items for the user based on the de-

scriptions of previously evaluated items. In other words, they recommend items

because they are similar to items the user has liked in the past. User profiles are

created using features extracted from these items (see section 2.3.3) and each user

is assumed to operate independently.

The input data most often take the form of samples of the user’s interests or

preferences in a given area, and the profile is a generalisation of these data which

can be used generatively to carry out tasks on behalf of the user. These profiles are

then used to find or recognise other items likely to be of interest. Different methods

are used by the systems to match a user profile with new items and decide whether

they are interesting to the user (see section 2.4.2).

In Syskill&Webert [Pazzani 96], the user rates a number of Web documents from

a content domain on a binary ”hot” and ”cold” scale. Based on these ratings, it

computes the probabilities of words being in hot or cold documents. Lieberman

developed the system Letizia [Lieberman 95], which assists a user in Web browsing.

Letizia tries to anticipate interesting items on the Web which are related to the

user’s current navigation context. For a set of links, Letizia computes a preference

ranking based on a user profile. This profile is a list of weighted keywords, each one
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indicating the relevance of the words found on the pages. Personalised WebWatcher

[Mladenic 96] observes the individual user’s choices of links on Web pages in order

to recommend links on other Web pages he/she may visit later. The user does not

have to provide explicit ratings. Instead, visited links are taken as positive examples,

non-visited links as negative ones.

A purely content-based filtering system has several shortcomings:

• Content-based approaches are based on objective information about the items.

This information is automatically extracted from various sources (e.g., Web

pages) or manually introduced (e.g., product database). However, selecting

one item or another is based mostly on subjective attributes of the item (e.g.,

a well-written document or a product with a spicy taste). Therefore, these

attributes, which better influence the user’s choice, are not taken into account.

• Another problem, which has been studied extensively, is over-specialisation.

Content-based filtering techniques have no inherent method for generating

serendipitous finds. The system recommends more of what the user has already

seen and indicated a liking for. When the system can only recommend items

scoring highly against a user profile, the user is restricted to seeing items

similar to those already rated. In practice, additional hacks are often added to

introduce some element of serendipity, in effect injecting a note of randomness.

• With the pure content-based approach, a user’s own ratings are the only factor

influencing future performance. However, only a few ratings are provided due

to both the reluctance of users to perform actions not directed towards their

immediate goals when immediate benefits are not forthcoming [Carroll 87],

and the low interaction of the user with the system. Therefore, the recom-

mendation quality is not very precise.

Nevertheless, these shortcomings can be solved by combining the content-based

approach with the collaborative filtering approach (see hybrid filtering method in

section 2.4.1).
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Collaborative Filtering

The collaborative filtering technique matches people with similar interests and then

makes recommendations on this basis. Recommendations are commonly extracted

from the statistical analysis of patterns and analogies of data extracted explicitly

from evaluations of items (ratings) given by different users or implicitly by monitor-

ing the behaviour of the different users in the system. This approach is very different

from content-based filtering, the other most commonly used approach. Rather than

recommending items because they are similar to items a user has liked in the past,

items are recommended based on other user’s preferences. Rather than computing

the similarity of items, the similarity among users is computed. In collaborative

filtering a user’s profile consists simply of the data the user has specified. This data

is compared to those of other users to find overlaps in interests among users. These

are then used to recommend new items. Typically, for each user a set of ”nearest

neighbours” is defined using the correlation between past ratings. Scores for unseen

items are predicted using a combination of the scores from the nearest neighbour.

This approach requires less computation than the previous one because it doesn’t

have to reason with the user data and it clearly leverages the commonalties between

users.

Tapestry [Goldberg 92] is one of the earliest implementations of collaborative

filtering based recommender systems. This system relied on the explicit opinions of

people from a close-knit community, such as an office workgroup. Another popular

system is GroupLens [Konstan 97], which computes correlation between readers of

Usenet newsgroups by comparing their ratings of news articles. The ratings of an

individual user are used to find other users with similar ratings, and their ratings

are processed to predict the user’s interest in new articles.

Terveen and Hill [Terveen 01] claim three essentials are needed to support col-

laborative filtering: many people must participate (increasing the likelihood that

any one person will find other users with similar preferences), there must be an easy

way to represent a user’s interests in the system, and the algorithms must be able

to match people with similar interests. These three elements are not that easy to

develop and produce the main shortcoming of collaborative filtering systems:

• The early-rater problem: when a new item appears in the database there is

no way it can be recommended to a user until more information is obtained
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through another user either rating it or specifying which other items it is

similar to.

• The sparsity problem: the goal of collaborative filtering systems is to help

people focus on reading documents (or consuming items) of interest. As with

the previous shortcoming, if the number of users is small relative to the volume

of information in the system (because there is a very large or rapidly changing

database) there is a danger of the coverage of ratings becoming too sparse,

thinning the collection of recommendable items. Also, sparsity poses a real

computational challenge as it becomes harder to find neighbours and harder

to recommend items since too few people have given ratings.

• Another logic problem is that for a user whose tastes vary from the norm there

will not be any other users who share his or her particular likes and dislikes,

leading to poor recommendations.

• The difficulty of achieving a critical mass of participants makes collaborative

filtering experiments expensive. Collaborative filtering systems require data

from a large number of users before being effective as well as requiring a large

amount of data from each user while limiting their recommendations to the

exact items specified by those users.

• The critical dependency on the size and composition of the user population

also influences a user’s group of nearest neighbours. In a situation in which

feedback fails to cause this group of nearest neighbours to change, expressing

dislike for an item will not necessarily prevent the user from receiving similar

items in the future. Furthermore, the lack of access to the content of items

prevents similar users from being matched unless they have rated the exact

same items.

Herlocker et al. also introduced the problem of lack of transparency in the

collaborative filtering systems [Herlocker 00]. Collaborative systems today are black

boxes, computerised oracles which give advice but cannot be questioned. A user is

given no indicators to consult in order to decide when to trust a recommendation

and when to doubt one. These problems have prevented acceptance of collaborative

systems in all but low-risk content domains since they are untrustworthy for high-

risk content domains.
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Nevertheless, these shortcomings can be solved by combining the collaborative

filtering approach with the content-based filtering approach (see hybrid approach in

next section).

Hybrid Approach

Hybrid systems exploit features of content-based and collaborative filtering, since

they will almost certainly prove to be complementary. On the one hand, purely

collaborative systems solve the shortcomings of the purely content-based systems.

The first shortcoming of content-based systems is the lack of subjective data about

the items. In a collaborative system, the community of users can offer this kind of

data explicitly. Subjective data can be an opinion of one item offered by a trusted

friend. For instance, you can buy a spicy product because a user with similar

tastes has recommended it to you. Another shortcoming of content-based systems

is the lack of novelty. A perfect content-based technique would never find anything

novel, limiting the range of applications for which it would be useful. Collaborative

filtering techniques excel at identifying novelty using other users’ recommendations

and you can receive items dissimilar to those seen in the past. Finally, content-based

systems lack user ratings to represent the user’s interests. Collaborative systems

can complete the user information with another user’s experience as a basis. For

instance, if you are very similar to another user and you have not rated a product,

the system can use the other user’s ratings to complete your interests.

On the other hand, purely content-based systems solve the shortcomings of the

purely collaborative systems, the first of which is the early-rater problem. With

content-based methods, new items can be recommended on the basis of their content,

without the need for explicit ratings. Another advantage is that content-based

systems can recommend to a user with unusual tastes without the need for a similar

user, eliminating the sparsity problem of collaborative approaches. Finally, the

number of participants is not important in content-based systems because they do

not depend on population.

Thus, both content-based and collaborative filtering contribute to the other’s

effectiveness, avoiding the limitations mentioned for each system and allowing an

integrated system to achieve both reliability and serendipity. Several papers have at-

tested to the high performance of hybrid systems (e.g., [Pazzani 99] and [Good 99]).
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Fab [Balabanovic 97], LaboUr [Schwab 01] and WebSell [Cunningham 01] pro-

pose a very simple method for combining the two approaches: user profiles based

on content analysis are maintained and closely compared to determine users with

similar preferences for collaborative recommendation.

2.4.2 User Profile - Item Matching

Typically, the user profile is used to recommend new items considered relevant to

the user. Content-based filtering systems use direct comparison between the user

profile and new items. Thus, a user profile-item matching technique is needed.

Several techniques are studied here, whose aims are to automate the process of

classifying items as relevant/not relevant, by computing comparisons between the

representation of the user’s interests and the representation of the items.

In the systems we analysed, the user profile - item matching techniques used are:

a simple keyword matching, the cosine similarity, the nearest neighbour and typical

classifiers. Table 2.9 shows the user profile - item matching techniques used by the

different systems analysed.

Standard Keyword Matching

Standard keyword matching consists of a simple count of the terms which are present

simultaneously in the current description of the new item and in the user profile.

However, this model has some problems with the synonymy and plural meanings of

some words.

An example is SiteIF [Stefani 98] which implements a standard keyword match-

ing algorithm that consists of checking, for every word in the representation of the

document, whether the context in which it occurs has been already found in previ-

ously visited documents and already stored in the semantic network.

Cosine Similarity

Cosine similarity comes from information retrieval research and is used in systems

with simple user profile representation [Salton 88, Buckley 96, Yan 95, Chen 00].

An early similarity formula was used by Salton in the SMART system [Salton 83].
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NAME TECHNIQUE

ACR News Itemset and Cluster Similarity Matching
Amalthaea Cosine Similarity
Amazon Unknown
Anatagonomy Cosine Similarity
Casmir Pre-Search Request Based Collaboration, Pot-Search Informing
CDNow Unknown
Fab Cosine Similarity
ifWeb Standard Keyword Matching
InfoFinder Boolean Search Query String
INFOrmer Graph Comparison
Krakatoa Chronicle Cosine Similarity
LaboUr Bayessian Classifier, Nearest Neighbour
Let’s Browse Cosine Similarity
Letizia Cosine Similarity
MovieLens Cosine Similarity, Inducted Rules
News Dude Short Term: Nearest Neighbour(Cosine Similarity) Long Term: Naive Bayesian Clas-

sifier
NewsWeeder Cosine Similarity
NewT Cosine Similarity
Personal WebWatcher Naive Bayesian Classifier
PSUN Graph Comparison
Re:Agent Nearest Neighbour, Neural Network
Recommender Inducted Rules
SIFT Netnews Dot Product
SiteIF Standard Keyword Matching
Syskill & Webert Naive Bayesian Classifier, Nearest Neighbour, PEBLS, Cosine Similarity, Decision Tree
Webmate Cosine Similarity
WebSail TW2
WebSell CBR with Nearest Neighbour(Pearson r Correlation)
Websift Inducted Rules and Pattern Matching
WebWatcher Cosine Similarity

Table 2.9: User Profile-Item Matching Technique of the Systems based on Content-
Based Filtering.
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Salton treated the index (user profile) and the search query (new item) as n-

dimensional vectors (see section 2.3.1). The cosine formula calculates the cosine

of the angle between the two vectors. As the cosine approaches ”1”, the two vectors

become coincident. If the two vectors are totally unrelated, they will be orthogonal

and the value of the cosine is ”0”. Moreover, the square of the cosine of the angle

(easily computed as the normalised inner product of the two vectors) can be used

to rank the items.

Nearest Neighbour

Nearest neighbour algorithms are based on computing the distance from the inter-

ested item to either the rest of the items or the classes of items in a user profile. This

kind of algorithm [Duda 73] operates by storing all examples in the training set; that

is, all items in the user profile. To learn the interest of an item, the algorithm assigns

it to the class of the closest example. Depending on the item representation, the

function to compute the distance can be a simple keyword matching or a weighted

comparison [Schwab 01].

PEBLS [Cost 93] is a nearest neighbour algorithm which makes use of a modifi-

cation of the value difference metric (MVDM) for computing the distance between

two examples.

LaboUr [Kamba 95], News Dude [Billsus 99] and WebSell [Cunningham 01] are

different examples of the nearest neighbour algorithm.

A particular case of the application of the nearest neighbour technique is Case-

Based Reasoning (CBR). User profiles are represented by a collection of past ex-

periences and, to recommend a new item, a wide amalgam of similarity measures

to past items can be applied. The similarity encodes the knowledge that will as-

sess whether an item suits the user’s interests. Retrieval and adaptation techniques

from CBR have become very important techniques for developing recommendation

systems [Cunningham 01]. For instance, WEBSELL [Cunningham 01] applies CBR

with a similarity measure based on Pearson r correlation.
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Classification

Systems based on content-based filtering can handle the recommendation task as a

classification task. Based on a set of item features, the system tries to induce a model

for each user which allows him/her to classify unseen items into two or more classes.

The typical classification categories are interesting and not interesting [Billsus 99],

but the algorithm can classify items into any set of classes (e.g., relevant, undefined,

not relevant). This means that the user profile is represented as a classifier: a neural

network, decision tree, inducted rules or a Bayesian network (see section 2.3.1).

For instance, Re:Agent [Boone 98] implemented a neural network to divide sev-

eral folders of e-mail into two categories: ”work” and ”other”. Syskill&Webert

[Pazzani 96] used a decision tree to classify Web pages into interesting/not inter-

esting. Recommender [Basu 98] implemented a rule induction method to classify

movies.

2.4.3 User Profile Matching

Systems based on collaborative filtering match people with similar interests and then

make recommendations on this basis. Generally speaking the process of computing

a recommendation consists of three steps: find similar users, create a neighbourhood

and compute a prediction based on selected neighbours.

Find similar users

Standard similarity measures are used to compute the distance between the cur-

rent user’s representation and the representation of a set of users. The commonest

techniques used to compute the similarity between users are nearest neighbour, clus-

tering and classifiers. Table 2.10 shows the user profile matching techniques used

by the different systems analysed.

It is important to note that, in smaller applications, the set of users, among

whom similarity is being computed, may be all users; in larger systems, statistical

sampling methods are used to find a representative subset for which similarity is

computed. In general, systems cannot work with large sets of data containing all the

users and features, since the performance of the system will gradually break down.
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NAME TECHNIQUE

Amazon Unknown
Anatagonomy Cosine Similarity
Beehive Sharing news among users of the same cluster
Bellcore Video Recom Nearest Neighbour(Pearson r Correlation)
Casmir Pre-Search Request Based Collaboration, Pot-Search Informing
CDNow Unknown
Fab Cosine Similarity
GroupLens Nearest Neighbour(Pearson r Correlation)
Krakatoa Chronicle Cosine Similarity
LaboUr Clustering(Nearest Neighbour - Pearson r Correlation)
MovieLens Cosine Similarity
NewsWeeder Cosine Similarity
Personal WebWatcher Naive Bayesian Classifier
Recommender Inducted Rule Execution
Ringo / FireFly Nearest Neighbour(Mean Squared Differences, Pearson r Correlation, Constrained

Pearson r Correlation, Artist-Artist)
Smart Radio Nearest Neighbour(Pearson r Correlation)
Tapestry Tapestry Query Language
WebSell CBR with Nearest Neighbour(Pearson r Correlation)
Websift Rule Execution and Pattern Matching
WebWatcher Cosine Similarity

Table 2.10: Techniques Used by Systems based on Collaborative Filtering to Find
Similar Users.

Several studies have been performed in order to reduce the data dimensionality, as

for example [Hofmann 99] and [Hayes 01].

Nearest Neighbour. Nearest neighbour algorithms are applicable as a user profile-

item matching technique (see section 2.4.2) as well as a method to find similar users.

In the latter case, nearest neighbour algorithms are based on computing the distance

between consumers based on their preference history. Predictions of how much a

user will like an item are computed by taking the weighted average of the opin-

ions of a set of nearest neighbours for that product. Nearest neighbour algorithms

have the advantage of being able to incorporate the most up-to-date information

rapidly, but the search for neighbours is slow in large databases. Herlocker et al.

compare different nearest neighbour techniques and, as conclusions, show the results

of these techniques in a specific framework and the suitability of each in different

recommendation systems [Herlocker 99].

In general, two approaches are used in current systems to calculate the similarity

between users: cosine similarity and correlation. Cosine similarity is applied in a

way similar to the user profile-item matching technique (see section 2.4.2) and users

are compared to other users by the use of two vectors.

Regarding correlation, it is easy to define similarity measures between two user
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profiles working with databases of user ratings for items in which users indicate

their interest in an item on a numeric scale. The typical correlation measures

used in the systems analysed are the Pearson r correlation coefficient (proposed

by [Shardanand 95]) and the Spearman rank correlation coefficient (proposed by

[Herlocker 99]).

Another approach based on correlation between users is the entropy-based un-

certainty measure. The measure of association based on entropy uses conditional

probability techniques to measure the reduction in entropy of the active user’s rat-

ings which results from knowing another user’s ratings. Herlocker et al. have shown

that entropy has not shown itself as performing as well as Pearson r Correlation

[Herlocker 99]. Shardanand and Maes, in addition to Pearson r Correlation and

Constrained Pearson r Correlation, use the Mean Squared Differences algorithm,

which performs well compared to the Pearson r Correlation [Shardanand 95]. An-

other, more complicated approach, is explained in [Greening 97].

Clustering. Some years ago, the user modeling community proposed a stereotype

approach [Rich 79]. During the development stage of a system, user subgroups are

identified and typical characteristics of members of these subgroups determined.

During the run-time of the system, the user is assigned to one or more of these

predefined user groups and their characteristics attributed to the user. The need for

an empirically based pre-definition of these stereotypes is an evident disadvantage.

As an alternative, the Doppelganger system used clustering mechanisms to find

user groups dynamically, based on all available individual user models [Orwant 95].

Explicitly represented user models can be clustered and the descriptions of the

clusters can be used like predefined stereotypes. Once the clusters are created,

predictions for an individual can be made by averaging the opinions of the other

users in that cluster.

Clustering techniques usually produce less-personal recommendations than other

methods, and in some cases, the clusters have less accuracy than nearest neighbour

algorithms [Breese 98]. Once the clustering is complete, however, performance can

be very good, since the size of the group being analysed is much smaller.

Classification. Collaborative filtering method can be seen as a classification task

[Billsus 98] as well as part of content-based filtering (see section 2.4.2). In collabo-
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rative filtering, where we want to infer item interest to a user, based on similarity

with other users, typically, the initial data exists in the form of a sparse matrix (see

section 2.3.3), where rows correspond to users, columns correspond to items and

the matrix entries are ratings. Note that ”sparse” in this context means that most

elements of the matrix are empty, because every user typically rates only a very

small subset of all possible items. The prediction task can now be seen as filling in

the missing matrix values. Since we are interested in learning personalised models

for each user, we associate one classifier with every user. This model can be used to

predict the missing values for one row in our matrix.

Some examples of classifiers are implemented in systems as [Basu 98], [Good 99]

and [Billsus 98].

Create a neighbourhood

When systems look for similar users, they form a neighbourhood of the most similar

users to the target user. Generally, two techniques have been used to determine how

many neighbours to select: the correlation-thresholding technique and the best-n-

neighbours technique.

The correlation-thresholding technique is to set an absolute correlation threshold,

where all neighbours with an absolute correlation greater than given thresholds are

selected. Setting a high threshold limits the neighbourhood to containing very good

correlates, but for many users high correlates are not available, resulting in a small

neighbourhood which cannot provide prediction coverage for many items.

The best-n-neighbours technique is to pick the best-fixed number of users. This

technique performs reasonably well, as it does not limit prediction coverage. How-

ever, picking a larger number of users will result in too much noise for those who

have high correlates. Picking a smaller number can cause poor predictions for those

users who do not have any high correlates.

A different approach has been proposed in [Herlocker 99] for neighbourhood for-

mation based on the centroid. The first step is picking the closest user to the target

user and calculate the centroid. Then, other users are included in the neighbour-

hood based on the distance to the centroid, which is recalculated each time a new

user is added. Basically, this algorithm allows the nearest neighbours to affect the

formation of the neighbourhood and can be beneficial for very sparse data sets.
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Computing a prediction based on selected neighbours

The final step is to derive the recommendations from the neighbourhood of users.

Once the neighbourhood has been selected, the ratings from those neighbours are

combined to compute a prediction, after possibly scaling the ratings to a common

distribution. Different techniques are used in current systems: the most-frequent

item recommendation, the association rule-based recommendation and the weighted

average of ratings.

The most-frequent item recommendation looks into the neighbourhood and scans

through the user’s interests extracting the most frequently selected items. After all

the neighbours have been accounted for, the system sorts the items according to

frequency and simply returns the n most frequent items not yet selected by the

active user as recommendation.

The association rule-based recommendation infers rules previously generated

from the neighbourhood instead of using the entire population of users. Note that,

considering only a few neighbours may not generate strong enough association rules

in practice, which, in consequence, may result in insufficient items to recommend.

The number of items can be augmented by using a scheme in which the rest of the

items, if necessary, are computed by using the most frequent item algorithm.

Another way to combine all the neighbour’s ratings into a prediction is to com-

pute a weighted average of the ratings using the correlation as the weight. The basic

weighted average makes an assumption that all users give ratings of approximately

the same distribution.

The approach taken by GroupLens [Resnick 94] was to compute the average

deviation of a neighbour’s rating from that neighbour’s mean rating, where the

mean rating is taken over all items the neighbour has rated. The justification for

this approach is that users may rate distributions centred on different points.

2.5 Cross-dimensional analysis

We have analysed of 37 systems following a functional approach that allows us

to draw up a general taxonomy comprising 8 dimensions and based on two main

groups: user profile generation and maintenance, and user profile exploitation tech-
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niques. We then carried out a cross-dimensional analysis using the results of the

spatial approach (see table 2.1); that is, a cross-dimension analysis among all the

recommender systems of the same domain. From such an analysis, we have detected

common patterns in web recommender systems, e-commerce recommender systems,

item recommender systems and news recommender systems.

First, table 2.11 illustrates a cross-dimension analysis among web recommender

systems. Some common features come up when we look at the different systems.

First of all, we can conclude that most of the systems need feature selection and in-

formation indexing techniques to extract relevant information from text. Therefore,

web recommender systems represent profiles as feature vectors, learn profiles from

text through feature selection and TF-IDF techniques and match profiles with new

items through cosine similarity technique. Another feature to stress is the informa-

tion filtering method: web recommender systems analyse the content of web pages

before recommendation, therefore implementing a content-based filtering method.

Some of them, however, take advantage of collaborative techniques to improve their

results.

Second, table 2.12 shows a cross-dimension analysis among the three e-commerce

recommender systems analysed in this chapter. We can arrive at several relevant

conclusions from this table. First, these systems do not need feature selection and

information indexing techniques because the source of the information is a struc-

tured database of products. Thus, they represent the user profile as a history of

interesting/not interesting/purchased products. Such profiles grow enormously as

time passes, but e-commerce recommender systems are not interested in reducing

the size of the profile because they do not want to lose information in a contraction

process. So, a profile learning technique is not needed and they do not apply a

profile adaptation technique to forget old interests. The large size of the user profile

requires an advanced user profile - item matching technique, since the success of

the recommendations depends on it. We think that this is the heart of e-commerce

systems and therefore big e-commerce companies, such as Amazon and CDNow, do

not publish which method they are using. Finally, it is important to note that these

systems take advantage of the collaborative world, apart from the content analysis,

to improve the quality of their recommendations.

Third, table 2.13 shows the cross-dimension analysis among item (e.g., movies,

music,...) recommender systems. The first conclusion that we can extract from this
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Table 2.11: Cross-Dimension Analysis Among Web Recommender Systems.
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NAME REPR INIT LEARNING FEEDBACK ADAPT FILTE MATCH

Amazon History Empty Not Necessary Ratings, History Add New Hybrid Unknown
CDNow History Empty Not Necessary Ratings, History Add New Hybrid Unknown
WebSell History Empty Not Necessary Unknown Add New Hybrid CBR

Table 2.12: Cross-Dimension Analysis Among E-Commerce Recommender Systems.

NAME REPRES INITIAL LEARNING FEED ADAPT FILTE MATCH

Bellcore
Video

Ratings
Matrix

Training Set Not Necessary Ratings Add New Collab Nearest
Neighbour

LifeStyle
Finder

Demographic
Features

Stereotyping Not Necessary Ratings,
History

Add New Demog Demographic
Reasoning

MovieLens Feature
Vector,
Rules

Training Set TF-IDF, Rule
Learning

Ratings Add New Hybrid Cos Simi-
larity

Recommender Rules Training Set Rule Learning Ratings Add New Hybrid Rules
Ringo/FireFly Ratings

Matrix
Training Set Not Necessary Ratings Add New Hybrid Nearest

Neighbour
Smart Radio Ratings

Matrix
Training Set Not Necessary Ratings,

Implicit
Add New Collab Nearest

Neighbour

Table 2.13: Cross-Dimension Analysis Among Item Recommender Systems.

table is that all the systems take advantage of the collaborative world to improve

their recommendations. In addition, most of the systems only recommend items

based on other users opinions and these systems therefore represent the user profile

as a user-item ratings matrix. Using this matrix as a user profile means there is no

need for a profile-learning method and recommender systems match user profiles by

the nearest neighbour technique. However, it is very important that users provide

relevance feedback to fulfill the matrix of the profile. Looking at the table, we can

conclude that all the item recommender systems request ratings as relevance feed-

back. We also notice that all the item recommender systems add new information to

the profile and never forget past item interests. However, we believe that a technique

that will adapt the user profile as time passes, forgetting old interests, is needed in

this domain.

Finally, table 2.14 shows the cross-dimension analysis among news recommender

systems. Like web recommender systems, news recommender systems need feature

selection and information indexing techniques to extract relevant information from

text. Hence, they represent the user profile with a feature vector, or some more

complex structure, such as an associative network or an n-gram. Therefore, most of

them learn user profiles through feature selection and TF-IDF techniques.
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Table 2.14: Cross-Dimension Analysis Among News Recommender Systems.
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We did not detect any other pattern. We believe that this lack of common

features lies in the fact that most systems have been developed following ad hoc

approaches to satisfy specific application requirements. In this sense, we think

that the taxonomy provided in this chapter could be a useful guide for researchers

contributing to the future development of new recommender systems.

2.6 Chapter Conclusions

The unceasing growth of the Internet and its environment has brought the need

for new technology to help users to find what they are looking for. The idea of

recommender systems has been widely accepted among users who require assistance

in searching, sorting, classifying, filtering and sharing the vast amount of information

now available on the Web. This chapter has tried to gather together the state-of-

the-art elements in recommender systems on the Internet.

There are several papers that have dealt with state-of-the-art recommender sys-

tems (e.g., [Sarwar 00], [Pretschner 99], [Terveen 01], [Kobsa 01]). Schafer et al.,

in particular, present a taxonomy of recommender systems in the e-commerce field,

classifying the techniques used into three dimensions [Schafer 01]. In this chapter,

we present a more complete, up-to-date taxonomy of general recommender systems

on the Internet. We have analysed 37 systems, using a functional approach, and

have divided our taxonomy into two main groups: user profile generation and main-

tenance, and user profile exploitation techniques. From this we got a basic list of

8 dimensions and we have explained, within each of these dimensions, all the tech-

niques used in the systems we analysed. We followed that with a cross-dimensional

analysis which we hope gives designers a set of clues that will help them in their

work to develop new systems according to their requirements.

The remaining of our work will refer to the different dimensions and techniques

analysed in order to classify the system developed and our contributions on the

progress of the state of the work.



Chapter 3

CBR Approach to Recommender

Systems

Recommender systems help users to identify particular items that best match their

interests or preferences. In this chapter, we introduce our approach to recommen-

dation based on Case-Based Reasoning (CBR). CBR is a paradigm for learning and

reasoning through experience, based on human reasoning. We present a user model

based on cases in which we try to capture both explicit interests (the user is asked

for information) and implicit interests (captured from user interaction) of a user

on a given item. When we apply CBR to recommender systems, some problems

arise such as the adaptation of user profiles according to their interests and prefer-

ences over time or the utility problem. In order to cope with these problems, our

approach includes a “forgetting mechanism” based on the drift attribute. Other sys-

tems have implemented CBR approaches to recommendation but, unfortunately, only

a few evaluate and discuss their results scientifically. This chapter also proposes an

evaluation technique based on a combination of real user profiles and a user simula-

tor. The results of the simulations show that the forgetting mechanism produces an

increase in precision, a decrease in recall and an important reduction of the number

of cases in case bases.

51
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3.1 Introduction

In the real world, making a selection from the incredible number of possibilities the

market offers us is indeed a laborious work. Having someone as personal assistant

in charge of this task would make life easier. The main function of these assistants

is to advise you. In order to do this, first of all, they have to learn your tastes,

interests and preferences. Then, their task consists of looking for information and

analysing the market in order to find out things that may interest you. Since personal

assistants are always in contact with you, they also notice your changing interests

over time. If you cease to be interested in a certain thing, your personal assistant

takes note and finds out what you are presently interested in.

However, hiring a personal assistant is an expense that only a very few people

can afford. Recently, a great deal of effort has been put into developing electronic

personal assistants. In an attempt to model the behaviour of a real personal as-

sistant, AI research has focussed on recommender systems. Recommender systems

draw on previous results from machine learning and other AI technology advances.

Among the various machine-learning technologies, we concentrate on Case-Based

Reasoning (CBR) as a paradigm for learning and reasoning through experience, as

personal assistants do. The main idea of CBR is to solve new problems by adapting

the solutions given for old ones.

As noted in sections 2.3.1, 2.3.3 and 2.4.2, when we apply CBR to recommender

systems, the importance of the recommendation process lays with the case base

representation. We propose, as a representation, a list of experiences (cases) of the

user in certain items. Experiences are represented by means of objective attributes

describing the item (case definition) and subjective attributes describing implicit or

explicit interests of the user in this item (case solution). Assuming that the user’s

interest in a new item is similar to the user’s interest in similar past experiences,

when a new item comes up, the recommender system predicts the user’s interest in

the new item based on interest attributes of similar experiences.

However, when we apply CBR to recommender systems, there are two things

missing:

• On the one hand, humans have a vast store of experience on which to base

their decisions. When a new problem comes up, humans look for similar prob-



3.1 Introduction 53

lems and try to solve it based on the most similar experiences. However, the

time dimension is also present in the human reasoning process. It means that

humans have in mind the most recent cases and give them the greater impor-

tance when making a decision. When we are dealing with human interests

and preferences, the relevance of the most recent cases becomes even more

important. Human interests evolve as time passes and what humans like in

the present is more important than what humans liked in the past. In CBR,

all the cases in the case base have the same relevance when they are retrieved.

Therefore, if CBR is to be based on human reasoning, the relative relevance

of cases according to time should be taken into account.

• On the other hand, it should be noted that presumably, with a larger set of

cases, the system gives better results as long as the cases cover a wide range

of problems. However, several authors claim that when the case base reaches

a critical number of cases, the performance of the system does not improve

but often gets worse [Leake 98]. Thus, one of the main drawbacks of CBR is

the utility problem: the uncontrolled growth of case bases may degrade system

performance as a direct consequence of the increased cost of accessing memory.

Therefore, there is a need for a technique that controls the relevance of cases and

forgets irrelevant ones. In order to meet this need, we propose the drift attribute.

The main function of the drift attribute is to conserve relevant cases in the case base

while forgetting irrelevant ones, thus keeping the case base to a reasonable size and

solving the utility problem.

With respect to relevance, the drift attribute allows irrelevant cases that do not

provide good recommendations to be forgotten, adapting the case base to the chang-

ing interests of the user. A relevant case is a case that leads the recommendation

algorithm to successful recommendations. Thanks to the drift attribute, we imple-

ment a “forgetting algorithm” that distinguishes which interests are outdated and

which are up-to-date. In order to know which interests are the most up-to-date,

all new cases have to be retained. Then, by analysing the entire case base, the

forgetting algorithm decides which cases to retain and which to delete.

With respect to the utility problem, the drift attribute, apart from adapting

the case base over time, forgets (deletes) irrelevant cases from the case base, thus

maintaining a manageable size and solving the utility problem.
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Other systems have implemented forgetting mechanisms but, unfortunately, only

a few evaluate and discuss their results scientifically. This is in part due to the fact

that, to date, it is very difficult to determine how well personalisation systems work,

since this involves purely subjective assessments. This chapter also proposes an

evaluation technique based on a combination of real user profiles and a user simu-

lator that we call profile discovering. Thanks to the profile discovering technique,

we are able to perform various evaluation measures regarding the forgetting mech-

anism proposed being able to demonstrate its behaviour experimentally. Moreover,

the different parameters used in the system can be analysed on an experimental

basis of repeatable results. The results of the simulations show that the forgetting

mechanism produces an increase in precision, a decrease in recall and an impor-

tant reduction of the number of cases in the case base for all the recommendation

algorithms tested, while preserving fallout and accuracy.

The outline of this chapter is as follows: the next section contextualises our

proposal within the current state-of-the-art. Then, our approach to applying CBR

to the recommendation domain is introduced in section 3.3, and the particularities

of the “drift attribute” are detailed in section 3.4. How we evaluate this forgetting

mechanism and the experimental results obtained are explained in section 3.5 and

section 3.6 respectively. Finally, section 3.7 concludes this article.

3.2 Related Work

A few research groups are investigating the application of CBR concepts and tech-

niques to recommendation. Cunningham et al. apply retrieval and adaptation

techniques from CBR to product recommendation systems, particularly to their

WebSell system [Cunningham 01]. Websell represents the user profile by means of

two product selection lists that are used for collaborative recommendation service.

These selection lists contain both interesting and uninteresting products which, as

in our approach, are used as a case base to proactively recommend new products

to the user. Besides the lists, user profiles store more information (e.g., personal

information, domain preferences), which can be compared to our approach (explicit

interests). The main difference is that we explicitly keep a set of interest attributes

as a solution for each case instead of general domain preferences deduced from the

lists as WebSell does.
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All ”FindMe” systems [Burke 97] implement a similar CBR. They retrieve items

that meet certain constraints and rank the results according to programmed criteria.

For instance, the restaurant recommender Entree [Burke 00] makes its recommenda-

tions by finding restaurants in a new city similar to restaurants the user knows and

likes. The main difference with our system is that Entree does not use an interest

extensive representation of items in the case base as we do.

Adaptive Place Advisor [Goker 00] introduces an innovative approach to the

retrieval phase based on diversity, which controls the repetition of the same recom-

mendation to a user. Thus, they avoid recommending the same restaurant in a short

period of time to the user. In our view, this approach, although innovative, could

lead to somewhat suspicious behaviour of a system which, with the same inputs,

gives different outputs in successive moments, one of which must be untruthful or

untrustworthy.

The main novelty of our approach compared to all of these previous recommender

systems based on CBR is the inclusion of the drift attribute that adapts the interests

of the user over time and controls the case base size. Using the drift attribute is

a new idea we have introduced into CBR recommendation systems, thus, there

is no previous work directly related to this concept. However, this idea has been

implemented in many other CBR applications and, more generally, in instance-based

learning (IBL) applications, and in a few non-CBR recommender systems.

In the context of CBR/IBL systems, a great deal of work has gone into the prob-

lem of controlling the size of case bases [Wilson 00]. Several reduction techniques

have been proposed, most of which can be classified in two main groups:

• Decremental techniques. These consist of beginning with a full case base

containing all the cases and progressively removing the irrelevant ones in order

to obtain the optimum size (e.g., RNN [Gates 72], ENN [Wilson 72], k-NN

[Tomek 76], DROP1-DROP5 [Wilson 00] or DEL [Wilson 00]). These methods

are not useful for recommender systems since the initial case bases are empty

or contain only a few initial cases.

• Incremental techniques. These start with an empty case base and new cases

are stored selectively. The criteria of selection is mainly what distinguishes

one technique from another. For example, there are techniques based on the

Nearest Neighbour, such as CNN [Hart 99] or SNN [Ritter 75], which only
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retain cases when the existing ones in the case base lead to a classification error.

The main shortcoming of these approaches is that they do not take into account

the relevance of cases when deciding whether to retain. In contrast, some

reduction mechanisms, such as IB3 [Aha 91, Aha 92] or MCS [Brodley 93],

assign indexes to the cases or even to the individual attributes of cases, which

control the relevance of each case. Only cases with an adequate relevance are

retained. Every time a prediction is performed, these indexes are adjusted

according to the success of the result. These latest methods are perfectly

suitable for dynamic environments such as recommender systems. However,

they do not take into account change in user interests over time. One important

drawback of these methods is that if a new case does not contribute to the case

base, it is not retained. In recommender systems, retaining the latest cases is

vitally important, since they denote the current interests of the user.

A very different kind of reduction technique uses, for example, algorithms that

generalise cases into rules which are then used to decide which cases to retain

[Chang 74]. Other algorithms generate clusters or prototypes of cases representing

classes wherein cases can be classified [Domingos 95, Domingos 96]. Both methods

have drawbacks when dealing with dynamic systems and especially with recom-

mender systems whose case bases have to be adapted to the user preferences over

time. Zhang and Yang maintain feature weighting in a dynamic context through an

integration with a learning system inspired by a back-propagation neural network

[Zhang 98]. This method can suffer from the typical neural network problem of

divergence. In a domain constrained by adaptation to new interests, the divergence

problem could occur too frequently, leading the system to a fatal performance.

In the context of recommender systems, maintenance is rendered even more

difficult since the relevance of cases depends on the user preferences and the necessity

of handling change in human interests over time. Mitchell et al. proposed learning

the description of the user’s interests from only the latest observations, with a time

window [Mitchell 94]. Maloof and Michalski suggested giving examples an age and

deleting instances from the partial memory older than a certain age [Maloof 00].

Billsus and Pazzani implemented a dual user model consisting of both a short-

term and a long-term model of user’s interests [Billsus 99]. Finally, Webb and

Kuzmycz introduced forgetting old interests with the gradual forgetting function

[Webb 96]. The main idea behind this is that natural forgetting is a gradual process.
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Recommender systems such as SiteIF [Stefani 98] or LaboUr [Schwab 01] implement

this proposal.

All the forgetting mechanisms proposed in current state-of-the-art recommender

systems simply forget old cases without taking into account the relevance of such

cases. It means that they do not take into account which cases provide the most

successful recommendations. What we propose is a forgetting mechanism that,

of course, forgets outdated cases, but in addition, based on the CBR reduction

techniques, gives each case a weighting value depending on their relevance. The

most relevant cases are retained and used in order to make new recommendations

while the irrelevant ones are deleted.

3.3 Case-Based Recommendation Framework

The core of CBR is a case base which includes all the previous experiences that

can give us information we can use to deal with new problems. Then, through the

similarity concept, the most similar experiences are retrieved. However, similarity

is not a simple or uniform concept. Similarity is a subjective term that depends

on what one’s goals are. For instance, two products with the same price would get

maximum similarity if the user was interested in products with that same price, but

would get very different similarity for other concepts, such as quality or trademark.

In our approach, the case base represents the user profile and consists of a set of

previous experiences (cases); that is, items explicitly and/or implicitly assessed by

the user. Each case contains the item description (attributes describing a restau-

rant in the example) and the interest attributes describing the interests of the user

concerning the item. These latter attributes can be explicitly given by the user or

implicitly captured by the system.

Assuming that the user’s interest in a new item is similar to the user’s interest

in similar items, in order to evaluate whether a new item could interest the user,

the recommender system searches the case base for similar items. If the interest the

user showed in them is high enough, the new item is recommended to the user. This

kind of recommendation based on similar items is our approach to content-based

filtering (see section 2.4.1).

With regard to the CBR cycle, we reassess the different phases as follows:



58 Chapter 3. CBR Approach to Recommender Systems

1. In the retrieval phase, i.e. a new item, the system searches for similar items

in the case base in order to find out whether the user might be interested in

them. Local similarity measures are based on item attributes.

2. In the reuse phase, i.e. the retrieved set of similar items, the system calculates

a confidence value of interest to recommend the new item to the user based

on explicit and implicit interests and the validity of the case according to the

user’s current interests.

3. In the revision phase, i.e. the relevance feedback of the user, the system eval-

uates the user’s interest in the new item. The idea is to track user interaction

with the system to get to know relevant information about the user’s interest

in the recommended item, as well as explicit and implicit information, in order

to retain the new case.

4. In the retain phase, the new item is inserted in the case base with the interest

attributes that were added in the revision phase. In order to control the case

base size, it is also important to know if the user ever gives new feedback

about items in the case base. In such a case, it is necessary to forget these

interests with time. We propose the use of a new attribute that we call the

drift attribute, which will be aware of such changes in user preferences and

contribute to case maintenance.

In the following sections the structure of the case base and the different CBR

phases of the new approach are detailed.

3.3.1 The Case Base

A case-based reasoner is heavily dependent on the structure / representation and

content of its collection of cases. In our approach, a case represents the user’s

experience concerning a certain item. Cases are split into two parts: the first, a set

of objective attributes describing the item (the definition of the problem in CBR

terminology) and the second, a set of interest attributes describing the user’s interest

in the given item (the solution to the problem in CBR terminology). Thus, given a

set of items
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Restaurant
Attributes

Interest
Attributes

Problem
Definition

CBR terms New Approach terms

Problem
Solution

Restaurant Code

Name

Address

Cuisine

Approximate Price

Capacity

Air-Conditioning

General Evaluation

Quality-Price Relation

Quantity of Meal

Rate of Web Page Visits

Rate of Retrieved Queries

Explicit
Attributes

Implicit
Attributes

...

Rate of time Spent on the web page

... 

etc

Drift Attribute

Figure 3.1: An Example of Case Representation in the Restaurants Domain.

P = {p1, p2, . . . , ps},

each item is characterised by a set of objective attributes,

pi = {ati1 , ati2 , . . . , atin}

being At, the set of all possible attributes. In general, objective attributes do not

tend to be very complex, consisting largely of descriptive adjectives, nouns or values.

For example, when the CBR goal is to recommend restaurants (see Figure 3.1),

the system can deal with features of capacity (e.g., ”100 places” or ”150 places”),

qualities of the cuisine (e.g., ”traditional”, ”creative” or ”bland”) or approximate

price (e.g., ”from $10 to $15” or ”from $20 to $30”).

Each user has a different degree of interest in any given items. As seen in sec-

tion 2.3.4, such interest can either be expressed by the user (explicit attributes)

or captured automatically by the system as a result of user interactivity (implicit

attributes). Explicit interest provides more confidence in the recommendation pro-

cess. However, this is not always available. Implicit interest is useful when deciding

upon interesting items for the user. In our model we distinguish both kinds of user
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interactions: explicit from implicit and, therefore, a hybrid approach. We name the

set of explicit interest as

Inte = {inte1, inte2, . . . , intem}

and the set of implicit interest as

Inti = {inti1, inti2, . . . , intil}

Both intej and intij are defined in [0,1].

Each user has experiences in several items. An experience keeps information

about the objective attributes of a given item as well as subjective information

regarding the interest of the user in that item. Thus,

Ei =< pi, Intei , Intii, δi >,

where pi ⊂ P is the set of objective attributes of the item, Intei ⊂ Inte is the set

of explicit interest, Intii ⊂ Inti is the set of implicit interest, and δi is a temporal

parameter in [0-1] that indicates the relevance of the experience. This parameter

is called the drift attribute (see section 3.4). Initially δ is set to 1, and is updated

according to the evolution of the user profile.

Finally, if a case represents the experience of the user inn a given item, the

complete case base constitutes the user profile representation which models the

user. So, the recommender system keeps a case base for each user representing their

profile.

In order to start recommending to the user, the system needs to fill in the user

profile; that is, the set of initial experiences in the case base. The initial experiences

are generated through the use of the training set technique (see section 2.3.2). That

is, users are prompted to a set of items and they have to fill in information regarding

their interest in these items. The item set consists of a collection of selected items.

For each item in the set, the system asks the user about the explicit interest and also
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Figure 3.2: Retrieve Phase.

gathers information related to implicit interests. The selection of a suitable initial

item set is indeed very difficult. Users are often asked about items that they do not

know and they have to invent an evaluation taking into account their attributes.

Despite such shortcomings, we have chosen this technique because of its simplicity.

Other advantages and disadvantages of this kind of initial experiences generation

technique have been broadly discussed in section 2.3.2.

3.3.2 The Retrieval Phase

In CBR terminology, the retrieval task starts with a new problem description and

ends when the best matching set of previous cases has been found. When we apply

CBR to recommendation, this phase has the same purpose, but instead of retrieving

similar problems, the system retrieves similar items. Thus, the retrieval task ends

when the set of best matching previous items has been found (see Figure 3.2).

The most important step in the retrieval phase of CBR is to define the degree

of similarity between cases. The success of CBR systems depends primarily on

the capacity of the system to exhibit how similar two cases are. With an efficient

similarity measure, given a case we can obtain an ordered list of similar cases. Taking

advantage of this concept, when a user likes an item, the recommender system can

recommend to him/her a list of similar items that the user should like.

The degree of similarity between two items is computed by a global similarity

function. The global similarity is calculated from a weighted ponderation of the
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various attribute similarities. For the numeric attributes, linear and exponential

functions have been designed following [Falkman 00, Wilson 97]. For labeled at-

tributes, we have generated similarity tables, where the similarities among the dif-

ferent attribute labels are predetermined. For more details on similarity functions

see [Vilà 02].

Once the similarities between the new case and the cases in the case base are

calculated, a set of best matches is chosen. In our implementation, we select the x

best cases provided which exceed a minimum selection threshold.

3.3.3 The Reuse Phase

The reuse phase consists of adapting the old solutions of the retrieved cases to the

new problem based on the differences among them. Once the system has retrieved a

set of previous items (the most similar ones), the system knows the user’s interest in

similar items through the interest attributes (solution in CBR terminology). Assum-

ing that the user’s interest in a new item is similar to the user’s interest in similar

items, in the reuse phase, the recommender system calculates an interest confidence

value for the new item. This value is used to decide whether to recommend the new

item to the user.

The interest confidence value is a composite of the item interest values of the

similar items selected in the retrieve phase (see Figure 3.3). We calculate this in a

two-step process.

First, the item interest value V of each case is computed based on its interest

attributes as follows:

Vp = δp ∗ g(f e(Intej), f
i(Intij)) (3.1)

where f e is the function that combines the explicit interest, f i is the function that

combines the implicit attributes, g is the function that combines the results of f e

and f i, and finally δp is the drift attribute.

On the one hand, the idea of the function f e is to aggregate the explicit attributes

in order to obtain a general explicit evaluation of the user concerning the given item.

We have implemented this function as a weighted arithmetic average (WA) where
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Figure 3.3: Reuse Phase.

each attribute has a weight assigned. The function is defined as follows:

f e =

|pe
i |∑

j=1

wj ∗ Intej (3.2)

where |pe
i | is the number of explicit attributes of the item pi and wj are the weights

assigned to the different explicit attributes. We think these weights are very sub-

jective and, therefore, the user has to set them up. For this reason, at a preliminary

phase, recommender systems ask the users for the relevance they think the different

explicit attributes have. In the previous example, the user would have to rank what

they think is more important in a restaurant (quality/price relation, quantity of

meal, ...) with the magnitude of such importance.

On the other hand, f i aggregates the implicit attributes. We think this function

is highly dependent on the user’s behaviour when using a recommender system.

For this reason, we believe an expert should decide which information to capture

implicitly and how to aggregate it.

Finally, function g aggregates implicit and explicit general evaluations. We have

implemented this function as WA that gives more importance to explicit attributes

(objective ones) than to implicit ones (subjective):

g(e, i) = ρe ∗ e + ρi ∗ i (3.3)
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Second, the interest confidence value I of a new item r is a weighted ponderation

function of the item interest value of each similar item:

Ir =

∑x
i=1(Sim(r, i) ∗ Vi)∑x

i=1 Sim(r, i)
(3.4)

where x is the number of similar items, Sim(r, i) is the similarity between item

r and item i (computed in the retrieval phase) and Vi is the item interest value of

item i. In this way, the most similar items are the most relevant in the final result.

Finally, if the interest confidence value of the new item is greater than a certain

value (a confidence threshold τ+), the item is recommended to the user. Otherwise,

the system ignores it, the CBR cycle finalises and there is no recommendation to

the user. The item is not interesting enough to the user so the system should not

bother him/her with it.

3.3.4 The Revision Phase

Typically, the revision phase consists of evaluating the case solution generated by

the reuse phase and learning about it. If the result is successful, then the system

learns from the success (case retainment), otherwise it is necessary to repair the

case solution using domain-specific knowledge. With regard to our approach, in the

revision phase, as in the case of relevance feedback from the user, the system is able

to evaluate the user’s interest in the recommended item. The idea is to track user

interaction by filling in the interest attributes of the item (case).

As shown in Figure 3.1, the interest attributes are distributed in two main groups:

implicit and explicit attributes. Obviously, implicit attributes come from implicit

feedback from the user, and explicit attributes come from explicit feedback. The

idea is to find out the user’s interest based on a hybrid relevance feedback system

(see section 2.3.4). The user is explicitly asked about the new item but, taking

into account that users are very reluctant to give explicit feedback [Carroll 87], the

system tracks the user interaction with the system and tries to include additional

information.

In CBR systems the solution is successful or wrong. When the solution is suc-

cessful, the system retains the case, inserting it into the case base. But when the
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solution fails, the system is also interested in retaining the reason for the failure thus,

there is an investigation task to find out additional information about the case. In

the recommendation field, the user’s interest can also be positive or negative but,

contrarily to the previous situation, the system is interested in retaining both pos-

itive and negative feedback. It is equally important to keep positive and negative

information about the interests of the user, since it is useful to know what the user

really “loves” and “hates”. Thus, in this approach, in contrast to what usually hap-

pens in CBR systems, there is no investigation task to find out why the user is not

interested in the new item, the relevance feedback information is captured and kept

in the Inte and Inti sets, included in each experience of the user profile. Therefore,

in avoiding the investigation task, typically accomplished by a human expert, we

get a completely automatic system.

3.3.5 The Retain Phase

In our approach, the new item is inserted into the case base with the interest at-

tributes that were added in the revision phase. However, if the user did not give

either explicit or implicit feedback, the user has not any experience on it and, there-

fore, the case is not introduced into the case base.

Moreover, when the user gives explicit or implicit feedback about an existing

item in the case base, the case is updated. For example, if the user consults the

web page of an item, the interest attribute representing the number of visits to the

web page and the attribute representing the time spent looking at the web page are

increased.

In order to control the case base size, it is also important to know whether users

ever give new feedback about items in the case base. If not, it is necessary to forget

their interests with time. This problem is solved with the drift attribute.

3.4 The Drift Attribute

The drift attribute is one of the interest attributes (see Figure 3.1) and its function

is to forget the cases in the case base according to their age and their relevance.

There is one drift attribute per case and a forgetting algorithm updates it according



66 Chapter 3. CBR Approach to Recommender Systems

to the user-system interaction.

The forgetting algorithm, based on the drift attribute, works as follows:

• The drift attribute value is confined to the [0-1] interval.

• New items are inserted in the case base with the maximum drift value when

the user shows some interest in them.

• The value of the drift attribute is decreased over time, emulating the gradual

process of people losing interest in something. The decreasing function is a

simple one where the drift attribute δq of a case q is decreased by multiplying

the last drift value by a factor β of between 0 and 1.

δq = δq ∗ β (3.5)

The key issue then, is when to apply the decreasing function. We have to

take into account that some users interact with the system more frequently

than others. Therefore, the decreasing function should depend on the user

interaction, rather than on a certain number of days or weeks. Our system

decreases drift attributes each time a new item is incorporated into the case

base.

• The value of the drift attribute is increased (rewarded) if the retrieved case

results in a successful recommendation. The rewarding function is as simple as

the decreasing one. The drift attribute δq of a case q is increased by multiplying

the last drift value by a factor λ greater than 1 and ensuring that the final

value is at most 1.

δq = δq ∗ λ (3.6)

• Finally, the value of the drift attribute is decreased (penalised) if the retrieved

case results in a failed recommendation. The penalising function decreases the

attribute δq of a case q by multiplying the last drift value by a factor σ smaller

than 1 and ensuring that the final value is at least 0.
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δq = δq ∗ σ (3.7)

When a case reaches a drift value under a certain threshold (ξ), it is discarded.

If the drift value is low enough, it does not make sense to retain the item in the

case base. The confidence value for the interest that this item gives is insignificant

and it is a useless case that only contributes to increasing the size of the case base

and decreasing the performance of the system. Therefore, removing cases with a

low drift value is the best solution for automatically controlling the size of the case

base.

The forgetting mechanism based on the drift attribute needs a setup phase where

the parameters are optimised to get the best performance out of the system. Dif-

ferent results can be obtained by changing the rewarding factor (λ), the penalising

factor (σ), the decreasing factor (β) and the threshold (ξ). Finding out the optimal

values is an empirical task based on different measures to evaluate the overall system

performance. From our experiments, we have chosen λ = 1.05, σ = 0.95, β = 0.98

and ξ = 0.7 as the parameter values that give the best system performance, as

shown in the following sections.

The main difference between other gradual forgetting approaches and ours, is the

fact that we emphasise relevant information instead of simply an age. Moreover, for

example in [Webb 96, Schwab 01], they have an age for all the items of a given topic

and when some event affects one of the items in the topic this age is modified in

such a way as to affect all the items in that topic. We think that this reduces system

performance, especially when the same topic includes a large set of items. Because,

if in the same interest topic there is one single item that the user is interested in,

the topic never drifts, even if the user is not interested in all the other items in the

set. Alternatively, in our approach we assign a weight to each item; thus, each one

is treated individually, hence solving this problem.
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3.5 Evaluation Methods

In this section we describe the measures used to evaluate our proposal and how the

results have been acquired.

3.5.1 Evaluation Metrics

A set of metrics are proposed in order to evaluate recommender systems: precision,

recall, f-measure, fallout, ncases, diversity and accuracy.

Precision

The Precision measure [Salton 83] is the fraction of the selected items which are

relevant to the user’s information need. It is also a measure of selection effectiveness

and represents the probability that a selected item is relevant. Precision is calculated

with the following formula:

P =
s

n
(3.8)

where s is the number of successful recommendations and n is the number of

recommendations. The result is a real value ranging from 0 to 1. Precision can also

be seen as the probability that a recommendation be successful.

Recall

The Recall measure [Salton 83] is the fraction of the actual set of relevant items

which have been correctly classified as relevant. It is a measure of selection effec-

tiveness and represents the probability that a relevant document will be selected. It

is interesting to evaluate the number of recommendations that the system makes,

since, of course, a recommendation algorithm that recommends all the items will

obtain all the possible successes. Recall is computed as follows:

R =
n

t
(3.9)

where n is the number of recommendations and t is the total number of possible
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recommendations. The result of this formula is a real number ranging from 0 to 1.

Recall can also be seen as the probability that an item be recommended.

F-Measure

It is, on occasion, important to evaluate precision and recall in conjunction, because

it is easy to optimise either one separately. The F-Measure [Lewis 94] consists

of a weighted combination of precision and recall which produces scores ranging

from 0 to 1. When recall increases, precision decreases. Van Rijsbergen proposed

a balanced weighting measure between precision and recall called the f-measure

[van Rijsbergen 79]. However, we have used a variation of this measure, where the

weights are controlled by a parameter b [Lewis 94]. This new approach is calculated

as follows:

FM =
(b2 + 1) ∗ P ∗ R

b2 ∗ P + R
(3.10)

where P is precision, R is recall and b is the weighting factor. For example,

b = 0.0 means that FM = precision; b = unlimit means that FM = recall; b = 1.0

means that recall and precision are equally weighted; b = 0.5 means that recall is

half as important as precision; and b = 2 means that recall is twice as important as

precision. We can also see this measure as a modification of precision by recall or

viceversa.

Fallout

The Fallout measure [Salton 83] is the fraction of the non-relevant items selected.

It is a measure of rejection effectiveness. We use Fallout to evaluate the percentage

of failed recommendations. It is computed like precision, but instead of measuring

the recommendations successfully evaluated by the user, we take into account the

number of recommendations that the user has evaluated as bad. Fallout is calculated

with the following formula:

F =
u

n
(3.11)

where u is the number of failed recommendations and n is the number of recom-
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mendations. Fallout can also be seen as the probability that a recommendation be

a failure. The result is a real value confined to the [0-1] interval, although fallout

charts represent F normalised between 0 and 100. A fallout value close to 0 means

that the system never recommends bad choices; a fallout value of 1 means that the

system is always recommending uninteresting items to the user.

NCases

The study of the average number of items (cases) contained in the user profile (case

base) over time is very important, since it is desirable to reduce the size of the user

profiles (solving the utility problem) while preserving or even increasing precision

(while adapting the profile to the user). Certainly, the forgetting mechanism will

reduce the time and the capacity needed by the algorithms to perform a recommen-

dation. Thus, NCases is calculated as follows:

NC =

∑k
i=0 |NCi|

k
(3.12)

where NCi is the number of items at the moment i, and k is the number of

moments. That is, the simulation time has been split into k units and, in each

unit, the number of cases in the case base NCi has been measured. At the end of

the simulation, the average is computed. NCases is not normalised, therefore, this

number is relative to the total number of possible recommendations. What we want

to study is the difference between the different NCases from the point of view of

different parameters that the forgetting mechanism depends on.

Diversity

How the reduction of the number of items contained in the user profile affects the

diversity within the resulting profiles is an interesting phenomenon for study. To

evaluate the diversity, we propose using a well-known clustering method that calcu-

lates the number of groups of similar items contained in the profile. The clustering

algorithm that we have implemented belongs to a particular subset of clustering

methods knows as SAHN [Sneath 73]: Sequential, Agglomerative, Hierarchical and

Non-overlapping methods. The proposed algorithm can be summarised as follows:
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• STEP 0: Construction of an initial similarity matrix that contains the pairwise

measures of proximity between the different items of the user profile.

• STEP 1: Selection of the two items that are most similar. These alternatives

will form a new cluster.

• STEP 2: Modification of the similarity matrix creating a cluster with the

selected items and recalculating the similarity between the new cluster and

the remaining objects. Similarity is calculated with an Arithmetic Average

criterion where the similarity between a given item and the cluster is the

average similarity between the items composing the cluster and the given item.

• STEP 3: Repeat steps 1-2 until the two most similar items have a similarity

value over a threshold α. This threshold has to be defined previously, taking

into account that it determines the abstraction level achieved. Increasing the

threshold we obtain a smaller number of wider (more general) clusters.

The number of clusters obtained after the execution of the proposed algorithm

is the diversity measure that allows system simulations performed with different

parameters to be compared.

Thus, a key task is to select a suitable α. Depending on this parameter, the

number of clusters constituting the user profile will change. A low α means that

only the most similar cases join up and, therefore, the algorithm gives a high number

of clusters. Contrarily, a high α results in a low number of clusters since only the

most different ones do not join up.

Accuracy

Accuracy is the most frequently used metric for evaluating systems. Typically, it

is defined as the percentage of correctly classified items. For instance, the num-

ber of interesting news articles divided into the total number of news articles in a

newspaper. However, Sarwar et al. gather and classify different ways to measure it

[Sarwar 98] from prior research:

• Statistical Recommendation Accuracy: measures the closeness between the

numerical recommendations provided by the system and the numerical ratings

entered by the user for the same items. Three versions of this measure are used:
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– Correlation is a statistical measure of agreement between two vectors of

data, usually between ratings and predictions. The Pearson Correlation

r Coefficient is the most commonly used. A higher correlation value

indicates more accurate recommendations.

– The mean absolute error (MAE) is a measure of the deviation of recom-

mendations from their true user-specified values. The lower the MAE,

the more accurately the recommendation engine predicts user ratings.

– The root mean squared error (RMSE) is a measure of error biased to

weigh large errors disproportionately heavier than small errors. A low

RMSE indicates better accuracy.

• Decision-Support Accuracy: measures how effectively recommendations help

a user select high-quality items. Three versions of this measure are used:

– The reversal rate is a measure of how often the system makes big mistakes

which might undermine the confidence a user has in the recommendation

systems. Low reversals refer to cases in which the user strongly dislikes

an item the system has strongly recommended. High reversals are cases

in which the user strongly likes an item, but the system gives a poor

recommendation for it.

– The ROC sensitivity is a measure of the diagnostic power of a filtering

system. Operationally, it is the area under the receiver operating charac-

teristic (ROC) curve; a curve which plots the sensitivity and specificity

of the test. Sensitivity refers to the probability of a randomly selected

good item being accepted by the filter. Specificity is the probability of a

randomly selected bad item being rejected by the filter. Therefore, the

ROC sensitivity measure is an indication of how effectively the system

can steer people towards high-rated items and away from low-rated ones.

– The PRC sensitivity is a measure of the degree to which the system

presents relevant information. Operationally, it is the area under the

precision-recall curve (PRC). Precision measures the percentage of se-

lected documents which are relevant; recall measures the percentage of

relevant documents selected. Hence, precision indicates how selective the

system is and recall indicates how thorough it is in finding valuable in-

formation. A higher value is more accurate.
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In particular, we want to analyse a statistical recommendation accuracy, since

the result that we want to obtain is the correlation between the predictions of the

recommender algorithm and the real evaluations of the user. The formula used to

calculate the accuracy is the following:

A =

∑m
i=0 |Predi − Reali|

m
(3.13)

where Predi is the prediction of the item i, Reali is the real evaluation of the

item i and m is the number of test examples. The result is a value ranging from 0

to 1, although the charts are illustrated with a scale from 0 to 100.

3.5.2 Results Acquisition

Acquiring results that can be used to compute evaluation measures is a critical task

in the evaluation of recommender systems. Below, we describe some techniques that

have been used in the current state-of-the-art. Then, we present our proposal for

evaluating recommender systems, namely what we have called “profile discovering”

and an extension of this proposal for performing cross-validations.

Related Work

In the current state-of-the-art, recommender systems use one of the following ap-

proaches in order to acquire the results for evaluating the performance of their

systems: a real environment, an evaluation environment, the logs of the system or

a user simulator.

First, results obtained in a real environment with real users is the best way to

evaluate a recommender system. Unfortunately, only a few commercial systems like

Amazon.com [Amazon 03] or CDNow.com [CDNow 03] can show real results based

on their economic effect.

Second, evaluation environments are an alternative for some systems to be eval-

uated in the laboratory by letting a set of users interact with the system over a

period of time. Usually, the results are not reliable enough because the users know

the system or the purpose of the evaluation. An original approach was accomplished

by NewT [Sheth 94]; in addition to the numerical data collected in the evaluation
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sessions, a questionnaire was also distributed to the users to get feedback on the

subjective aspects of the system. The main problem of the real and the evaluation

environments is that repetition of the experiments, in order to evaluate different

algorithms and parameters, is impossible.

Third, the analysis or validation of the logs obtained in a real or evaluation

environment with real users is a common technique used to evaluate recommender

systems. A frequently used technique is the “10-fold cross-validation technique”

[Mladenic 96]. It consists of predicting the relevance (e.g., ratings) of examples

recorded in the logs and, then, comparing them with the real evaluations. These ex-

periments are perfectly repeatable, provided that the tested parameters do not affect

the evolution of the user profile and the recommendation process. For example, the

log being validated would be very different if another recommendation algorithm or

another forgetting mechanism had been tested. Therefore, since the majority of the

parameters condition the recommendation process over time, generally, experiments

cannot be repeated.

Finally, a few systems are evaluated through simulated users. Important issues

such as learning rates and variability in learning behaviour across heterogeneous

populations can be investigated using large collections of simulated users whose de-

sign was tailored to explore those issues. This enables large-scale experiments to be

carried out quickly and also guarantees that experiments are repeatable and per-

fectly controlled. It also allows researchers to focus on and study the behaviour

of each sub-component of the system, which would otherwise be impossible in an

unconstrained environment. For instance, Holte and Yan conducted experiments

using an automated user called Rover rather than human users [Holte 96]. NewT

[Sheth 93] and Casmir [Berney 99] also used a user simulator to evaluate the perfor-

mance of systems. The main shortcoming of this technique is that, at present, it is

impossible to simulate the real behaviour of a user. Users are far too complicated to

predict, at every moment, their feelings, their emotions, their moods, their anxieties

and, therefore, their actions.

“Profile Discovering”

In order to solve all the shortcomings of the current techniques while benefitting

from their advantages, we propose a method of results acquisition called “the profile
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Figure 3.4: “Profile Discovering” Evaluation Procedure.

discovering procedure” (see Figure 3.4). This technique can be seen as an hybrid

approach between real or laboratory evaluation, log analysis and user simulation.

First of all, it is necessary to obtain as many real user profiles as possible. These

profiles must contain subjective assessments of the items (preferably explicit evalu-

ations of the user, although the implicit information obtained from the user inter-

action with the system is also useful). It is desirable to obtain these user profiles

through a real or laboratory evaluation although it implies a relatively long period

of time. However, it is also possible and faster to get the user profiles through a

questionnaire containing all the items which the users have to evaluate.

Once the real user profiles are available, the simulation process; that is the profile

discovering procedure starts. It consists on the following steps:

1. Generation of an initial user profile (UP ) from the real user profile (RUP ,

UP ⊂ RUP ).

2. Emulation of the real recommendation process, where a new item (r) is rec-

ommended from the UP .

3. Validation of the recommendation:
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• If r ∈ RUP , then r is considered as a discovered item and is added to

UP (UP = UP ∪ {r}).
• Otherwise, r is rejected

4. Repeat 2 and 3 until the end of the simulation.

As in the real evaluation, the simulation process starts with the generation of

an initial user profile. It is desirable to initially know as much as possible from

the user in order to provide satisfactory recommendations from the very begin-

ning. Analysing the different initial profile generation techniques (described in sec-

tion 2.3.2), namely: manual generation, empty approach, stereotyping and training

set, we found different advantages and drawbacks. In manual generation, the user

tailors his or her own profile, thus it is a really transparent method. But it bothers

the user to have to do this and it is difficult for users to define their preferences

explicitly. The empty approach needs potentially a long time to get to know the

user’s preferences; that is, the initial recommendations are low quality. But in this

case, the user is not bothered. The usual approach is to interview the user with

a quick manual questionnaire that won’t annoy him or her too much, but people

are reluctant to give personal data. Typically, the user does not fill in the ques-

tionnaire or provides false data. Stereotyping cannot be applied because our user

profiles do not contain personal data and we cannot stereotype users. The training

set approach depends totally on the profile learning technique (case retain in CBR ),

since the user just gives a list of items that he likes and/or dislikes, and the learning

technique generates the profile. There is nothing to annoy the users and the users

easily define their preferences. Therefore, in our approach, the training set seems to

be the best technique for generating the initial profile (case base). Thus, the first

step of the simulation consists in the extraction of an initial item set from the real

user profile in order to generate the initial simulated user profile.

Then, the simulator emulates the recommendation of new items over time. In

particular, it executes a process cycle by cycle, where a cycle is a day in the real

world. During the simulated day, the recommendation algorithm recommends a

group of items based on the information contained in the simulated user profile.

All the functions, constraints and constants involved in the recommendation pro-

cess are parameters of the simulator (for example, the time of the simulation, the

recommendation algorithm or the learning parameters).
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After each recommendation the simulator checks its success. In order to do that,

the user’s assessments are needed. Instead of inventing them like the latest simula-

tors do, the profile discovering simulator looks up the real user profile containing the

real evaluations of the user. Thus, if the item is contained in the real user profile,

the simulator can check the user’s opinion and classify the recommendation as a

success or a failure accordingly. This discovered item is added to the user profile

and a new item is recommended.

Once the simulation has been finished, the initial simulated profile will have

evolved in a more complete profile that is called the discovered user profile. Note

that the discovered profile can or cannot be equal to the real user profile, depending

on how many items have been discovered. Moreover, the method provides results on

how many recommendations have been made or how many successful/unsucessful

items have been recommended. Thus, based on the discovered user profile and the

final simulation results, different metrics can be evaluated.

The profile discovering procedure is a suitable instrument for evaluating recom-

mender systems for several reasons:

• The recommendation process does not simulate the user evaluations, they are

extracted from real user profiles.

• The simulation process considers the development of the user profile over time.

• Large-scale experiments are carried out quickly.

• Experiments are repeatable and perfectly controlled.

Developers can use the profile discovering evaluation procedure in order to test

and compare their recommendation algorithms in order to find out which ones per-

form best. It is also a suitable instrument for tuning the parameters of a recommen-

dation algorithm in order to obtain the best performance.

Cross-Validation through Profile Discovering

An extension of the profile discovering procedure has been implemented in order

to perform cross-validations. Cross-validations are used to evaluate the accuracy of

a recommender system. They consist of predicting the relevance of the examples
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Figure 3.5: “10-fold cross-validation technique”.

recorded in the logs and comparing them with the real evaluations. For example,

the “10-fold cross-validation technique” [Mladenic 96], from a user profile with n

items, generates n training sets of n-1 items and, based on these, predicts the

relevance of the reserved item (see Figure 3.5). Finally, the average of the precision

of the predictions is the accuracy of the recommender system. The more precise the

predictions are, the more accurate the system will be.

However, when the bulk of the recommender process remains in the adaptation

that the recommendation algorithm performs on the profile over time, the “10-fold

cross-validation technique” is useless. Before the cross-validation analysis, we need

to know how the simulated user profile has evolved. We propose a cross-validation

analysis through profile discovering. The idea is the same as the “10-fold cross-

validation technique” in which we use the profile discovering procedure in order to

simulate the user profile evolution (see Figure 3.6).

In particular, a single cross-validation performs the following steps:

1. Like the first step in profile discovering, a simulated initial profile is extracted

from the log of the real user profile.

2. 10% of the items not contained in the simulated initial profile are randomly

reserved as test items in order to perform the final cross-validation.

3. From the simulated initial profile, the profile discovering procedure is exe-
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Figure 3.6: Cross-Validation through Profile Discovering.

cuted. The simulator has to discover the well evaluated items contained in the

remaining 90%.

4. From the discovered user profile, a prediction of the relevance of the reserved

test items is performed. Comparing the predictions with the real evaluations,

the accuracy of the system is obtained.

In order to avoid anomalous data, the cross-validation is repeated many times,

each time changing the test items (see Figure 3.7). From the real user profile, θ sets

of test items are selected and, therefore, θ single cross-validations through profile

discovering are performed. Two different θ values have been tested: θ = 10 and

θ = 20. After several cross-validations we found that the results for both values

were identical. Therefore, only the results with θ = 10 are presented. The average

of these simulations is the accuracy of the system.

3.6 Experimental Results

The proposed forgetting mechanism has been implemented in GenialChef1, a restau-

rants recommender system developed within the IRES Project2. In particular, Ge-

1GenialChef was put forward at the E-TECH 2003 Prizes and was awarded the prize for the
best university project.

2The IRES Project was presented to the AgentCities Agent Technology Competition and
was awarded the special prize for the best system deployed in the AgentCities Network. Visit
http://arlab.udg.es for more information about the project and the prize.
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Figure 3.7: The Complete Cross-Validation Procedure.

nialChef provides a restaurant recommendation service to users from all over the

world. So far, nearly 400 restaurants in and around Girona are recommended, thus,

this is an interesting service for people living or visiting Girona.

The system was evaluated using the profile discovering procedure. We were able

to repeat experiments with different parameters in order to show whether forgetting

improves the quality of recommendations. With this aim in mind, all the evaluation

measures explained in section 3.5.1 have been computed in relation to different

degrees of forgetfulness.

The results of the simulations are analysed in this section with the help of sev-

eral charts. The y-axis refers to the evaluation measures, namely precision, recall,

f-measure, fallout, NCases, diversity and accuracy. All the measures, except diver-

sity and NCases, are represented in percentages. The x-axis refers to the different

levels of forgetfulness; that is, the drift threshold (see, for example, Figure 3.8). In

particular, 20 different levels are analysed (every 0.05 from 0.0 to 0.95). The drift

threshold, ξ, is the parameter used to control how much is forgotten, ranging from

forgetting almost everything (ξ = 0.95) to forgetting nothing (ξ = 0.0). Note that

if ξ = 1, the recommendations would be absolutely random, making nonsense of a
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Figure 3.8: Precision of the system.

PARAMETERS a

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

athe parameters used in
the simulation giving the
chart on the left as a result.

recommender system. This simple representation allows us to find out the effect of

the forgetting mechanism on each evaluation measure.

In order to avoid anomalous data, it is important to repeat the simulations with

different input data. For this reason, 40 different real profiles were used in the sim-

ulations. In particular, 25 of these profiles were obtained after an evaluation period

of 2 months where people from our department at the University of Girona used Ge-

nialChef. The remaining 15 profiles were obtained from a evaluation questionnaire

filled in by people from outside of the University.

Below, we present the general results obtained with the profile discovering pro-

cedure. Then, these general results are validated, analysing the results obtained by

changing the different parameters of the simulations.

3.6.1 General Results

In order to analyse the system performance from a global perspective, a set of

simulation parameters were selected as representative. Specifically, the simulations

were performed with the recommendation algorithm CBR/E; with the initial item

set training0; with the forgetting parameters β = 0.98; λ = 1.05 and σ = 0.95;

with the success and failure thresholds φ = 0.5 and γ = 0.499 and finally, a 6 month

simulation period. These parameters are described in detail in section 3.6.2.

Using these simulations, we analysed precision, recall, f-measure, fallout, NCases,
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Figure 3.9: Recall of the system.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

diversity and accuracy measures, the details of which are given below.

Precision

Figure 3.8 represents the precision of the system while taking into account different

levels of forgetfulness. It is a bell-shaped graph, the maximum precision of which is

found at 0.7 degree of forgetfulness. Note that the precision of the system is always

higher with the forgetting mechanism (ξ = 0.05 − 0.95) than without (ξ = 0).

These results lead us to an interesting, although expected, result: the precision

of the system is improved with the forgetting mechanism and the best precision is

obtained when the recommender system forgets substantially. Furthermore, forget-

ting at any level gives a higher precision than not forgetting. However, forgetting

too much is not good, since the precision is reduced.

Recall

Figure 3.9 represents the typical behaviour of recall in a recommender system when

analysing different levels of forgetfulness. The highest level of recall is achieved when

the system does not forget at all and, in the measure that the level of forgetfulness

increases, recall descends. This behaviour has a logical explanation. On the one

hand, with the highest forgetfulness, the system does not remember which items

have been recommended and, therefore, it always recommends the same group of
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Figure 3.10: F-Measure of the system when b=0.5.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

items. On the other hand, when the system does not forget at all, it always remember

the past recommendations and their success/failure and, based on them, the system

recommends new items.

Forgetting the non-relevant items is very productive in order to improve precision

and in order to decrease the computing time. However, when the algorithm forgets

too much, the same recommendations are repeated and, for this reason, we believe

that forgetting excessively is unprofitable.

F-Measure

Figure 3.10 shows the f-measure when b = 0.5; that is, when precision is twice as

important as recall. We can see how precision is slightly modified by recall, since

when recall is very high, precision is rewarded and when recall is very low, precision

is penalised.

Figure 3.11 shows the f-measure when b = 1.0; that is, when precision and

recall are equally weighted. In this figure we can see a fairly strong modification of

precision due to recall. When the system has a low level of forgetfulness, precision

increases due to high recall, and when the level of forgetfulness is high, precision

quickly decreases. However, the highest level of precision is still concentrated at

around ξ = 0.7. This demonstrates the relevance of the forgetting mechanism.

It is also important to note that the lowest value of f-measure is obtained when
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Figure 3.11: F-Measure of the system when b=1.0.

PARAMETERS
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6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

the system has a high level of forgetfulness, verifying that forgetting is productive,

but forgetting too much is unfavourable. This phenomenon is present in all the f-

measure 1.0 charts on all the experiments performed, since all the simulations have

a very low recall when forgetting very much.

Figure 3.12 represents the f-measure when b = 1.5; that is, when recall is more

important than precision. In other words, precision is strongly modified by recall.

When the algorithm forgets moderately, the f-measure augments in such a way

that its value remains stable. The chart still has the highest value when ξ = 0.7,

the forgetfulness degree on which we obtain the best results; after this point, the

performance of the system drastically decreases.

Fallout

Figure 3.13 represents the fallout of a recommendation algorithm when the forgetting

mechanism is applied. It appears to be quite stable, with fallout ranging from 1.6

to 2.1. Thus, a priori, we can conclude that the forgetting mechanism increases

precision while preserving fallout. In any case, fallout is not as stable as desired.

Hence, it is interesting to analyse the fallout of other simulations using different

parameters in order to validate this result (see section 3.6.2).
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Figure 3.12: F-Measure of the system when b=1.5.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Figure 3.13: Fallout of the system.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499
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Figure 3.14: NCases of the system.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

NCases

Figure 3.14 represents the average number of cases contained in the case base

(NCases) throughout the simulations, with the parameters specified on the right

of the figure. When the algorithm does not forget at all, there is a certain number

of cases in the case base. Once the forgetting mechanism is applied (ξ = 0.05), a

sizeable reduction in cases is observed between 25% and 30%. Then, proportionally

to increasing forgetfulness, the NCases decrease. Finally, when the algorithm forgets

almost everything, the NCases is reduced by between 80% and 90%. However, we

discourage a very high level of forgetfulness. As seen in the previous charts, the

best performance is obtained when forgetting substantially (ξ = 0.7). In this case,

the number of cases if reduced by between 70% and 75%. This large reduction in

cases in the case base is a relevant contribution to solving the utility problem of

case-based reasoning systems [Leake 98].

The NCases results can be combined with the number of cases development

over time, as shown in Figure 3.15. The number of cases are calculated from the

simulations where each line represents a different level of forgetfulness. Initially, all

the lines begin at the same number, which is the number of cases inserted by the

initial profile generation technique. Then, depending on the level of forgetfulness

the number of cases increases more or less. Obviously, the highest number of cases

is obtained when the system does not forget at all (ξ = 0.0). After a certain period

of time, depending on the level of forgetfulness, all the lines stabilise at a particular
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Figure 3.15: Evolution of the Number of Cases in the Case Base for different levels
of forgetfulness.

number of cases.

Finally, notice that NCases is strongly correlated to the recall of the algorithm.

Since all the recommendations are stored in the case base in order to know as much

as possible about the user, if the recommendation algorithm has a high recall, the

NCases is very high.

Diversity

In order to analyse the diversity of the user profile, we used the clustering method

proposed in section 3.5.1. The first task that we have to perform is the selection

of a suitable α. Taking into account that the final number of clusters represents

the number of different classes of restaurants, what we have done is to apply the

clustering method to the original database (where all the possible recommendations

are contained) with different values of α. The results of the test are shown in the

following table:

α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Clusters 147 95 65 44 30 17 10 6 4 3 2 1
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Figure 3.16: Diversity of the system.
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φ = 0.5 γ = 0.499

If we assume that there are between 15 and 20 different classes of restaurants in

the database3, we select the α = 0.3, since it has the number of clusters inside this

interval. Thus, all the diversity charts are analysed with α = 0.3.

Figure 3.16 presents the diversity of the recommendation algorithm with differ-

ent levels of forgetfulness when α = 0.3. There is a reduction in diversity as the

algorithm forgets more. The diversity when the algorithm does not forget at all is

almost the maximum, taking into account that the number of different classes is, at

most, 17. This is a good result if what we are looking for is user profiles as diverse

as possible. When we obtain a better precision (around ξ = 0.7), the number of

clusters decreases to 10. Hence, 40% of the clusters have been lost. The resulting

profile has less clusters, but they represent the user interests better. This is mainly

due to the adaptation process that the drift attribute performs over the profile. In

other words, the forgetting mechanism deletes the classes of items that do not con-

tribute to the recommendation of interesting restaurants, thus obtaining a better

precision.

In fact, the number of clusters depends on the user. There are users that have

very select interests or users that do not have particular preferences and like almost

everything. The first class of users tend to have a small number of clusters in their

user profiles and the second ones tend to have a lot. However, these minor special

classes of users are compensated by the majority.

3In Girona, a small city with less than 400 restaurants, this is a reasonable assumption.
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Figure 3.17: Accuracy of the system.

PARAMETERS

CBR/E
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Training0
β = 0.98
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φ = 0.5 γ = 0.499
θ = 10

Accuracy

Finally, Figure 3.17 shows the accuracy of the system after performing several

cross-validations with different levels of forgetfulness. Accuracy also produces a

bell-shaped graph, although the increments and decrements are very small. The

difference between the lowest accuracy (when the algorithm does not forget) and

the highest accuracy (when the drift threshold is 0.75) is 1.5, an insignificant differ-

ence taking into account that our representation of the accuracy ranges from 0 to

100. Thus, we cannot say for certain that accuracy is improved by the forgetting

mechanism; we can, however, say that there is no negative impact.

3.6.2 System Parameter Evaluation

In order to validate these general results, more than 150.000 simulations and 30.000

cross-validations with different user profiles, different forgetting parameters, differ-

ent recommendation algorithms, different initial item sets and different simulation

durations were performed. The parameters used in the simulations are summarised

in Table 3.1 and the results of the simulations are shown in the following sections.
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PARAMETERS VALUES

User Profiles Profile1, Profile2, ..., Profile40

Drift Thresholds ξ = 0.0, ξ = 0.05, ξ = 0.1, ..., ξ = 0.95

Recommendation Algorithms
CBR/E, CBR/I, CBR/E(1),
CBR/I(1), CBR/Random

Drift Decreasing Factors β = 0.95, β = 0.97, β = 0.98, β = 0.99

Success and Failure Thresholds φ = 0.5 γ = 0.499, φ = 0.6 γ = 0.4

Initial Item Sets
Training0, Training1,
Training2, Training3

Drift Rewarding and Penalising Factors λ = 1.1 σ = 0.9, λ = 1.05 σ = 0.95

Simulation Durations 1 month, 6 months, 1 year, 2 years

Table 3.1: Simulation Parameters.

Recommendation Algorithms

It is very important to validate the general results with several recommendation

algorithms in order to demonstrate that the forgetting mechanism does not depend

on them. Therefore, five different recommendation algorithms based on case-based

reasoning (CBR) were implemented:

• CBR/E: a CBR algorithm that recommends several new items based on the

most similar and the most different items to a set of the most liked and the

most hated items correspondingly.

• CBR/I: a CBR algorithm that uses the implicit feedback (captured from

the interaction between the user and the recommender system) to modify the

user’s evaluations. These new evaluations are used to decide the set of most

liked and the most disliked items, the basis of the recommendation process.

• CBR/E(1): a variation of the CBR/E algorithm which only gives 1 recom-

mendation per cycle based on the most liked item.

• CBR/I(1): a variation of the CBR/I algorithm which only gives 1 recom-

mendation per cycle based on the most liked item.

• CBR/Random: selects an item from the user profile randomly and recom-

mends the items that are most similar. That is, one of the user interests of

the user is selected randomly ignoring their relevance and, based on it, similar

items are recommended.

We expect these algorithms to behave in different ways. For example, the CBR/I

algorithm is very similar to CBR/E, and it should recommend more items to the
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Figure 3.18: Precision, with different recommen-
dation algorithms.
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φ = 0.5 γ = 0.499

user since the implicit feedback contributes to finding out more diverse interests

about the user and, therefore, the algorithm has more information based on which

to recommend. The results of these algorithms give us, then, the possibility of

evaluating whether the implicit feedback captured from the user will improve the

performance of the system. CBR/E(1) and CBR/I(1) are algorithms from which

we expect a smaller number of recommended items than from the first two, although

they should be more precise, since only the item which is most similar to the most

relevant user interest is recommended. Finally, the random algorithm, instead of rec-

ommending new items based on the most relevant interests of the user, recommends

new items based on any of the user interests. Thus, we expect a lower precision,

although not very low since the user interests are also taken into account.

Figures 3.18 to 3.26 show the results of the evaluation measures for each recom-

mendation algorithm.

Precision. First, the behaviour of precision, Figure 3.18, shows that all the algo-

rithms, except CBR/Random, have a bell-shaped graph, with the maximum preci-

sion at drift threshold ranges between 0.5 and 0.9. The precision of the CBR/Random

algorithm is stable, at between 6.5 and 7.5, through all the different levels of forget-

fulness without distinction. This is a perfectly reasonable result, bearing in mind

that there is no criteria for selecting relevant items from the user profile; all items
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Figure 3.19: Recall, with different recommenda-
tion algorithms.

PARAMETERS

Simulation1 - CBR/I
Simulation2 - CBR/I(1)
Simulation3 - CBR/E
Simulation4 - CBR/E(1)
Simulation5 - CBR/Random

6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

selected randomly. On the contrary, the other algorithms use the drift attribute

in order to find out which are the most relevant. Hence, the CBR/Random algo-

rithm is the one with the lowest precision. As we expected, the recommendation

algorithms with the highest precision are CBR/E(1) and CBR/I(1).

Recall. Second, Figure 3.19 shows that the recommendation algorithms have dif-

ferent recall values, although they follow the same pattern. The system achieves

high recall value when the algorithm does not forget anything and a gradual de-

crease as the level of forgetfulness increases. As we expected, the recommendation

algorithm with the highest recall is CBR/I and the ones with the lowest recall are

CBR/E(1) and CBR/I(1).

F-Measure. Third, Figure 3.20, Figure 3.21 and Figure 3.22 analyse the f-measure

of the recommendation algorithms. From the point of view of precision and recall

together, the algorithms all perform similarly. Note that the algorithms that recom-

mend a new item based on only the most liked item (CBR/E(1) and CBR/E(1))

have a higher precision than the others. However, we can also see that they are

the ones with the lowest recall. This behaviour corroborates the fact that when re-

call increases, precision decreases and, therefore, the f-measure compensates them,

resulting in similar charts.
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Figure 3.20: F-Measure, with different recommen-
dation algorithms when b=0.5.
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Figure 3.21: F-Measure, with different recommen-
dation algorithms when b=1.0.
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Figure 3.22: F-Measure, with different recommen-
dation algorithms when b=1.5.
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Figure 3.23: Fallout, with different recommenda-
tion algorithms.
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Simulation3 - CBR/E
Simulation4 - CBR/E(1)
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φ = 0.5 γ = 0.499
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Figure 3.24: NCases, with different recommenda-
tion algorithms.
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Fallout. Fourth, Figure 3.23 presents the fallout of the recommendation algo-

rithms obtained when different levels of forgetfulness are applied. When no cases

are forgotten, all the algorithms have the same fallout. However, the forgetting

mechanism affects each of the algorithms in a different way. CBR/E and CBR/I

behave as expected, since the fallout remains stable whatever the level of forgetful-

ness. CBR/E(1) and CBR/I(1) also have stable fallout but, when the algorithm

forgets too much, fallout increases sharply. The worst fallout occurs when the sys-

tem recommends with the CBR/Random algorithm. In this case, fallout remains

higher than for the others and, when the algorithm forgets a lot, fallout is extremely

high. This is what we expect from a random algorithm.

NCases. Fifth, Figure 3.24 illustrates the average number of cases contained in

the case base during the simulations with the different recommendation algorithms.

All the algorithms, except CBR/Random, lose between 70% and 75% of the cases

when ξ = 0.7. The CBR/Random algorithm loses 81% of the cases, because cases

are strongly penalised due to the lack of a selection criteria. Our results show

that the forgetting mechanism drastically reduces NCases while increasing precision.

And, as we can see in Figure 3.24, this behaviour is totally independent of the

recommendation algorithm.

The algorithms that have the lowest NCases (CBR/E(1) and CBR/E(1)) are
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Figure 3.25: Diversity, with different recommen-
dation algorithms.
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also the ones with the lowest recall. Furthermore, CBR/E and CBR/I are the

algorithms with the highest NCases and the highest recall. This shows that the

NCases is strongly correlated to the recall of the algorithm.

Diversity. Sixth, the lost of diversity is considerable, whatever the recommen-

dation algorithm (see Figure 3.25). The observed losses range from 32% with the

CBR/I(1) to 44% with the CBR/I. The algorithms that have the lowest loss of

diversity are CBR/I(1) and CBR/E(1), precisely the ones that have the lowest re-

call and NCases. In contrast, the algorithms with the highest recall and NCases also

have the highest loss of diversity. Hence, the correlation between loss of diversity

and recall and NCases is obvious.

Accuracy. Finally, the results for accuracy (see Figure 3.26) with different recom-

mendation algorithms are very similar to the ones obtained for precision. CBR/I(1)

and CBR/E(1) are the algorithms with the best accuracy while CBR/Random is

the worst. However, the most important result is that the accuracy of the system

remains stable whatever the recommendation algorithm.

Summing up all the experiments with regard to the different algorithms, we can

say that the forgetting mechanism improves the precision of the system provided
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Figure 3.26: Accuracy, with different recommen-
dation algorithms.
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that the recommendation algorithm recommend new items which take into account

the relevance of the user’s interest contained in the user profile. The algorithms that

only recommend the best item are the ones with the highest precision and accuracy,

although they have the lowest recall. So, depending on the aim of the recommender

system, a different recommendation algorithm can be selected. Furthermore, all the

experiments show that CBR/E and CBR/I perform in a similar way. Therefore,

we can also conclude that the incorporation of implicit feedback in the recommen-

dation process does not produce significative improvements to the performance of

the system.

Drift Decreasing Factors

The drift decreasing factor (β) is used to control the speed of forgetting. The

higher it is, the lower is the speed. The speed of forgetting is strongly related

to the forgetfulness threshold. That is, if we forget too fast and our forgetfulness

threshold is high, the information on the user is reduced drastically and, with less

information, the more difficult it is to provide good results. In order to test this

hypothesis, we tested four different β values: β = 0.95, β = 0.97, β = 0.98 and

β = 0.99. The impact of the β parameter on the different evaluation measures are

shown in Figures 3.27 to 3.34.
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Figure 3.27: Precision of the system with different
drift decreasing factors.
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Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Precision. First, Figure 3.27 shows the precision of the system with the different

drift decreasing factors. All the graphs are bell-shaped graph and, depending on

the speed, the highest precision is found in the range of ξ = 0.5 − 0.9. However,

when β = 0.95; that is, when there is a high speed, the graph loses the bell shape

and becomes unstable. Moreover, the maximum precision is lower than it is for the

other charts and not forgetting (ξ = 0.0) produces greater precision than forgetting

substantially. In order to validate this strange behaviour, we designed and performed

another set of experiments with high speed. Figure 3.28 shows the precision of

the CBR/E algorithm when β = 0.94 and the precision graph has also a similarly

strange shape. Despite these results, we can say that the speed of forgetting shifts the

forgetfulness threshold. The slower the speed, the higher the forgetfulness threshold

where the maximum precision is found.

Recall. Second, the speed of the forgetting mechanism also affects the recall of

the recommendation algorithm (see Figure 3.29). We obtained the lowest recall

when β = 0.95; that is, when the algorithm most rapidly forgets. This is mainly

due to the fact that the algorithm forgets any recent recommendations and tends to

recommend the group of items most similar to the user preferences, which are always

the same. As the speed decreases, the algorithm remembers recent recommendations

and tries to recommend different items and, therefore, recall increases. Thus, the

highest recall is obtained when the algorithm has the lowest speed (β = 0.99).
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Figure 3.28: Precision of the system with two low
drift decreasing factors.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.94
Simulation2 - β = 0.95

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Figure 3.29: Recall of the system with different
drift decreasing factors.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499
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Figure 3.30: F-measure of the system with differ-
ent drift decreasing factors when b=1.0.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

F-Measure. Third, when analysing the f-measure 1.0 of the different drift de-

creasing factors (see Figure 3.30), we can see that the graphs are quite similar to

the precision graphs, except when β = 0.95 . Although it is the one with least recall,

it does not have good precision, and this is too relevant for the f-measure.

Fallout. Fourth, Figure 3.31 illustrates the fallout of the recommendation algo-

rithm. All the charts are similar. They are all stable and within the same small

range of values. Therefore, we can say that the speed of the forgetting mechanism

does not influence the fallout of the system, which is very stable at the different

levels of forgetfulness.

NCases. Fifth, Figure 3.32 presents the NCases of the case base when different

drift decreasing factors are applied. The speed of the forgetting mechanism also

affects the number of cases contained in the case base; that is, the information

about the user. On the one hand, when the algorithm has a high speed (for example

β = 0.95), the number of cases is more quickly reduced and, therefore, the NCases

value is lower. On the other hand, when the algorithm needs more time to forget,

there are indeed more cases in the case base and the algorithm has a higher NCases

value. These results, together with the precision results, corroborate our hypothesis

that a higher speed reduces the information about the user.
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Figure 3.31: Fallout of the system with different
drift decreasing factors.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Figure 3.32: NCases of the system with different
drift decreasing factors.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499
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Figure 3.33: Diversity of the system with different
drift decreasing factors.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Diversity. Sixth, the speed of the forgetting mechanism affects the diversity of

the final user profile in the same way that it affects the average of cases in the case

base (see Figure 3.33). Forgetting very fast means that cases need more time to be

forgotten and, therefore, the diversity also remains for longer. This phenomenon

can be seen clearly when we compare the 33% loss when the system forgets slowly

with the 50% when the system forgets very quickly.

Accuracy. Finally, no significative differences can be observed from the point of

view of the accuracy measure when different drift decreasing factors are evaluated

(see Figure 3.34). This chart only verifies that the accuracy of the system remains

stable regardless of the speed of the forgetting mechanism.

The analysis of the results of the different drift decreasing factors leads us to

believe that forgetting is important, provided that the degree of speed is suitable.

Forgetting with a high speed produces a lower, unstable precision. When different

slow speeds are analysed, their behaviour is quite similar. As β is increased, the

main differences are that the maximum precision is located closer to ξ = 0.95; recall

and NCases increase and less diversity is lost.
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Figure 3.34: Accuracy of the system with different
drift decreasing factors.

PARAMETERS

CBR/E
6 months
Training0
Simulation1 - β = 0.95
Simulation2 - β = 0.97
Simulation3 - β = 0.98
Simulation4 - β = 0.99

λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Success and Failure Thresholds

At the revision phase of the CBR approach to recommender system, the user eval-

uates the item proposed by the system (see Section 3.3). The evaluation of an

item by a user is a value ranging from 0 to 1, where 1 represents total affinity

to the item and 0 represents a total dislike to it. But, what do we consider as a

successful recommendation and what is a failed recommendation? In order to avoid

mere assumptions, we have provided the simulator with two parameters that control

successes and failures:

• the success threshold (φ): when the evaluation of the user is over this threshold,

the recommendation is considered a success.

• And the failure threshold (γ): when the evaluation of the user is under this

threshold, the recommendation is considered a failure.

The success and failure thresholds depend on subjective assessments related to

the functionality of the system. Our intention is to demonstrate that the forgetting

mechanism does not depend on these assessments. To do so, we analysed two dif-

ferent success thresholds (φ = 0.5 and φ = 0.6) and two different failure thresholds

(γ = 0.499 and γ = 0.4). Figures 3.35 to 3.40 show the results on the different

evaluation measures.
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Figure 3.35: Precision of the system with different
success/failure thresholds.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95

Simulation1 - φ = 0.5 γ = 0.499
Simulation2 - φ = 0.6 γ = 0.4

Precision. Figure 3.35 shows the precision of the system with the different success

and failure thresholds. Both graphs are very similar. The main difference is quite

logical: precision is lower when there is a range of uncertainty (between φ = 0.6 and

γ = 0.4), since several evaluated items are not considered as successful.

Recall. Likewise, when we analyse the recall of the system (see Figure 3.36), we

can see that when φ = 0.6 and γ = 0.4, recall is lower. This is mainly due to the

fact that, when there is a range of uncertainty, a certain group of items cannot be

classified and, therefore, the recommendation algorithm has less relevant information

to use for recommending items, so the number of recommendations is lower.

Fallout. In the same way, fallout is also reduced when the range of failures is

reduced. Figure 3.37 shows the fallout of the system with different failure thresholds.

As expected, when γ = 0.499, the fallout is higher than when γ = 0.4. γ determines

when a recommendation is considered a failure; so the higher the γ, the wider the

range in which a recommendation is considered a failure and, therefore, the higher

the fallout.

NCases. Then, since recall is lower when there is a range of uncertainty, NCases

is also lower (see Figure 3.38). However, the difference between the two NCases
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Figure 3.36: Recall of the system with different
success/failure thresholds.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95

Simulation1 - φ = 0.5 γ = 0.499
Simulation2 - φ = 0.6 γ = 0.4

Figure 3.37: Fallout of the system with different
success/failure thresholds.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95

Simulation1 - φ = 0.5 γ = 0.499
Simulation2 - φ = 0.6 γ = 0.4
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Figure 3.38: NCases of the system with different
success/failure thresholds.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95

Simulation1 - φ = 0.5 γ = 0.499
Simulation2 - φ = 0.6 γ = 0.4

graphs is irrelevant due to the fact that the range of uncertainty between φ = 0.6

and γ = 0.4 is small. If we increase this range, the difference should be more

significant.

Diversity. There is no significative difference in the loss of diversity when different

success and failure thresholds are analysed. We can see in Figure 3.39 that, when

there is a range of uncertainty, there are less cases in the case base and, therefore,

diversity is lower. However, the same percentage of diversity is lost.

Accuracy. Finally, Figure 3.40 illustrates the accuracy of the recommendation

algorithm CBR/E when the different success and failure thresholds are simulated.

Once again, the accuracy is lower when the range of success and failure is narrower.

We can even observe that both simulations produce an almost identically shaped

graph.

Summing up, the only effect obtained when we reduce the success and failure

ranges is lower precision, lower recall, lower fallout, lower NCases and lower accu-

racy. But the system maintains the same expected behaviour, independently of the

subjective assessments provided by the system.
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Figure 3.39: Diversity of the system with different
success/failure thresholds.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95

Simulation1 - φ = 0.5 γ = 0.499
Simulation2 - φ = 0.6 γ = 0.4

Figure 3.40: Accuracy of the system with different
success/failure thresholds.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98
λ = 1.05 σ = 0.95

Simulation1 - φ = 0.5 γ = 0.499
Simulation2 - φ = 0.6 γ = 0.4
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Figure 3.41: Precision of the system with different
initial item sets.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Initial Item Sets

The set of items constituting the initial simulated user profile is a parameter of the

profile discovering simulator. The aim of this parameter is to analyse the relation-

ship between the forgetting mechanism and different initial profiles. Most learning

algorithms are sensitive to the initial item set and CBR is not an exception. In

our case, we are interested in the impact of the initial set of cases on the forgetting

mechanism. Since we are trying to adapt the recommender system to the user in-

terests, we believe that the impact does not depend on the number of cases but on

their quality.

In order to test our hypothesis, we defined four different item sets:

• training0: with 13 representative items,

• training1: with 2 items, the most and the least liked.

• training2: with 5 representative items,

• and training3: with 6 items, the three most and the three least liked.

Figures 3.41 to 3.48 display the experimental results achieved with the different

initial item sets.
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Figure 3.42: Precision of the system with different
initial item sets and the CBR/I(1) algorithm.

PARAMETERS

CBR/I(1)
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Precision. First, Figures 3.41 and 3.42 show the precision of the system according

to the different initial item sets. We can see that the results are very different, giving

us an idea of the importance of the initial item set in the performance of the system.

Depending on the synergy between the recommendation algorithm and the initial

item set, the precision of the system changes considerably. For example, when only

a few items constitute the initial case base (for example, training1, training2 and

training3), we can see two different patterns of behaviour:

• On the one hand, when the items are very well selected according to the spe-

cific recommendation algorithm, the initial recommendations are very success-

ful and consequently, the initial precision is very high. When the algorithm

forgets rapidly, the same recommendations are repeated and the precision

remains very high. Then, when the level of forgetfulness decreases, the algo-

rithm gradually loses precision. This behaviour can be observed for Training1,

Training2 and Training3 in Figure 3.41, and for Training1 and Training3

in Figure 3.42. We also see that the recall measure is very low and, therefore,

when we combine precision and recall, the graphs regain the typical bell shape

observed in previous simulations.

• On the other hand, when the initial items are unsuitable for the recommen-

dation algorithm, the initial recommendations are unsuccessful and precision
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Figure 3.43: Recall of the system with different
initial item sets.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

is very low. Therefore, when the system forgets a lot, the same unsuccess-

ful recommendations are repeated and precision remains very low. However,

as forgetfulness decreases, the system remembers its bad performance, learns

from its errors and tries to find new recommendations. Therefore, precision

improves sharply. Finally, when there is a very low level of forgetfulness the

algorithm loses precision. Hence the precision of the system produces an ex-

aggerated bell-shaped graph. This is the case for Training2 in Figure 3.42.

A very different case is when a relatively high number of items constitute the

initial case base (for example, the training0 set). In this case, there are more items

in the case base and the algorithm has more information on which to base its recom-

mendations. Having recommended more heterogeneous items, it is more difficult to

obtain success for each of them. For this reason, with a high degree of forgetfulness,

precision is lower than the other sets. However, when the algorithm forgets less, it

knows better which are the relevant items and precision increases significantly. Fi-

nally, the precision tends to diminish again when the level of forgetfulness decreases.

This behaviour is observed for Training0 in Figures 3.41 and 3.42.

Recall. Second, the system exhibits a similar recall performance when applying

the different initial item sets except for Training1 (see Figure 3.43). This is because

it is the smallest initial item set with only two cases constituting. Since there is only
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Figure 3.44: F-Measure of the system with differ-
ent initial item sets when b=1.0.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

a very little information on which to base the recommendations, the algorithm is not

able to find many new interesting items and, therefore, the recall of the algorithm is

very low. On the contrary, when a significant number of cases constitute the initial

profile, the algorithm is able to recommend much more items.

F-Measure. Third, the f-measure of the different initial item sets deserves special

attention (see Figure 3.44). The precision graphs show very high precision at the

highest levels of forgetfulness, especially with the training1 and training3 sets, and

low recall. So, when we combine the precision and recall metrics we can find that

such high precision values are rapidly compensated, thus obtaining the expected

bell-shaped graph.

Fallout. Fourth, the fallout of the algorithm remains more or less stable whatever

the level of forgetfulness (see Figure 3.45).

NCases Fifth, the NCases is slightly different depending on the initial item set

(see Figure 3.46). The set with the lowest NCases is Training1 since it has the

lowest recall and, therefore, it discovers less information. On the contrary, the set

with the highest NCases is Training0, which also has the highest number of initial

items in the case base. It is important to note that the forgetting mechanism reduces

considerably the size of the case base whatever the initial item set.
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Figure 3.45: Fallout of the system with different
initial item sets.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Figure 3.46: NCases of the system with different
initial item sets.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499
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Figure 3.47: Diversity of the system with different
initial item sets.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Diversity Sixth, the initial item set strongly affects the loss of diversity in the

user profile. Figure 3.47 shows, on the one hand, that when Training1 set is used,

55% of the clusters are lost between not forgetting and forgetting a lot (ξ = 0.7).

Training3 set also loses a significative percentage of clusters, 51%. The main reason

for these results is that both sets, but especially Training1, begin the simulations

with extremely low diversity. If the recommendation algorithm forgets too much,

is very difficult to increase this level of diversity. However, if the system does not

forget at all, the recommendation algorithm remembers the recommended items

and can try others, producing an important increase in diversity. On the other

hand, when the simulations begin with a diverse initial set of items (Training2 and

especially Training0 set), the increase in diversity obtained without forgetfulness is

less important.

Accuracy. Finally, from the point of view of accuracy, Training1 and Training3

sets perform slightly better than the others (see Figure 3.48). Thus, if the re-

quirement of the application is to obtain the best accuracy, one of these techniques

should be selected. In any case, what we really have demonstrated with this graph

is that accuracy remains stable whatever the initial item set and whatever the level

of forgetfulness.
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Figure 3.48: Accuracy of the system with different
initial item sets.

PARAMETERS

CBR/E
6 months

Simulation1 - Training0
Simulation2 - Training1
Simulation3 - Training2
Simulation4 - Training3

β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Summing up, the results indicate the importance of the initial item set for the

system when the forgetting mechanism is applied. As observed in our experiments,

an initial item set with only a few items suitable for the forgetting mechanism is the

simulation that shows the best results. However, since it is very difficult to know

which are the suitable items for every algorithm, we believe that the best initial

item set is the one containing a large group of items representing the most and the

least liked for the user (as these are the most relevant items at the beginning).

Rewarding and Penalising Factors

The drift penalising factor (σ) and the drift rewarding factor (λ) are used to modify

the drift attribute of a successful or a failed recommendation respectively. That

is, these parameters are used to increase or decrease the relevance of the cases

that lead to successful or failed recommendations respectively. A value of λ = 1

and σ = 1 means that a successful or failed recommendation does not affect the

relevance of the source cases (the retrieved cases from which the recommendation

has been computed). A value of λ > 1 means that the relevance of the source cases

are upgraded when a recommendation is successful. A value of σ < 1 means that

a failed recommendation decreases the relevance of the source cases, falling into

oblivion. What we want to study with these parameters is, first, their importance

in the forgetting mechanism and, then, how big or small to make them. To do so,
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Figure 3.49: Precision of the system with different
rewarding/penalasing factors.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98

Simulation1 - λ = 1.1 σ = 0.9
Simulation2 - λ = 1.05 σ = 0.95
Simulation3 - λ = 1.0 σ = 1.0

φ = 0.5 γ = 0.499

we used test values of λ = 1.0 σ = 1.0 (no reward/penalty), λ = 1.05 σ = 0.95 (a

small reward/penalty) and λ = 1.1 σ = 0.9 (a larger reward/penalty). The results

are presented in Figures 3.49 to 3.54.

Precision. First, Figure 3.49 shows the precision of the recommendation algorithm

with the different rewarding and penalising factors. Since the forgetting mechanism

is based on knowledge about which are the relevancy and irrelevancy of cases, when

the system does not reward or penalise cases (λ = 1.0 σ = 1.0), the performance of

the system decreases significatively. However, when cases are rewarded and penalised

(λ = 1.1 σ = 0.9 and λ = 1.05 σ = 0.95), the graphs are practically identical.

Recall Second, recall is extremely different when the rewarding and penalising

factors are applied, as shown in Figure 3.50. The system does not know the most

relevant cases at any one moment and, therefore, always uses the same cases (the

ones most liked by the user) as source cases to recommend. Obviously, if the source

cases are always the same, the resulting recommendations are also very similar and

recall is quite low. However, no difference can be observed between the recall graphs

when the relevance is updated.
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Figure 3.50: Recall of the system with different
rewarding/penalasing factors.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98

Simulation1 - λ = 1.1 σ = 0.9
Simulation2 - λ = 1.05 σ = 0.95
Simulation3 - λ = 1.0 σ = 1.0

φ = 0.5 γ = 0.499

Figure 3.51: Fallout of the system with different
rewarding/penalasing factors.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98

Simulation1 - λ = 1.1 σ = 0.9
Simulation2 - λ = 1.05 σ = 0.95
Simulation3 - λ = 1.0 σ = 1.0

φ = 0.5 γ = 0.499
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Figure 3.52: NCases of the system with different
rewarding/penalasing factors.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98

Simulation1 - λ = 1.1 σ = 0.9
Simulation2 - λ = 1.05 σ = 0.95
Simulation3 - λ = 1.0 σ = 1.0

φ = 0.5 γ = 0.499

Fallout. Third, the fallout graphs are not identical, but they are very similar

(see Figure 3.51). If we analyse any level of forgetfulness, the fallout of all three

simulations have very similar values.

NCases and Diversity. Fourth, the charts representing the average of cases in

the case base and the diversity of the user profile are very similar to the recall graph

(see Figure 3.52 and Figure 3.53). Since recall is very low, the NCases and diversity

is also very low and, therefore, when the degree of forgetfulness is higher (ξ = 0.7),

the percentage of cases in the case base and the loss of diversity is very low as

well. Once again, when different magnitudes of these reward/penalty parameters

are analysed, no significative differences are found.

Accuracy. Finally, the accuracy of the algorithm is affected by the application

of these parameters. Like precision, accuracy is significantly lower when cases are

not rewarded and penalised. Once again, the accuracy of the system when cases

are rewarded and penalised is almost the same whatever the magnitude of these

parameters.

Therefore, after analysing the different measures, we can say that a rewarding and

a penalising factor which controls the relevance of the cases is essential. With these
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Figure 3.53: Diversity of the system with different
rewarding/penalasing factors.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98

Simulation1 - λ = 1.1 σ = 0.9
Simulation2 - λ = 1.05 σ = 0.95
Simulation3 - λ = 1.0 σ = 1.0

φ = 0.5 γ = 0.499

Figure 3.54: Accuracy of the system with different
rewarding/penalasing factors.

PARAMETERS

CBR/E
6 months
Training0
β = 0.98

Simulation1 - λ = 1.1 σ = 0.9
Simulation2 - λ = 1.05 σ = 0.95
Simulation3 - λ = 1.0 σ = 1.0

φ = 0.5 γ = 0.499
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factors, the system is able to work out which cases should be used in order to find

out new successful recommendations and, therefore, the performance of the system

is drastically improved. However, the magnitude of these factors is not important,

since the performance of the system is the same whatever they are.

Simulation Duration

Another important parameter is the length of the simulation. Simulations are good

tools for analysing system performance, but they have some limitations. The fact

that we are trying to simulate the development of the user profile over time and

that the available information about the user is limited, restricts the time scale of

the results that can be calculated. Initially, the system uses the information of the

initial profile in order to find out new interesting items. Then, the simulator checks

the information available to see whether the item has been evaluated by the user

(successful or not). The new item is inserted in the user profile in order to learn

about the user preferences and also to adapt the user profile. Then, the system has

more information on which to base its recommendations and new items are selected

as interesting and recommended to the user. This process is repeated until all the

information available has been exhausted and no more evaluations can be performed.

Then, since the algorithm cannot find any new recommendations, the same group

of items are recommended over and over again. This situation would not happen

if there was an interaction with the user, since information from the user would

change the user profile. In spite of these limitations imposed by our simulator, we

can use it to analyse how many recommendations are required in order to achieve

a case base adapted to the user; that is to say, how many simulation cycles (days)

the system requires in order to get to know the user interests.

With this aim in mind, we tested four different simulation durations: 1 month,

6 months, 1 year and 2 years. A recommendation cycle is performed every day, so 1

month means that 30 recommendations have been performed. The results of these

simulations are presented in Figures 3.55 to 3.60.

Precision and Recall. The precision of the recommendation algorithm is the

same for all the time periods we simulated for except 1 month (see Figure 3.55).

Most of the simulations discover all the possible items at most within two and a
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Figure 3.55: Precision of the system with different
simulation durations.

PARAMETERS

CBR/E

Simulation1 - 2 years
Simulation2 - 1 year
Simulation3 - 6 months
Simulation4 - 1 month

Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

half months. However, when we simulated for 1 month, the results are a little bit

different since the simulations end in the middle of the discovering process. The

recommendation algorithm have not had enough time to recommend all the items

that appear to be interesting to the user and, in consequence, the recall of the

recommendation algorithm is lower than for the other simulations (see Figure 3.56)

and the precision is higher.

Fallout. The fallout graphs are very similar and once again it is demonstrated

that the fallout remains stable whatever the parameters and whatever the level of

forgetfulness (see Figure 3.57).

NCases. Of course, the NCases is affected by the simulation duration(see Fig-

ure 3.58). When the simulation is executed for a month, the discovering process

has not finalised and the case base contains less cases than it does for the other

simulations.

Diversity. Since, as in the other graphs, the duration of the simulation only affects

the very low levels of forgetfulness, diversity presents significative differences only

when ξ = 0.0 (see Figure 3.59). The simulation has had less time to retain cases

and, therefore, diversity is lower. Hence, the loss of diversity is lower (29%) when

the simulation is executed for a shorter time.
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Figure 3.56: Recall of the system with different
simulation durations.

PARAMETERS

CBR/E

Simulation1 - 2 years
Simulation2 - 1 year
Simulation3 - 6 months
Simulation4 - 1 month

Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Figure 3.57: Fallout of the system with different
simulation durations.

PARAMETERS

CBR/E

Simulation1 - 2 years
Simulation2 - 1 year
Simulation3 - 6 months
Simulation4 - 1 month

Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499
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Figure 3.58: NCases of the system with different
simulation durations.

PARAMETERS

CBR/E

Simulation1 - 2 years
Simulation2 - 1 year
Simulation3 - 6 months
Simulation4 - 1 month

Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Figure 3.59: Diversity of the system with different
simulation durations.

PARAMETERS

CBR/E

Simulation1 - 1 month
Simulation2 - 6 months

Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499
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Figure 3.60: Accuracy of the system with different
simulation durations.

PARAMETERS

CBR/E

Simulation1 - 6 months
Simulation2 - 1 month

Training0
β = 0.98
λ = 1.05 σ = 0.95
φ = 0.5 γ = 0.499

Accuracy. Finally, we obtain a better accuracy after 1 month of simulation when

the algorithm does not forget at all. However, we do not consider this difference sig-

nificant since the decrease observed in this simulation is very similar to the increase

observed when 6 months are simulated.

Results on simulation duration gives us an idea about the behaviour of the forget-

ting mechanism over time. Time is necessary to progressively adapt the user profile

to the target user. Our experiments have shown that with a static user; that is, a

user that does not change his preferences over time, slightly less than a month (30

recommendations) is needed in order to perfectly adapt the user profile and obtain

the best performance, since the performance of the system in the proposed level

of forgetfulness (ξ = 0.7) is exactly the same for 2 years as it is for one month.

Experiments of only a few days could be performed in order to find out exactly how

many days the forgetting mechanism needs to adapt the user profile, but since this

adaptation depends very much on the particular user and the dynamism of their

preferences, we can say that, at most, only 1 month is needed for a static user. We

think that this result can be generalised to more dynamic users (users that change

preferences over time) since typical users do not change their interests every month.
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3.7 Chapter Conclusions

In this chapter, we have presented a new approach to recommendation, based on

CBR. The main contribution of this approach is the forgetting mechanism which we

base on the drift attribute. The drift attribute controls the relevance of each case,

taking into account whether the given case leads to successful/failed recommenda-

tions and the currency of the user interest in such cases. Thus, the drift attribute lets

the recommender system distinguish between relevant and irrelevant cases. Conse-

quently, relevant cases will be more confidently recommended than irrelevant ones.

However, the most important advantage of applying the drift attribute is that the

utility problem is mitigated. Drift cases are deleted and the number of cases in the

case base becomes stable while the performance of the system is maintained and

even improved.

The aim of this work is not to present a new recommendation algorithm that

performs better than the rest. We simply want to demonstrate that our forget-

ting mechanism, proposed for case-based profiles, improves the quality of recom-

mendations. Therefore, everybody can implement the drift attribute in their own

recommender systems in order to improve their performance.

In order to validate our proposal, we have provided an experimental platform

for CBR recommender systems based on the profile discovering procedure. Using

this evaluation method, we have implemented a simulator that has demonstrated

the outstanding performance of the proposed forgetting mechanism.

The experiments have shown that the forgetting mechanism produces an increase

in precision, a decrease in recall and an important reduction in the number of cases

in the case base for all the recommendation algorithms, while preserving fallout and

accuracy. In particular, the precision of the system is drastically improved with

the proposed forgetting mechanism. The best precision is obtained when the rec-

ommender system forgets substantially. Forgetting too much is not good, although

not forgetting anything is even worse. In other words, from the point of view of

precision, forgetting at any level is better than not forgetting at all.

After presenting the results of the drift attribute from a global point of view, we

analyse how different recommendation algorithms, different forgetting parameters,

different initial item sets and different simulation durations affect the performance

of the forgetting mechanism. After an exhaustive analysis, we can conclude:
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• The forgetting mechanism improves the quality of recommendations whatever

the recommendation algorithm, provided that they take into account the rel-

evance of the user’s interest.

• Depending on the objectives of the recommender system, we can choose be-

tween a set of algorithms with a low recall and a very high precision and a set

of algorithms with a higher recall but a lower precision.

• Algorithms that incorporate implicit information (captured from the interac-

tion between the user and the system) from the recommendation process do

not provide significative improvements to the system performance.

• The speed of forgetting is strongly correlated with the forgetfulness thresh-

old. Therefore, choosing a good relationship between these parameters is very

important.

• The behaviour of the forgetting mechanism does not depend on the user’s

subjective assessments that define what is a success and what is a failed rec-

ommendation.

• The performance of the system depends strongly on the synergy between the

recommendation algorithm and the initial item set of items forming the initial

user profile. The best initial profile has to contain the most liked items, since

they are the most relevant at the beginning.

• A rewarding and a penalising function that controls the relevance of cases in

the case base is essential. However, the magnitude of these parameters is not

important.

• Less than 30 recommendations are necessary in order to perfectly adapt the

case-based profile to the user.

Of course, there are more combinations of parameters but we think that the ex-

perimental work presented in this chapter is exhaustive enough to prove the validity

of the forgetting mechanism approach we propose for CBR recommender systems.
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Chapter 4

Collaborative Recommender

Agents

Recommender systems sharply improve the quality of their results when information

about other users is utilised when recommending to a given user. The collaborative

filtering method has shown important results in this sense, although this method

requires the revelation of personal information about the users. In order to maintain

the privacy of the users’ personal data, we propose a new mechanism of collaboration

based on intelligent agents. Agents encapsulate the user profile and are in charge

of recommending interesting items to the user. Collaboration is achieved by means

of two methods based on the real world: the opinion-based filtering method and the

collaborative filtering method through trust. Both are based on a social model of

trust that provides the agents with a tool to decide with whom to collaborate. In

this chapter, we also propose an evaluation procedure for collaborative recommender

agents. The results show that our proposal improves the performance of a typical

collaborative recommender system while preserving privacy.

4.1 Introduction

In the real world, society in general, but especially our friends, help us to find new

and amazing things. Often our friends advise us an interesting product, movie,

book or restaurant, collaborating with us in a selection process. Being aware of

the relevance of collaboration in the real world, researchers have focussed on the

127
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development of recommender systems which can recommend items to a user based

on information from other users.

Particularly, the collaborative filtering method has proved to be an useful method

to take advantage of the collaborative world [Resnick 94, Shardanand 95, Breese 98,

Herlocker 99], especially when combined with other technologies in a hybrid ap-

proach [Balabanovic 97, Pazzani 99, Good 99]. This method recommends new items

based on the similarity between user profiles. In particular, given a user profile, a

set of similar profiles is found comparing the information contained in them (typ-

ically item evaluations). Then, the best evaluated items of the other profiles that

the given user has not evaluated are recommended.

However, collaborative filtering systems have an important drawback: the lack

of privacy of user’s personal data. The huge amount of user profiles centralised

in a server are a valuable data for marketers who want to invade people’s privacy

for profit. Who is interested in what is indeed useful information for enterprises in

designing their marketing campaigns. Thus, user’s personal data can be used as a

powerful tool for good (collaboration) or bad (commercial benefits).

Therefore, recommender systems have to ensure the privacy of the people behind

user profiles and the personal data contained in such profiles (for example, demo-

graphic information as names, age or profession, and information about interests

such as purchased products, visited restaurants or preferred books). Recommender

systems can protect user’s personal data on two levels. A first level ensuring pri-

vacy against people outside the recommender system and a second and deeper level

protecting personal information against other users within the system.

Increasingly, governments require enterprises to protect their systems at the first

level by law. The hardest problem arises when we want to protect systems at the

second level. In this direction, the scientific community is dedicating a great deal

of effort to the so-called recommender agents [Klusch 01]. Recommender agents

are like personal assistants who recommend interesting items to their users based

on past experiences. Recommender agents belong to a multi-agent system (MAS)

where agents with different functions coexist and collaborate in order to achieve their

purposes. The most interesting property of such agents is that they encapsulate the

user profile. The agent’s knowledge is not accessible by other agents nor by other

users. Moreover, since recommender agents are typically installed in the user’s
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computer, all information relating to the user is kept in private in a local machine

instead of a centralised server. Then, either the user or their own agents decide

what information to share and how. Anyway, in both cases the privacy of the user’s

personal information is protected. Finally, the anonymity of the users is protected

by the MAS infrastructure, which impedes the agents of the system from knowing

who the person behind a recommender agent is.

Privacy is achieved, but not without cost. If we want to take advantage of the

collaborative world, we have to share information about our interests and preferences

in order to find similar users who can help us. However, broadcasting personal

information raises privacy concerns. People want their privacy as well as the benefits

of personalised information, thus, there is a serious trade-off between privacy and

collaboration.

If recommender agents protect the user’s information, the collaborative filtering

method cannot be applied since a direct comparison among profiles is not possible.

The solution we propose is a new information filtering method: the opinion-based

filtering method. Its main idea is to recommend new items taking into account the

best friends’ opinion. That is, recommender agents will recommend a new item

that seems interesting to their users provided that their best friends give them good

opinions on it. Giving an opinion implies showing personal interests. However, if

an opinion is a value between 0 and 1 indicating from a total affinity to the item

(1) to a total dislike (0), no specific personal information is revealed. For example,

giving a good opinion on a certain product does not indicate that the user buys it.

Maybe the user likes this kind of product but has never bought it for some reason.

Thereby, an opinion on a certain item is a value that aggregates all the information

contained in the user profile regarding the item.

Only the opinions provided by best friends are taken into account in the rec-

ommendation process. In order to know which agents are good or bad friends,

recommender agents consider other agents as personal entities on whom they can

rely or not. Reliability is expressed through a trust value with which each agent

labels its neighbours. If a recommender agent A labels another agent B with a

high trust value, B is a good friend of A. Initially, trust is computed as a similarity

between opinions. Agents exchange and compare opinions in order to find similar

agents. The trust values of the agents are then modified depending on the prof-

itableness of the opinions and advice provided. Thus, the opinion-based filtering
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method provides recommender agents with a mechanism that allows them to look

for similar agents who can offer them opinions and advice, assuming that similar

agents have similar opinions about items.

We can now compare opinions by means of the opinion-based filtering method

and find out similar profiles; that is, friends. Therefore, thanks to the trust values

obtained through the opinion-based filtering method, an improved version of the

collaborative filtering method can be applied. In this new approach, recommender

agents only ask for recommendations to the agents with a high trust value.

In this chapter, we introduce this new approach to collaborative recommender

agents. These agents encapsulate user information, ensuring privacy. Then, they

use the opinion-filtering method to proactively ask other agents for their opinion in

a “lack of information situation” instead of remaining passive or providing either a

negative or an empty answer to the user. Finally, the agent receives new recommen-

dations from other agents in a new collaborative environment based on trust. Thus,

our social model exploits interactiveness while preserving privacy.

This chapter is structured as follows. The following section contextualises our

proposal within the current state-of-the-art. Sections 4.3.4 and 4.4 present the

new information filtering methods proposed (opinion-based and collaborative trust-

based, correspondingly). Section 4.5 introduces the formal social model of our ap-

proach to trust for recommender systems. Then, how the proposed methods has

been evaluated and experimental results are shown in sections 4.6 and 4.7 corre-

spondingly. Finally, in section 4.8 we provide some conclusions.

4.2 Related Work

Regarding privacy, a great deal of work has recently been done in order to protect

personal data in collaborative filtering systems. The assignation of pseudonyms to

users, for example in GroupLens [Resnick 94], has proved insufficient, since users can

be tracked. Bowbrick proposed the improvement of privacy protection by means of

multiple identities [Bowbrick 00]. Users are permitted to create and manage separate

identities, which may or may not reference the same user profile. They now have the

choice as to which identity to present to which site. We believe that in this proposal

too much work is delegated to the user.
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Many researchers bet on the generation of communities of agents with simi-

lar interests, where recommendations are provided from the community while the

personal information of each particular member is camouflaged. A great deal of

effort has been dedicated to the field of artificial immune systems (AIS) in order to

generate these communities in an anonymous way [Dickinson 03, Cayzer 02]. The

natural immune system is an adaptive learning system inspired by biology that

employs many parallel and complementary mechanisms for defense against foreign

pathogens. These ideas are very similar in spirit to the construction algorithm pro-

posed by Delgado [Delgado 01], and to the ideas of a distributed query, as used in

Gnutella [Gnutella 03]. Canny introduces an encryption mechanism when generat-

ing communities [Canny 02a, Canny 02b]. First of all, users decide what they want

to share. We claim that agents have to do this work, since we have designed them

in order to liberate the user of such annoying tasks. Then, the protocol proposed

is used in order to encrypt the shared information before aggregating it with the

information from other users in the community. The resulting information is pub-

lished with the aim of collaboration. We believe that generalisation at this level

could strongly affect the performance of the recommender agent. Our proposal also

wants to generalise, but to a lesser degree.

Regarding trust, there are very few approaches to trust in the collaborative

world applied to the information filtering field. Knowledge Pump is an information

technology system for connecting and supporting electronic repositories and net-

worked communities [Glance 98]. Glance et al. introduce a technique that they call

Community-Centred Collaborative Filtering (CCCF). In CCCF, the collaborative

filter is bootstrapped by a partial view of the social network constructed from a user-

input list of ”advisors” (people whose opinions users particularly trust). The set of

advisors is generated through statistical algorithms that mine the usage data auto-

matically. The collaborative filter gives a higher weight to the opinions of his/her

most trusted contacts when predicting the user’s opinion on items. The main differ-

ence from our model is the computation of the trust value since Glance bases it on a

person-person correlation. So transparency of user data is required through agents,

while in our system privacy prevails.

In other fields, such as electronic commerce, we can find other trust models

that fit the particularities of the domains. For example, Schillo et al. present

a formalisation and an algorithm for trust so that agents can autonomously deal
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with deception and identify trustworthy parties in open systems [Schillo 00]. They

demonstrate with results that their approach helps each single agent to establish a

model of trustworthiness of other agents. With only a few iterations, agents learn

whom to trust and whom to exclude from future interactions. They also show

that agents form groups and interact to profit from mutual support. Previously,

Schillo had implemented a relevant computational method in the Social Interaction

FrameWork (SIF) [Schillo 99] in which an agent evaluated the reputation of another

agent on the basis of direct observation and through other witnesses. The idea of

using the opinion of other agents to build a reputation is also applied by Yu and

Singh [Yu 00]. Their agents build and manage trust representations not only taking

into account previous experiences of their users, but also communicating with other

agents (belonging to other users). They aim at avoiding interaction with undesirable

participants and formalising the generation and propagation of the reputation in

electronic communities.

4.3 The Opinion-Based Filtering Method

The main idea of the opinion-based information filtering method is to consider other

agents as personal entities on whom you can rely or not. Reliability is expressed

through a trust value with which each agent labels its neighbours. The trust value

is initially computed through interaction, following the proactive playing agents

procedure explained in section 4.5.2.

Once the agent has a set of friends, it can use them to filter information. When

agents are not sure about a recommendation or discover a new item, they ask their

reliable agents for an opinion and use their trust values to decide whether the item

is interesting to the user or not. Once the agent has the opinion of the other agents,

a consensus is achieved through the use of an aggregation measure. The result of

the consensus provides a confidence value upon which the agent can decide on the

convenience of recommending an item to the user or not. Thus, instead of using the

best friends opinions directly as a recommendation, the agent includes it in its own

reasoning and combines it with other agents’ opinions in order to decide whether to

recommend a given item. We call this new process of filtering information based on

agents opinions the opinion-based information filtering method.
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Thus, the opinion-based filtering method is based on the exchange of opinions

among reliable recommender agents. But what is an opinion? An opinion on an

item is a value representing the interest the agent thinks his/her user has in that

item. Opinions are computed in two different ways depending on whether the user

has had any experience on it or not; that is, if the user has any evaluation of it in

the user profile.

We must now define how we represent the user profile and then explain how we

calculate, from the user profile, an opinion on either an item evaluated by the user or

a non-evaluated item. Finally, we describe how the opinion-based filtering method

is used in order to recommend new items to the user.

4.3.1 User Profile Representation

We consider a user profile representation as a case base containing past experiences

on certain items according to the CBR approach presented in the previous chapter

(see section 3.3.1).

For example, in the restaurant domain, items and interests are represented as:

At = {name, address, phone number, cuisine,

approximate price, capacity, web page}

Inte = {quality/price relation,

quantity of food

table − waiting efficiency}
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Inti = {web page visits,

recommended times,

retrieved times}

A single experience of the user in the Mallorca restaurant is:

E =< {”Mallorca Restaurant”,

”2228 East Carson St, P ittsburgh, PA”,

”(412)4881818”, ”Spanish”, ”$70”, 300,

”www.mallorcarestaurant.com”},
{0.83, 0.76, 0.91},

{2, 21, 12},
0.83 >

The experience of agent ai in item pj is Ei,j, and the set of all possible experiences

is denoted as E . The set of past experiences constituting the user profile is denoted

as Ei, where Ei ⊂ E .

In an open environment such as Internet, recommender agents collaborate in

what is called a multi-agent system (MAS). The function of these agents is to rec-

ommend new items to their users. In order to achieve this purpose, recommender

agents collaborate exchanging information with each other. Hence, a list of agents

which the agent trusts is also incorporated in the user profile representation.

Given a set of agents

A = {a1, a2, . . . , ar},

each agent ai has a list of contact neighbourhood agents on which it relies:
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Ci = {(ai1 , ti,i1), (ai2 , ti,i2), . . . , (ain , ti,ik)}

where aij ∈ A and ti,ij is a numerical value between [0,1] that represents the trust

value that agent ai has in agent aij . Like the set of experiences, the contact list has

to be initialised in order to start the collaboration as soon as possible. The initial

contact list is generated by means of the “playing agents” procedure explained in

section 4.5.2.

Therefore, we represent the user profile of agent ai with the past experiences and

the set of selected agents who agent ai trusts:

Profi =< Ei, Ci >

4.3.2 Opinion On an Evaluated Item

Instead of revealing all the user’s personal information regarding an evaluated item,

an opinion is a value that aggregates all the interest attributes of the experience

in a given item. Exchanging all the information about the users’ interests in the

evaluated item would violate their privacy. However, a simple value representing

their opinion hides detailed information and preserves personal data.

Thus, an opinion consists of a quantitative value, between 0 and 1, which repre-

sents the degree of interest the agent thinks the user has in the item ranging from

a total affinity (1) to a total dislike (0). This value is calculated aggregating all the

information about the interests of the user in the given item. Thus, the opinion Vi,j

of an agent ai in a item pj is calculated following equation 3.1.

Applied to the previous example on the experience of the user in the Mallorca

restaurant, we have the following values:

• First, for example, the weights of the explicit interest attributes selected by

the user are:
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Explicit Attributes Weights

quality/price relation 0.6

quantity of food 0.1

table-waiting efficiency 0.3

Therefore, f e
j = 0.6 ∗ 0.91 + 0.1 ∗ 0.83 + 0.3 ∗ 0.76 = 0.86

• Second, the function we have selected to aggregate the implicit attributes

proposed is the following:

f i = 0.35 ∗ 2 ∗ atan(v)

π
+ 0.45 ∗ 2 ∗ atan(1

r
)

π
+ 0.2 ∗ 2 ∗ atan(c)

π
(4.1)

where v is the number of visits to the restaurant web page, r is the number of

times the restaurant has been recommended to the user and c is the number

of times the restaurant has appeared as a result of a query performed by the

user (retrieved times).

Therefore, f i = 0.35 ∗ 2∗atan(2)
π

+ 0.45 ∗ 2∗atan( 1
20

)

π
+ 0.2 ∗ 2∗atan(12)

π
= 0.44

• Then, the application of the g function to aggregate explicit and implicit gen-

eral evaluations is calculated with ρe = 0.7 and ρi = 0.3:

g(f e
j , f i

j) = 0.7 ∗ 0.86 + 0.3 ∗ 0.44 = 0.73

• Finally, the interest value representing the user’s opinion on the item is com-

puted taking into account the relevance of the item:

Vi,j = 0.83 ∗ 0.73 = 0.61

4.3.3 Opinion On a Non-Evaluated Item

An opinion on a non-evaluated item is calculated from other evaluated items with

similar item attributes. Since the user has had no experience with the item, experi-

ences with similar items are used. For example, if a recommender agent is enquired

about a non-evaluated restaurant and the user has had good evaluations of sev-

eral other restaurants with similar cuisines and prices, the recommender agent can

suppose the user will have a good opinion on the new restaurant.
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In order to calculate the opinion on an enquired item r that the user has not

evaluated and according to the CBR approach presented in section 3.3, the following

steps are performed:

1. The similarity Sim between the enquired item r and all the items contained

in the case base is computed through similarity functions (see section 3.3.2).

2. A set of best matches is chosen. In our implementation, we select the x best

cases retrieved which exceed a minimum selection threshold.

3. The item interest value Vi of each selected item i is computed using equa-

tion 3.1.

4. The interest confidence value I of the enquired item r is computed as a

weighted ponderation of the item interest values of each similar item (see

equation 3.4).

5. The interest confidence value Ir is the opinion provided.

It is important to note that giving opinions using this CBR approach reinforces

the privacy concept. Recommender agents show user interests without revealing

concrete information. For example, a good opinion on a restaurant means that

the recommender agent thinks the user could be interested in it, perhaps because

the user has a good evaluation of it or the user profile shows a liking for similar

restaurants.

4.3.4 Recommendations Based on the Opinion-Based Fil-

tering Method

A hybrid approach between content-based and opinion-based filtering methods is

used in order to decide which items to recommend to the user. Recommender agents

can receive a new item from their environment, or they can also proactively look

for new items (for example, asking an agent who provides information about items).

When an agent discovers a new item, pnew, a content-based filtering method is used in

order to decide whether it is interesting for the user. First of all, the agent’s opinion

on the new item is calculated following the CBR approach proposed in section 4.3.3.
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Thus, based on the experiences with similar items, the agent generates an own

opinion on the new item. Then:

• If the own opinion on the new item is over a top doubt threshold τ+, the agent

recommends it to the user.

• If the own opinion is under a bottom doubt threshold τ−,the agent does not

recommend the new item to the user assuming that the user has no interest

in it.

• If the own opinion is confined within the doubt thresholds (τ−, τ+), the agent

turns to the opinion-based filtering method in order to decide whether to

recommend the new item.

The opinion-based filtering method consists of the following steps:

1. Ask the agents contained in the contact list for their opinion on item pnew. For

each enquired agent aei
an item interest value Vei,new is calculated following

equation 3.1.

agent opinion
ae1 Ve1,new

ae2 Ve2,new
...

...
aen Ven,new

Table 4.1: Opinion of the agents in the contact list.

2. Compute a global value for the new item, rnew, based on the opinion of the

queried agents with a trust value over the trust threshold ω. Note that all

the agents in the contact list are asked for their opinion, although only the

opinions of the friends the agent most trusts are taken into account. It is

important to know the opinions of all the agents in the contact list in order to

update their trust values (see section 4.5.3). Thus, only best friend’s opinions

are aggregated. Since we are dealing with several sources of information, an

appropriate combination function is the weighted average (WA) where weights

are the trust values of the agents. So,
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rnew =

∑|Cq |
i tq,i ∗ Vei,new∑|Cq |

i tq,i

(4.2)

where tq,i is the trust value agent aq has in the queried agent aei
; and |Cq| is

the cardinal significance of the contact list of the querying agent aq.

3. If rnew goes above the τ+ threshold, then the new item is recommended to the

user.

4.4 The Collaborative Filtering Method Through

Trust

When a recommender system is implemented as a distributed world of recommender

agents, the typical collaborative filtering method cannot be applied. The fact that

recommender agents encapsulate user profiles makes impossible a direct comparison

among them; the basis of the collaborative filtering method.

However, the opinion-based filtering method allows recommender agents to inter-

act and, therefore, compare their interests through opinions and find similar agents

who can give them advice. Thus, a new collaborative filtering approach arises.

A typical collaborative filtering method recommends to the user the best evalu-

ated items from similar profiles. In our method, a recommender agent asks his/her

reliable agents for a set of items most preferred by their users, assuming that his/her

user would prefer them as well. This is what we call ”ask for advice”. We now de-

scribe in more detail how advice is provided and how recommendations are made

using the collaborative filtering method through trust.

4.4.1 Advice

When an agent ao trusts in another agent ai, ao can ask ai for advice. In particular,

ao asks ai for k recommendations. Then, ai looks for a set of items, Pk, where Pk

contains the k most preferred items by the ai’s user.

Given
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Ei = {Ei,j1 , ..., Ei,jn}

as the set of items conforming to the user profile that agent ai encapsulates, where

Ei,jm is the experience of ai in item pjm , and n is the number of experiences contained

in the user profile.

Then, ai evaluates the interest confidence values, Vi,jm , of all the items pjm con-

tained in Ei by means of Equation 3.1. Thus,

Ei = {(Ei,j1 , Vi,j1), ..., (Ei,jn , Vi,jn)}

where Vi,jm represents the interest ai thinks his/her agent has in item pjm . Finally,

the k items with the highest Vi,jm are sent to ao.

4.4.2 Recommendations Based on the Collaborative Filter-

ing Method Through Trust

Taking advantage of the trust values with which agents label their neighbours, an

improved version of the collaborative filtering method is used in order to obtain new

recommendations. In particular, the following steps are performed:

1. Recommender agents ask their best friends (only the agents contained in the

contact list with a trust value over ω) for the preferred restaurants of their

users. The enquired agents respond with a set of items and their opinion on

them.

agent recommendations
ae1 (pe1,1, Ve1,1), ..., (pe1,k, Ve1,k)
ae2 (pe2,1, Ve2,1), ..., (pe2,k, Ve2,k)
...

...
aen (pen,1, Ven,1), ..., (pen,k, Ven,k)

Table 4.2: Collaborative recommendations.
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2. A confidence value for each advised item is computed by multiplying the

friend’s opinion Vei
with its trust value tq,i. If the same item is recommended

by several friends, the confidence value is computed by aggregating the differ-

ent opinions following equation 4.2, where |Cq| is the number of friends who

recommend the given item.

3. Finally, a list of advised items with a confidence value is obtained. The item

with the highest confidence value is recommended to the user.

It is important to note that when either opinion-based or collaborative filter-

ing is applied, if the enquired agents provide the interest values of the item; that

is, inte1, ...intem, and inti1, ...intil, instead of an aggregated value, Vi, the informa-

tion gathered by the querying agent will be fuller and a more accurate decision

can be made. For example, we can use Multicriteria Decision Making techniques

(MCDM, [Valls 00]) based on the preferences of the querying agent. However, such

information can be considered confidential in some environments. Therefore, in our

approach privacy prevails over accuracy.

4.5 Social Trust Model for Recommender Agents

Recommender agents are used to assist users by filtering information. Just as in

the real world where people ask their friends for advice on interesting items, an

agent should be able to ask for opinions only from reliable agents. Marsh proposes

the concept of trust to make our agents less vulnerable to others [March 94]. Trust

is basic in any kind of action in an uncertain world; in particular it is crucial in

any form of collaboration with other autonomous agents [Castelfranchi 01]. There

is no standard definition for trust [Gambetta 90, Castelfranchi 98]. Elofson gives

a definition closer to our approach [Elofson 98]. He claims that observations are

important for trust, and he defines trust as:

”Trust is the outcome of observations leading to the belief that the actions of

another may be relied upon, without explicit guarantee, to achieve a goal in a risky

situation”

Elofson notes that trust can be developed over time as the outcome of a series of

confirming observations (also called the dynamics of trust). From his experimental
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work, Elofson concludes that information regarding the reasoning process of an

agent, more than the actual conclusions of that agent, affect the trust in those

conclusions.

Trust is formed and updated over time through direct interactions or through

information provided by other members of society about experiences they have had.

Each event that can influence the degree of trust is interpreted by the agent either

as a negative or a positive experience. If the event is interpreted as a negative

experience the agent will loose his trust to some degree and if it is interpreted to be

positive, the agent will gain trust to some degree. The degree to which trust changes

depends on the trust model used by the agent. This implies that the trusting agent

carries out a form of continual verification and validation of the subject of trust over

time.

Some efforts have been made in the study of social models of trust in market

environments [Sabater 00], where several agents compete for their individual profit

as well as in other environments where agents need to delegate actions to other agents

[Castelfranchi 98]. What we propose is a social model of trust in the information

filtering environment, providing recommender agents with a technology to make

them less vulnerable to others’ opinions. Next, we describe the model by means

of the following sections: trust representation, initial trust generation and trust

adaptation.

4.5.1 Trust Representation

The trust value agent ai has in another agent ao, ti,o, is represented with a real value

between 0 and 1:

ti,o ∈ [0 − 1]

where 1 represents that ai blindly relies on ao and 0 that ai totally mistrusts ao.

4.5.2 Initial Trust Computation

In order to start the collaboration, recommender agents need to fill in the initial

contact list. Thus, reliable agents have to be found in the MAS. We assume that
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there is a service in the MAS that provides a list of currently available agents.

This assumption is reasonable taking into account that most of the MAS platforms

currently available are FIPA compliant [FIPA 03] and provide such service. Then,

for each agent, an initial trust value is computed by means of a procedure that we

have called playing agents. This procedure is based on Steels work [Steels 97] and

consists of the following steps:

1. The querying agent selects a set of available agents (enquired agents) in order

to compute their initial trust.

2. The querying agent asks an agent in the set for their opinion on one or several

items in the initial item set.

3. The opinions of the other agent are compared with the opinions of the querying

agent resulting in a similarity value.

4. Steps 2 and 3 are repeated for all the agents in the set of enquired agents.

5. Only agents with a similarity value over a given threshold (ω) are kept in the

initial contact list. The similarity value will be the initial trust value.

The first step consists of the selection of a set of recommender agents to contact.

We must note that the number of agents in the collaborative world is a matter of

constraint. That is, it will be very time-costly if any agent, in order to build a

contact list, starts a playing agents procedure with all the available agents in the

world. For example, in a platform where agents recommend restaurants in Girona,

up to 75.000 agents, one for each citizen, could be considered in the playing agents

procedure. To reduce the number of agents to be queried, in each playing agents

execution only a random subset of available agents is considered.

Once a set of agents has been selected, the querying agent asks them for their

opinions on a set of items from the initial item set; that is, the playing item set (step

2). For example, the best and the worst evaluated item. We can apply this procedure

because all the experiences contained in the initial profile have been generated from

the same initial item set.

Thus, the current querying agent, aq, gathers a total of |P t| opinions from each

enquired agent aei
, one for each item in the enquired set (see table 4.3).
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agent p1 p2 . . . p|Pt|
ae1 Ve1,1 Ve1,2 . . . Ve1,|Pt|
ae2 Ve2,1 Ve2,2 . . . Ve2,|Pt|
...

aen Ven,1 Ven,2 . . . Ven,|Pt|

Table 4.3: Interest values gathered by the querying agent.

Then, the third step consists of calculating an initial trust value based on the

similarity between the opinions of the querying and the enquired agents. The trust

that agent aq has in agent ae, noted as tq,e is computed as follows:

tq,e =

∑|P t|
i=1 δqi

(1 − |Vq,i − Ve,i|)∑|P t|
i=1 δqi

(4.3)

where Vq,i and Ve,i are the opinions of aq and ae on item pi correspondingly, and

δqi
is a temporal parameter in [0,1] that indicates the relevance agent aq gives to

item pi. This parameter is called the drift attribute and is part of the forgetting

mechanism explained in chapter 3. This function computes a nearest neighbour

similarity between the opinions of both agents, weighted by the relevance of the

items according to aq’s interests (the querying agent). The result of the function is

a normalised value in [0,1].

Finally, once the querying agent knows the similarity (initial trust) between their

opinions and the opinions of the other agents, the initial contact list is generated.

This is achieved by means of a trust threshold (ω): only the agents with an initial

trust over ω are kept in the initial contact list. Thus, initially agents are not con-

sidered reliable either because of their honesty or their trustworthy information but

because of similar preferences, interest or styles.

However, recommender agents do not only look for reliable agents at the begin-

ning. Agents should try to make new friends over time. This is a very important

issue since, at the beginning, the user profile contains only a little information about

the user due to the lack of interaction. As time passes, the user profile better de-

fines what the user is interested in and, therefore, the playing agents procedure is

more efficient when looking for reliable friends. Moreover, taking into account that

user’s interests change in the course of time, having a good friend today does not
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mean that I will have the same friend in two years. And viceversa, having different

interests today does not mean that we cannot be good friends at a future time.

Be aware that thanks to the CBR approach of the opinion-based filtering method

(see section 4.3.3), the sparsity problem seen in section 2.4.1 is solved. After a period

of adaptation to the user, when the recommender agent looks for new reliable agents,

the coverage of evaluated items becomes very sparse, having many user profiles with

different items evaluated. Therefore, only a very few items can be compared in order

to find similarities. With our proposal, when a recommender agent asks another

agent for his/her opinion on a non-evaluated item, an opinion is generated through

the CBR approach proposed in 4.3.3.

Hence, the playing agents procedure is repeated periodically in order to add new

agents to the contact list according to the evolution of the user interests. Moreover,

the trust value of each agent is updated as a result of a recommendation, as explained

in section 4.5.3. In this sense, acquaintance among agents is improved over time.

4.5.3 Trust Adaptation

In order to adapt the contact list, recommender agents need relevant information

regarding feedback on recommendations given to the user. If agents provide rec-

ommendations based on the opinions or advice of their reliable agents, the trust

in these agents should be updated according to the outcomes. The most common

way to obtain relevant feedback from the user is by means of the information given

explicitly by the user, although the information observed implicitly from the user’s

interaction with the agent can be also used. In our model, this relevant feedback is

captured and kept in the Inte and Inti sets, included in each experience of the user

profile (see section 3.3.1).

First of all, we need to consider if the recommendation has been successful or

not. According to the relevant feedback on the item, the real interest of the user in

the item Vreal can be computed following equation 3.1. Since we know the individual

opinion of the agents in the contact list (see table 4.1), we are able to analyse which

agents agree with the real interest of the user and which agents do not. Then, the

trust value of agents should be updated accordingly to their difference with the real

interest shown by the user.
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Thus, for every agent aei
in the contact list of agent aq, its trust value tq,i is

updated as follows:

tq,i = ϕ ∗ tq,i + (1 − ϕ) ∗ (1 − |Vreal − Vei,new|) (4.4)

where ϕ is the trust modifying factor that manages the evolution dynamics of trust.

This function was proposed by Jonker and Treur in [Jonker 99]. For a value of

ϕ = 0.8 we get a slow positive, fast negative dynamics; and for a value of ϕ = 0.5 we

get a slow negative, fast positive dynamics. Obviously, a slow positive, fast negative

dynamics is more appropriate for critical domains where a negative experience is

strongly penalised.

However, if confidence in other agents is updated only when they provide opin-

ions or recommendations, a strange phenomenon could happen: agents who never

give advice (i.e., because they are not online or because they do not provide new

information) never leave the contact list. This phenomenon can result in a contact

list full of useless agents. In order to study the effect of this phenomenon in the

recommendation process, a decreasing factor χ has been introduced in the profile

adaptation process. This parameter gives us the ability to progressively lose confi-

dence in reliable agents in order to ignore them in the future, unless they provide

useful information. Thus, for every agent aei
in the contact list of agent aq, its trust

value tq,i is decreased with the following formula:

tq,i = χ ∗ tq,i (4.5)

where the trust decreasing factor χ is a value lower than 1.

Therefore, thanks to this adaptation, reliability leaves the initial sense of simi-

larity and progressively acquires the trust scent of multi-agent systems.

4.6 Evaluation Methods

This section presents the methodology used to evaluate our trust model and filtering

methods. Particularly, how results have been acquired and which measures have

been used to evaluate them.
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4.6.1 Evaluation Metrics

A set of metrics is proposed in order to evaluate recommender systems: precision ,

recall, f-measure, fallout, friendship and diversity. All these measures are explained

in section 3.5.1, except friendship.

Friendship

Friendship represents the percentage average of friends a recommender agent has

over time and is calculated as follows:

H =

∑k
i=0 |Fi|

NF ∗ k
(4.6)

where Fi is the number of friends on day i, NF is the total number of possible

friends and k is the number of days.

Friendship is a very important measure since it allows us to understand the

degree of collaboration in open environments. Moreover, with this measure we can

see the effect of the parameters used in order to generate the contact list.

4.6.2 Results Acquisition

An extended version of the profile discovering evaluation procedure (see section 3.5.2)

has been designed in order to simulate a multi-agent system (MAS) of collaborative

recommender agents instead of an isolated recommender agent. If the current tech-

niques proposed in the state-of-the-art do not allow the proper evaluation of single

recommender agents, neither are they valid for evaluating a MAS of collaborative

recommender agents. Thus, we propose the ”profile discovering evaluation procedure

with collaboration”. The main idea of this new technique is essentially the same as

profile discovering but it takes into account the opinions and recommendations of

other recommender agents in the system as well. The simulation is also performed

cycle by cycle. At every cycle new agents enter into the simulation process, the var-

ious agents try to make new friends and each agent recommends new items based

on the simulated user profile with collaboration from the other agents. Thus, the

profile discovering evaluation procedure with collaboration consists of the following
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Figure 4.1: Initial Profile Generation.

steps:

1. Initial Profile Generation: as in the profile discovering procedure, an initial

simulated user profile is generated as from the real user profile contained in

the logs (see Figure 4.1). Each real user profile has a day assigned, which

is the cycle the simulated agent enters into the system. Thus, the simulator

has to check at every cycle whether there is any new entry and generate the

corresponding initial profile.

2. Contact List Generation: each recommender agent has to generate a contact

list of reliable friends where reliability expresses similar interests and prefer-

ences. Then, only recommender agents will ask for opinions or advice from

the most reliable agents in the contact list. Particularly, our agents look for

new reliable friends through the playing agents procedure (see section 4.5.2).

Thus, the simulator emulates the process where each agent looks for new re-

liable friends at every cycle (see Figure 4.2). The method to select the group

of items to compare and the minimum trust value a reliable friend must have,

are parameters of the simulator.

3. Recommendation Process: at every cycle, each agent recommends new items

based on the simulated user profile and with the collaboration of the most

reliable agents contained in its contact list (see Figure 4.3). The collaboration

of reliable agents is achieved through the opinion-based filtering method and

through collaborative recommendations based on trust. The opinion-based

filtering method consists of the validation of a recommendation asking for an

opinion from reliable friends when the given agent is not sure. The recommen-

dation algorithm and the thresholds defining when items are recommended

to the user and when the opinion-based filtering method has to be applied
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Figure 4.2: ”Playing Agents” Procedure.

are parameters of the system. Furthermore, agents can also receive collabora-

tive recommendations by directly asking for interesting items of their reliable

friends. Finally, as in the profile discovering procedure, after each recom-

mendation, the simulator checks its success based on the user’s assessments

contained in the real user profile.

4. Profile Adaptation: besides classifying the recommendation as a success or a

failure, the simulator has to adjudge on the collaboration of the other agents.

In other words, if some reliable friends have recommended to an agent a cer-

tain item that has resulted in a failed recommendation, the given agent has to

decrease the trust in those friends. Likewise, if the other agents have recom-

mended an item that results in a successful recommendation, an increment of

their trust is necessary. The parameters controlling the modification of trust

values of agents in the contact list are parameters of the system.

In summation, the profile discovering procedure with collaboration consists of

the entrance of the recommender agents into the MAS, the interaction among them

in order to know each other, the recommendation process where each agent recom-

mends new items with the collaboration of their reliable friends, and the adaptation

of the user profile in order to improve the performance of the agent in the future.

Finally, when the simulation duration is exhausted, several metrics are analysed and

the results are presented.
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Figure 4.3: Recommendation Process in Profile Discovering with Collaboration.

4.7 Experimental Results

The opinion-based filtering method (OBF) and the collaborative filtering method

based on trust (CFT) have been implemented in GenialChef as well (see section 3.6).

The system was evaluated using the “profile discovering procedure with collabora-

tion” and all the evaluation measures explained in section 4.6.1 have been computed

in relation to different levels of acceptance in contact lists.

The results of the simulations are analysed in this section with the help of several

charts. The y-axis refers to the evaluation measures, namely precision, recall, f-

measure, fallout, friendship and diversity. All the measures, except diversity, are

represented in percentages. The x-axis refers to the different levels of acceptance in

contact lists; that is, the trust threshold (see, for example, Figure 4.4). The trust

threshold, ω, has two functions:

• ω is the parameter used in the playing agents procedure in order to control

how tolerant the agents are when selecting other agents as reliable; that is,

the minimum trust agent A must have in another agent, B, so that B belongs
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to A’s contact list.

• ω is the parameter used in the recommendation process in order to know who

are the most reliable friends; that is, the minimum trust agent A must have

in another agent, B, so that A takes into account B’s opinions and advice.

In particular, 13 different levels are analysed (every 0.05 from 0.4 to 1.0). The

ω values range from accepting almost every agent (ω = 0.4); that is, agents relying

on all the others, to excluding all agents (ω = 1.0); that is, no collaboration is

performed. This simple representation allows us to find out the effect of collaboration

on each evaluation measure.

In order to avoid anomalous data, as in the forgetting mechanism evaluation, sim-

ulations have been performed with 40 different real profiles, most of them obtained

after a real testing period of 2 months.

Below, we present the general results obtained with the profile discovering pro-

cedure with collaboration. The information filtering methods proposed are then

compared to the existing ones. Since OBF and CFT are implemented on the basis

of a content-based filtering method (CBF) with the forgetting mechanism, we next

analyse the effect of the collaborative world on the forgetting mechanism. Finally,

we validate the outstanding performance of the OBF and the CFT by analysing the

results obtained when the different parameters of the simulations are changed.

4.7.1 General Results

In order to analyse the performance of the system from a global perspective when

the OBF and the CFT methods are applied, several simulations were carried out.

Since the methods proposed have been implemented over the CBF method with the

forgetting mechanism, we want to point out that the following parameters were used

in order to configure the CBF method:



152 Chapter 4. Collaborative Recommender Agents

Figure 4.4: Precision of the system.

PARAMETERS a

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85

athe parameters used in
the simulation giving the
chart on the left as a result.

PARAMETER VALUE

Recommendation Algorithm CBR/E

Initial Item Set Training3

Drift Threshold ξ = 0.7

Drift Decreasing Factor β = 0.98

Rewarding/Penalasing Factors λ = 1.05 σ = 0.95

Success/Failure Thresholds φ = 0.5 γ = 0.499

These CBF parameters have shown to be the best in order to maximise the

performance of the recommender system without collaboration. Besides, another

set of simulation parameters regarding the MAS were selected as representative in

order to analyse the performance of the system. Specifically, the simulations were

performed with the doubt thresholds τ+ = 0.7 and τ− = 0.3; with the playing item

set Playing0; with the trust decreasing factor χ = 1.0 and finally, with the trust

modifying factor ϕ = 0.85. These parameters are described in detail in section 4.7.4.

Using these simulations, we analysed precision, recall, f-measure, fallout, friend-

ship and diversity measures, the details of which are given below.

Precision

Figure 4.4 shows the precision of the system when different trust thresholds are

analysed. We can see that precision exhibits a pronounced rise when agents are
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Figure 4.5: Recall of the system.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85

quite selective (between ω = 0.85 and ω = 0.9); that is, when only agents with a

high trust value are accepted as reliable. However, the system presents very bad

precision when many agents are contained in the contact list, even worse than when

there is no collaboration (ω = 1.0). Therefore, we can say that the information

filtering methods proposed exhibits an outstanding precision, provided that, agents

are very selective when they choose their reliable friends.

Recall

The system also exhibits better recall when agents are selective (see Figure 4.5),

although to a lesser degree than precision. Reasonably, the recall of the system is

higher when there is collaboration (any ω except ω = 1.0) than when there is not

(ω = 1.0), since reliable agents provide new information to the recommendation

process. Thus, the minimum recall is found when ω = 1.0. As long as agents are

less selective, recall increases sharply until ω = 0.8, the maximum recall, then recall

decreases progressively. A priori, we expected that as agents became less selective,

more agents were contained in contact lists and, therefore, recall was higher. How-

ever, our experiments show that from ω = 0.8 to ω = 0.4 recall slightly decreases.

The reason for this behaviour is that as more agents are contained in contact lists,

more diverse opinions and advice are provided. Since confidence values used to de-

cide whether to recommend are obtained by aggregating the information provided

by the agents in the contact list, as more agents are enquired, more diverse values
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Figure 4.6: F-Measure of the system when b=0.5.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85

are aggregated and, generally, the result is a mean value that seldom overcomes the

doubt threshold τ+.

F-Measure

Figures 4.6 to 4.8 show the f-measure of the simulation when precision and recall are

ponderated. Of course, if precision and recall are higher when agents are selective,

the f-measure of the system is also higher. When precision is twice as important

as recall (see Figure 4.6), the f-measure is clearly higher, between ω = 0.85 and

ω = 0.9. However, when recall is more important than precision (see Figure 4.8),

this interval increases and the maximum f-measure is found when ω = 0.8, since

this trust threshold has maximum recall. Therefore, we can conclude that regarding

precision and recall together, the performance of the system is maximum when the

trust threshold is confined between 0.8 and 0.9; that is again, when agents are quite

selective.

Fallout

Figure 4.9 shows the fallout of the system. Most of the fallout values are found in

the [3-4] interval. We can observe a maximum fallout value when ω = 1.0 and a

minimum value when ω = 0.5. Thus, we can say that the collaboration of reliable

agents reduces fallout. However, since the difference between values is very low, we
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Figure 4.7: F-Measure of the system when b=1.0.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85

Figure 4.8: F-Measure of the system when b=1.5.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85
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Figure 4.9: Fallout of the system.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85

believe that the magnitude of tolerance to rely on other agents does not affect the

fallout measure.

Friendship

Certainly, the trust threshold strongly affects the percentage of agents in the contact

list (see Figure 4.10). The higher the trust threshold, the smaller the number of

agents contained in the contact list. For this reason, when ω = 0.4, almost all the

available agents are part of the contact lists and, when ω = 1.0, contact lists are

empty. When the system achieves the best precision (ω = 0.87), only an average of

11% of agents are contained in the different contact lists, and when the best recall

is (ω = 0.8), the average increases up to 26%. These percentages are important in

order to know that the best performance of the system is achieved when only a few

agents are considered as reliable.

Diversity

The system loses diversity slightly if the number of contact agents decreases (see

Figure 4.11). This is perfectly reasonable since with many agents providing recom-

mendations, the information contained in the user profiles will be more diverse. The

same happens in the real world; a larger number of people can offer more diverse

recommendations than a smaller group. However, this increase of diversity has been
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Figure 4.10: Friendship of the system.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85

Figure 4.11: Diversity of the system.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0
ϕ = 0.85
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Figure 4.12: Precision of the system with different
information filtering methods.

Simulation1 - CBF
Simulation2 - CBF+OBF
Simulation3 - CBF+OBF+CF
Simulation4 - CBF+OBF+CF’
Simulation5 - CBF+OBF+CFT

shown to be unproductive, since the best precision and recall are obtained when the

diversity is lowest.

4.7.2 Information Filtering Methods

The OBF and the CFT have been proposed as a solution to the shortcomings that

arise when recommender systems want to take advantage of the collaborative world.

In this section, we will demonstrate that the information filtering methods proposed

maintain, and even improve, the performance of the existent methods.

Figures 4.12 to 4.17 show the precision, recall, f-measure, fallout, friendship

and diversity measures of the system with different information filtering methods

(Simulation1 to Simulation4). In order to make these simulations comparable, we

have used the same simulation parameters:
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Figure 4.13: Recall of the system with different
information filtering methods.

Simulation1 - CBF
Simulation2 - CBF+OBF
Simulation3 - CBF+OBF+CF
Simulation4 - CBF+OBF+CF’
Simulation5 - CBF+OBF+CFT

PARAMETER VALUE

Recommendation Algorithm CBR/E

Initial Item Set Training3

Drift Threshold ξ = 0.7

Drift Decreasing Factor β = 0.98

Rewarding/Penalasing Factors λ = 1.05 σ = 0.95

Success/Failure Thresholds φ = 0.5 γ = 0.499

Playing Item Set1 Playing3

Doubt Thresholds1 τ+ = 0.7 τ− = 0.3

Trust Decreasing Factor1 χ = 1.0

Trust Modifying Factor1 ϕ = 0.85
1 These parameters are deeply explained in section 4.7.4

Simulation1 was performed with the content-based filtering method (CBF) pro-

posed in chapter 3, where a forgetting mechanism was used in order to improve the

performance of the system. However, a little difference can be found between this

CBF and the one implemented in the simulation: the incorporation of the doubt

thresholds (see section 4.3.4). Thus, only recommendations with a confidence value

τ+ ≥ 0.7 are recommended to the user. All the graphs representing the simulation

with the CBF are totally flat, since no collaboration is performed.

Simulation2 integrates the OBF proposed in section 4.3.2 as a complement to

the CBF method of Simulation1. When the confidence value of a recommendation
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Figure 4.14: F-measure of the system with differ-
ent information filtering methods when b=0.5.

Simulation1 - CBF
Simulation2 - CBF+OBF
Simulation3 - CBF+OBF+CF
Simulation4 - CBF+OBF+CF’
Simulation5 - CBF+OBF+CFT

is confined between doubt thresholds τ+ = 0.7 and τ− = 0.3, the opinions of reliable

friends are incorporated into the recommendation process. The precision graph

presents a slight improvement (see Figure 4.12). The highest precision value can be

found between ω = 0.8 and ω = 0.9; that is, when agents are quite selective when

adding new friends to the contact list. However, the difference of precision in this

range is not very high. This is mainly due to the fact that only when the majority

of the best friends’ opinions are favourable, the confidence value overcomes τ+ and

the item is recommended to the user. Usually, the best friends’ opinions modify the

confidence value significantly but, only occasionally does this modification result in a

value over τ+. Therefore, recall is also slightly higher (see Figure 4.13). Since recall

and precision are improved, we can conclude that when the best friends’ opinions are

favourable and the confidence value overcomes τ+, recommendations are generally

successful. With regard to fallout and diversity, both measures are very similar to

Simulation1 (see Figures 4.15 and 4.17).

Simulation3 integrates a collaborative filtering method (CF) as a complement

to the CBF and the OBF methods of Simulation2. CF is the typical collaborative

method proposed in the bibliography, where, before recommending new items, all

user profiles are matched in order to find out similar interest. Then, based on

these similar profiles, new recommendations are made. Figure 4.12 shows that the

precision of the system is drastically improved in Simulation3. As many papers

claim [Balabanovic 97, Pazzani 99, Good 99], a hybrid approach between content
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Figure 4.15: Fallout of the system with different
information filtering methods.

Simulation1 - CBF
Simulation2 - CBF+OBF
Simulation3 - CBF+OBF+CF
Simulation4 - CBF+OBF+CF’
Simulation5 - CBF+OBF+CFT

and collaborative filtering methods has an outstanding performance. Furthermore,

we want to note that precision remains quite a bit higher even when many agents

are considered reliable. Recall is also improved (see Figure 4.13), although fallout

also increases a little (see Figure 4.15). At any rate, we can consider that the general

performance of the system is sharply improved.

However, the CF method is unfeasible. If thousands of users make use of the

recommender system, a profile matching cannot be performed at every cycle. With

this in mind, we have designed another simulation scenario. Simulation4 integrates

a feasible collaborative filtering method (CF’) over the CBF and the OBF methods

in Simulation2. CF’ works like CF, but the profile matching is carried out every

20 cycles instead of every cycle. We assume that 20 cycles is a reasonable time

interval between profile matchings. The results of this simulation show that when

many agents are accepted as reliable friends, the precision of the system decreases

in such a way that is very similar to the precision in Simulation1 (see Figure 4.12).

As agents become more selective when adding reliable friends to the contact list,

precision increases, although it never reaches the precision in Simulation3. This is

the simulation with the highest recall, although the system preserves a fallout value

near the CBF and the diversity is very similar to the CF approach in Simulation3.

We can consider that the performance of this simulation is worse than the CBF +

OBF + CF, although better than the CBF + OBF.



162 Chapter 4. Collaborative Recommender Agents

Figure 4.16: Friendship of the system with differ-
ent information filtering methods.

Simulation1 - CBF
Simulation2 - CBF+OBF
Simulation3 - CBF+OBF+CF
Simulation4 - CBF+OBF+CF’
Simulation5 - CBF+OBF+CFT

Figure 4.17: Diversity of the final case bases with
different information filtering methods.

Simulation1 - CBF
Simulation2 - CBF+OBF
Simulation3 - CBF+OBF+CF
Simulation4 - CBF+OBF+CF’
Simulation5 - CBF+OBF+CFT
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Finally, Simulation5 integrates the CFT proposed in section 4.4 as a complement

to the CBF and the OBF methods of Simulation2. This is our hybrid approach pro-

posed for collaborative recommender agents. The CFT method consists of adding

new friends with an initial trust value through the playing agents procedure and

then, depending on the success of their recommendations, updating their trust val-

ues according to the trust model proposed. We can observe in Figure 4.12 that

Simulation5 is the one with the highest precision between ω = 0.85 and ω = 0.9;

that is, when agents need a high trust value to be incorporated into the contact

lists. The precision in this interval is even higher than the precision when the op-

timal collaborative filtering method (CF) is applied. However, when many agents

are considered as reliable friends, precision drastically decreases and even reaches

values lower than in Simulation1, when no collaboration is performed. This simula-

tion also has high recall (see Figure 4.13), resulting in a high f-measure in the given

interval (see Figure 4.14). Moreover, the fallout from the system is lower than in

Simulation1 (see Figure 4.15). Finally, the diversity of the final case bases is very

similar to Simulation3 and Simulation4 (see Figure 4.17).

Therefore, we can conclude that the proposed information filtering method based

on trust performs better than existing ones, provided that only recommender agents

with high trust values are kept in their contact lists.

4.7.3 Forgetting Mechanism

The OBF and the CFT have been proposed as a complement to the content-based

filtering method (CBF) which improves the performance of a recommender system.

Since our proposal of CBF incorporates a forgetting mechanism, this section will

demonstrate that the inclusion of the collaborative world in recommender systems

does not affect the outstanding performance of the forgetting mechanism.

In order to do that, four simulations were performed. Figures 4.18 to 4.24 show

the results of these simulations from the point of view of different measures. Note

that, in these figures, the x-axis represents the different levels of forgetfulness; that

is, how much is forgotten by the forgetting mechanism.

Simulation1 gave us the results of the system when agents are simulated indi-

vidually and when the forgetting mechanism based on the drift attribute is applied

over the CBF method. Cases in case-based profiles are weighted taking into account
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Figure 4.18: Precision of a MAS of recommender
agents with the forgetting mechanism.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3

their relevance in the recommendation process. Then, irrelevant cases are forgotten

to better adapt the profile to the user interests and to solve the utility problem.

The results of this simulation are presented in the general results of the forgetting

mechanism (see section 3.6.1) and are repeated here for convenience. We want to

stress that the precision graph shows the expected bell shape with the maximum

value when ξ = 0.7.

No doubt thresholds (see section 4.7.4) are considered in the isolated CBF ap-

proach; that is τ+ = τ− = 0.5, while Simulation4 utilised τ+ = 0.7 and τ− = 0.3.

Moreover, Simulation1 generated the initial profiles with the Training0 initial item

set, while Simulation4 did it with Training3. In order to make this result compara-

ble, two more experiments were carried out. The first one in order to see the effect

of the doubt thresholds over the CBF method, and the second in order to analyse

how a more suitable initial item set affects the performance of the system.

Simulation2 is the same experiment as Simulation1 but with the doubt thresholds

τ+ = 0.7 and τ− = 0.3. In this simulation, agents were simulated individually

with the forgetting mechanism and only items with an interest value over 0.7 were

recommended to the user. The results of this simulation show that the precision of

the system is improved (40% when ξ = 0.7), although recall is considerably lower

(-180% when ξ = 0.7). Thus, the f-measure, when precision is twice as important

as recall, is very similar but worse when recall has more weight. A lower recall
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Figure 4.19: Recall of a MAS of recommender
agents with the forgetting mechanism.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3

Figure 4.20: F-Measure of a MAS of recommender
agents with the forgetting mechanism when b=0.5.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3
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Figure 4.21: F-Measure of a MAS of recommender
agents with the forgetting mechanism when b=1.0.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3

Figure 4.22: Fallout of a MAS of recommender
agents with the forgetting mechanism.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3
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Figure 4.23: NCases of a MAS of recommender
agents with the forgetting mechanism.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3

also produces an important decrease in the average of cases in the case bases over

time. The diversity of the final case bases is lower, although Simulation2 loses less

diversity than Simulation1.

Simulation3 incorporates the collaborative world over Simulation2; that is, the

OBF and the CFT methods have been applied over the CBF method with the for-

getting mechanism when τ+ = 0.7 and τ− = 0.3. Certainly, the collaborative world

provokes better results on recommender agents. In particular, precision increases

50% and recall 2% compared to Simulation2 when ξ = 0.7. This produces a better f-

measure whatever the weight of precision and recall. Moreover, ncases and diversity

are maintained while fallout is slightly better.

The last simulation scenario, Simulation4, differs from Simulation 3 in that the

former utilises the Training3 initial item set that has proved more useful. This

difference provokes an increase of precision around 65% and a recall 40% higher

when ξ = 0.7. Therefore, f-measure is also improved. Moreover, ncases is slightly

high while diversity is maintained. The only worse result is fallout, although the

difference is negligible.

Summing up, Simulation1 gives the general results of the forgetting mechanism

over an isolated agent. The doubt thresholds in Simulation2 provide recommender

agents with more precision though less recall. The incorporation of the collaborative

world over Simulation2 by means of the OBF and CFT methods increases precision
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Figure 4.24: Diversity of a MAS of recommender
agents with the forgetting mechanism.

Simulation1 - training0, isolated
agent, τ+ = 0.5, τ− = 0.5

Simulation2 - training0,
isolated agent, τ+ = 0.7, τ− = 0.3

Simulation3 - training0,
MAS, τ+ = 0.7, τ− = 0.3

Simulation4 - training3,
MAS, τ+ = 0.7, τ− = 0.3

significantly while preserving recall. And finally, the most suitable initial item set,

Training3, over Simulation3 provides the best results of the MAS of recommender

agents. In all the simulations, the behaviour of the forgetting mechanism, through

the different levels of forgetfulness, is the same. In particular, precision outlines a

bell-shaped graph with the maximum value when ξ = 0.7 and the minimum when

the system does not forget at all. Recall decreases as long as the drift threshold

increases and fallout remains stable. The number of cases in case bases is reduced

and diversity, though lower, is maintained regardless of ξ.

4.7.4 System Parameter Evaluation

In order to validate these general results, thousands of simulations with different user

profiles, different trust parameters and different playing item sets were performed.

The parameters used in the simulations are summarised in Table 4.4 and the results

of the simulations are shown in the following sections.

Doubt Thresholds

The doubt thresholds τ+ and τ− define when a recommender agent is sure about a

recommendation. When the interest value of a new item is above τ+, the item is

recommended to the user (see section 4.3.4). Moreover, these parameters are also
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PARAMETERS VALUES

User Profiles Profile1, Profile2, ..., Profile40

Trust Thresholds ω = 0.4, ω = 0.45, ω = 0.5, ..., ω = 1.0

Doubt Thresholds
τ+ = 0.5 τ− = 0.5, τ+ = 0.6 τ− = 0.4,
τ+ = 0.7 τ− = 0.3, τ+ = 0.8 τ− = 0.2

Playing Item Sets Playing0, Playing1, Playing2, Playing3
Trust Decreasing Factor χ = 1.0, χ = 0.999, χ = 0.99
Trust Modifying Factor ϕ = 0.0, ϕ = 0.4, ϕ = 0.85, ϕ = 1.0

Table 4.4: MAS Simulation Parameters.

used in order to decide when the agents collaborate by means of the opinion-based

filtering method. When the interest value of a new item is confined in [τ+, τ−], the

best friends’ opinions are incorporated into the decision process. In particular, four

(τ+, τ−) pairs were tested:

• τ+ = 0.5 and τ− = 0.5: if an item has an interest value above 0.5, it is

recommended to the user. Otherwise it is ignored. The opinion-based filtering

method is never used.

• τ+ = 0.6 and τ− = 0.4: the top doubt threshold is low, although a band

of uncertainty has been generated. Items with an interest value confined in

[0.4-0.6] have to be verified with reliable friends.

• τ+ = 0.7 and τ− = 0.3: items need a rather high interest value to be rec-

ommended to the user. An important band of uncertainty means that many

recommendations have to be verified with the best friends’ opinions.

• τ+ = 0.8 and τ− = 0.2: agents only recommend items when they are very sure

about it. Most of the time, the opinion-based filtering method is incorporated

into the decision process.

A priori, the simulations proposed lead us to believe that the higher τ+ and the

lower τ− are, the more precision, although with a lower recall. Figures 4.25 to 4.30

show the results obtained when different doubt thresholds are analysed.

Precision. Figure 4.38 shows the precision of the simulations proposed. As ex-

pected, the simulation with the highest precision is Simulation1; that is, when

τ+ = 0.8 and τ− = 0.2. Since agents only recommend new items when they are

really sure about it, recommendations often result in successes. On the other hand,

Simulation3 and Simulation4 are the ones with the lowest precision, since only a
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Figure 4.25: Precision of the system with different
doubt thresholds.

PARAMETERS

Simulation1 - τ+ = 0.8 τ− = 0.2
Simulation2 - τ+ = 0.7 τ− = 0.3
Simulation3 - τ+ = 0.6 τ− = 0.4
Simulation4 - τ+ = 0.5 τ− = 0.5

Playing0
χ = 1.0
ϕ = 0.85

minimum level of confidence has to be achieved in order to recommend. There-

fore, it is important to note that all the simulations, except Simulation4 (no OBF

method), present their best precision within the interval [ω = 0.85, ω = 0.9]. Thus,

we corroborate the general result that the best performance is obtained in this in-

terval.

Recall. Reasonably, the doubt thresholds strongly affect the recall of the system.

The higher τ+, the lower the recall. With a high τ+, only occasionally does the

agent find a new item with an interest value above this threshold and, therefore,

only a few recommendations are performed. By contrast, when just a minimum

level of confidence has to be achieved (when τ+ = 0.5), most of the new items are

recommended to the user.

F-Measure. As expected, the simulations with the highest τ+ are the ones with

the highest precision and the lowest recall. If we analyse precision and recall to-

gether, we can see how precision is balanced by recall. For example when b=0.5;

that is, when precision is twice as important as recall, Simulation1, which was the

simulation with the best precision, becomes the one with the worst f-measure (see

Figure 4.27). In this case, Simulation2 is the one with the best f-measure between

ω = 0.85 and ω = 0.9. When precision and recall have the same importance (see

Figure 4.28), the higher recall in Simulation4 results in the best f-measure.
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Figure 4.26: Recall of the system with different
doubt thresholds.

PARAMETERS

Simulation1 - τ+ = 0.8 τ− = 0.2
Simulation2 - τ+ = 0.7 τ− = 0.3
Simulation3 - τ+ = 0.6 τ− = 0.4
Simulation4 - τ+ = 0.5 τ− = 0.5

Playing0
χ = 1.0
ϕ = 0.85

Figure 4.27: F-Measure of the system with differ-
ent doubt thresholds when b=0.5.

PARAMETERS

Simulation1 - τ+ = 0.8 τ− = 0.2
Simulation2 - τ+ = 0.7 τ− = 0.3
Simulation3 - τ+ = 0.6 τ− = 0.4
Simulation4 - τ+ = 0.5 τ− = 0.5

Playing0
χ = 1.0
ϕ = 0.85
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Figure 4.28: F-Measure of the system with differ-
ent doubt thresholds when b=1.0.

PARAMETERS

Simulation1 - τ+ = 0.8 τ− = 0.2
Simulation2 - τ+ = 0.7 τ− = 0.3
Simulation3 - τ+ = 0.6 τ− = 0.4
Simulation4 - τ+ = 0.5 τ− = 0.5

Playing0
χ = 1.0
ϕ = 0.85

Figure 4.29: Fallout of the system with different
doubt thresholds.

PARAMETERS

Simulation1 - τ+ = 0.8 τ− = 0.2
Simulation2 - τ+ = 0.7 τ− = 0.3
Simulation3 - τ+ = 0.6 τ− = 0.4
Simulation4 - τ+ = 0.5 τ− = 0.5

Playing0
χ = 1.0
ϕ = 0.85
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Figure 4.30: Diversity of the system with different
doubt thresholds.

PARAMETERS

Simulation1 - τ+ = 0.8 τ− = 0.2
Simulation2 - τ+ = 0.7 τ− = 0.3
Simulation3 - τ+ = 0.6 τ− = 0.4
Simulation4 - τ+ = 0.5 τ− = 0.5

Playing0
χ = 1.0
ϕ = 0.85

Fallout. All the simulations have similar fallout (see Figure 4.29). However, we

can consider that Simulation1 has the best fallout, although we have to take into

account that it is also the one with the lowest recall.

Friendship. The doubt thresholds do not affect the average percentage of agents

contained in contact lists over time, since these parameters are not used in agent

selection.

Diversity. Figure 4.44 shows the diversity of the simulations proposed. Due to

the correlation between recall and diversity, the simulations with the highest recall

are also the ones with the highest diversity in the final user profiles. This is mainly

due to the fact that the simulations that recommend fewer items have user profiles

with fewer items and, therefore, diversity is affected.

Summing up, the results of the simulations concerning doubt thresholds showed

that if we want precise recommender agents, a high τ+ and a low τ− has to be

selected. Contrarily, if we are interested in recall, a low τ+ and a high τ− has to be

selected. We believe that a good trade-off is τ+ = 0.7 and τ− = 0.3 and, therefore,

the ones used in our simulations.
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Playing Item Sets

The set of items selected to be compared in the playing agents procedure is a param-

eter of the simulator. The aim of this section is to analyse the effect of the playing

item sets on the performance of the system. Five different sets were simulated:

• Playing0: the three items with the highest interest value and the three with

the lowest are selected.

• Playing1: utilises the item with the highest interest value and the one with

the lowest.

• Playing2: only the three items with the highest interest value are selected.

• Playing3: all the items contained in the user profile are compared.

• Playing4: four items in the user profile are selected randomly.

We expect the playing item set to condition the tolerance of the agents when

making new friends. For example, we believe that Playing1 is more selective than

the others since only two items are compared. If agents do not coincide in these

items, they cannot be friends. However, Playing3 compares all the items and,

therefore, it is easier to find out coincidences. The Playing4 set was simulated

in order to see if selecting which items to compare is relevant to the final results.

Figures 4.31 to 4.37 show the results obtained when the different playing item sets

are analysed.

Precision. Different precisions are obtained when the different playing item sets

are used in order to make new friends (see Figure 4.31). All the simulations show a

low precision when no collaboration is performed (ω = 1.0) and when many agents

are contained in the contact lists (from ω = 0.4 to ω = 0.65). The best precision

is obtained when agents are selective; that is, when the trust threshold is around

0.85. However, depending on the playing item set, the precision is higher. For

example, the simulation with the highest precision is when Playing0 is utilised. If

we compare only the three best items (Playing2), the precision of the system is

higher when many agents are contained in the contact lists. Finally, Playing4 is the

playing item set with the lowest precision. This fact makes us realise how important

the criteria to select a suitable set of items to compare is.
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Figure 4.31: Precision of the system with different
playing item sets.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85

Figure 4.32: Recall of the system with different
playing item sets.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85
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Figure 4.33: F-Measure of the system with differ-
ent playing item sets when b=0.5.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85

Recall. The recall of the simulations with different playing item sets is very similar,

except for Playing4 (see Figure 4.32). They show a slightly better recall when agents

are quite selective and the worst recall is found when no collaboration is performed.

Playing4 has a considerably higher recall between ω = 0.65 and ω = 0.95. This

is mainly due to the fact that this playing item set incorporates a high number of

agents in the contact lists (see Figure 4.36) and, therefore, agents collaborate to a

higher degree.

F-Measure. Figures 4.33 and 4.34 show the performance of the system when

precision and recall are analysed together. All the simulations have a similar f-

measure when precision is twice as important as recall (see Figure 4.33). However,

the highest recall, in the simulation with Playing4, results in a higher f-measure

when precision and recall are equally weighted (see Figure 4.34).

Fallout. No important differences were found when analysing the fallout of the

different simulations (see Figure 4.35). We only want to stress that Playing0 per-

forms slightly better, since it has a lower fallout than the other simulations in most

of the trust thresholds, especially between ω = 0.85 and ω = 0.9.
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Figure 4.34: F-Measure of the system with differ-
ent playing item sets when b=1.0.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85

Figure 4.35: Fallout of the system with different
playing item sets.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85
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Figure 4.36: Friendship of the system with differ-
ent playing item sets.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85

Friendship. The most important difference in the results of the simulations per-

formed with different playing item sets is the average percentage of friends contained

in the contact lists over time. Reasonably, the items used in order to compare opin-

ions influence how many friends are considered as similar. Figure 4.36 shows the

friendship of the different simulations proposed. The playing item set that most

differs from the others is definitively Playing4. We consider this method the least

selective when adding new friends to contact lists. This is because user profiles

contain many items with an indeterminate evaluation; that is, a user interest value

around 0.5. Since Playing4 selects items at random, there is a high probability that

these items will be selected and the users will have similar indeterminate opinions

about them. The comparison results with an initial trust value above 0.7, thus,

when ω = 0.7 shows almost 100% of the agents contained in the contact lists. The

second least selective playing item set is when all the items in the user profile are

compared (Playing3). In this case, the items with an indeterminate interest are also

used in the playing agents procedure, thus, they also have similar profiles. However,

we believe that the items with an indeterminate interest value do not define the

general interests of the user. For this reason, the other playing item sets contain

only the items with the highest and lowest interest value. For example, Playing1

contain only the item most preferred and the item the least preferred by the user.

This is the simulation with least collaboration, since fewer agents are contained in

the contact lists. Therefore, we can conclude that Playing1 is the playing item set
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Figure 4.37: Diversity of the system with different
playing item sets.

PARAMETERS

τ+ = 0.7 τ− = 0.3

Simulation1 - Playing0
Simulation2 - Playing1
Simulation3 - Playing2
Simulation4 - Playing3
Simulation5 - Playing4

χ = 1.0
ϕ = 0.85

most selective and Playing3 and Playing4 the ones that most collaborate.

Diversity. All the playing item sets except Playing4 produce a similar number of

clusters in the user profiles at the end of the simulations. We can see in Figure 4.37

that Simulation5 has a higher diversity between ω = 0.75 and ω = 0.95. As seen

before, this simulation is the one with the highest recall and, therefore, produces a

higher diversity in the final user profile.

Summing up, the results of the simulations performed with different playing item

sets show us the importance of the items used to make new friends. A small set

of items is always more selective than a larger group since it is more difficult to

coincide with only a few opinions and fewer agents are added to contact lists. A

suitable criteria to select which items to compare is also very important. Selecting

the items most and least preferred by the user has proven a useful method.

Trust Decreasing Factors

At every cycle, the trust decreasing factor χ decreases the trust of the agents con-

tained in the contact list. The aim of this parameter is to progressively lose reliability

on agents who do not provide information (see section 4.5.3). Agents providing in-

formation are judged according to the success of their recommendations. But, if
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Figure 4.38: Precision of the system with different
trust decreasing factors.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85

agents do not provide opinions or advice, trust in them is never updated. What we

want to study in this section is the effect of this parameter on the performance of

the system. In order to do that, three different factors were analysed:

• χ = 1.0: agents do not periodically decrease trust in their friends. All previous

experiments have been performed with this value.

• χ = 0.999: trust in reliable agents is slightly decreased at every cycle.

• χ = 0.99: the size of the decrease is higher than in other simulations.

No important differences are expected in the results of these simulations. It

is important to note that this decrease affects all the agents in the contact list in

the same way. Moreover, if we decrease all the trust values equally, since the final

recommendations are ponderated by trust in the other agents, the result is exactly

the same. Only agents who never provide opinions or advice will be affected by this

parameter; they will lose positions at the top of the contact list. Figures 4.38 to

4.44 show the results of the simulations with different trust decreasing factors.

Precision. Figure 4.38 shows the precision of these simulations. All the simula-

tions exhibit a similar precision when agents are very selective (around ω = 0.9).

This leads us to believe that the most reliable agents always provide information
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Figure 4.39: Recall of the system with different
trust decreasing factors.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85

and, therefore, the trust decreasing factor does not affect them very much. When

agents rely on many other agents, simulations present different precisions. The

higher the trust decreasing factor, the higher the precision of the system. The trust

decreasing factor penalises all the agents in the contact lists and, therefore, only

agents providing useful information are taken into account. However, since we claim

the most outstanding performance of the system is between ω = 0.85 and ω = 0.9,

the difference of precision in the other trust thresholds is not relevant.

Recall. We obtain similar results when the recall of the system is analysed (see

Figure 4.39). The recall in the various simulations is very similar when the trust

thresholds are very high. However, simulations exhibit a very different recall when

many agents are contained in the contact lists. When χ = 0.999, recall outlines a

bell shaped graph and the best recall is found when ω = 0.75. When χ = 0.99,

the best recall is found when most of the agents are contained in their contact lists.

Therefore, the higher the trust decreasing factor, the higher the recall when the

trust threshold is at its lowest.

F-Measure. The f-measure corroborates the results obtained with precision and

recall (see Figures 4.40 and 4.41). The f-measure in the interval [ω = 0.85, ω = 0.9]

is similar for all the simulations. However, when ω is low, the f-measure presents

a better result when a trust decreasing factor is applied. Moreover, the higher the
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Figure 4.40: F-Measure of the system with differ-
ent trust decreasing factors when b=0.5.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85

Figure 4.41: F-Measure of the system with differ-
ent trust decreasing factors when b=1.0.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85
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Figure 4.42: Fallout of the system with different
trust decreasing factors.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85

importance of recall, the higher the f-measure when many agents are considered as

reliable.

Fallout. No important differences are obtained when the fallout measure is anal-

ysed (see Figure 4.42). All the simulations exhibit a similar fallout ranging from 3

to 4, whatever the trust threshold.

Friendship. Simulations also exhibit a similar friendship (see Figure 4.43); that is,

the trust decreasing factor does not affect the average percentage of agents contained

in the contact lists over time. Reasonably, this parameter does not intervene in the

incorporation of new friends into the contact lists. However, the number of agents

intervening in the recommendation process; that is, the number of agents in the

contact list above the trust threshold, is lower when there is a high trust decreasing

factor. Trust values of useless agents have been decreased and their opinions and

advice are not taken into account, especially when many agents are contained in the

contact lists.

Diversity. The trust decreasing factor does not affect the diversity of the user

profile at the end of the simulation (see Figure 4.44). However, the number of

agents in a contact list does affect the diversity of the profile. The higher the
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Figure 4.43: Friendship of the system with differ-
ent trust decreasing factors.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85

Figure 4.44: Diversity of the system with different
trust decreasing factors.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0

Simulation1 - χ = 1.0
Simulation2 - χ = 0.999
Simulation3 - χ = 0.99

ϕ = 0.85
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number of friends, the more diverse the opinions and advice and, therefore, the

more diverse the user profiles. However, the difference of diversity between interval

[ω = 0.85, ω = 0.9] and interval [ω = 0.5, ω = 0.55] is not very significant, since only

0.8 clusters are lost.

Results on trust decreasing factors show that this parameter affects the perfor-

mance of the system mainly when agents are less selective when making friends.

When only the most reliable friends are contained in the contact lists, simulations

show very similar results. Thus, when agents are more tolerant when adding new

friends to contact lists, the trust decreasing factor causes an increase of precision

and recall. This is mainly due to the fact that this parameter especially penalises

agents who do not provide information and only useful friends are enquired during

the recommendation process. Therefore, this parameter helps recommender agents

in selecting which are the most useful reliable agents.

Trust Modifying Factors

The trust modifying factor ϕ controls the “acquaintance” of agents contained in

the contact lists from the usefulness of their opinions and recommendations (see

section 4.5.3). When an agent in the contact list gives good opinions or advice that

results in a successful recommendation, the trust value of this agent is rewarded.

Contrarily, if the resulting recommendation is badly evaluated by the user, the agent

is penalised. In order to do that, equation 4.5 is used, where ϕ ponders the effect of

success or failure on trust modification. In particular, four different trust modifying

factors have been analysed:

• ϕ = 0.0: only the last opinion/advice is taken into account. Thus, a recom-

mender agent relies blindly on other agents whose last opinion/advice resulted

in success. Contrarily, agents who gave a badly opinion/advice in the last

interaction are not believed.

• ϕ = 0.5: trust values are strongly affected by success or failure.

• ϕ = 0.85: trust values are slightly modified by success or failure.

• ϕ = 1.0: trust in other agents is never modified. Thus, the trust in agents

remains regardless of the result of their opinions/advice.
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Figure 4.45: Precision of the system with different
trust modifying factors.

PARAMETERS

τ+ = 0.7 τ− = 0.3
Playing0
χ = 1.0

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0

The trust modifying factor is used to reward/penalise reliable agents who provide

good/bad advice respectively. Therefore, when agents who do not provide useful

information are contained in contact lists, depending on ϕ, equation 4.5 penalises

them in order to improve the performance of the system. We expect that simulations

with ϕ = 1.0; that is, when trust is not modified, give the worst performance, since

agents who provide bad opinions/advice are always enquired. All other simulations

update trust values, therefore, we cannot predict which performs best.

After analysing the simulations performed with the various trust modifying fac-

tors, we can see that all of them present a similar performance (see, for example,

Figure 4.45). The reason for this is because the selected playing agents procedure

gives a good turnover and only a very few agents of the contact lists give bad opin-

ions/advice. In this case, we cannot estimate the effect of ϕ on the performance of

the system.

The playing item set used in these simulations, Playing0, proves to be the one

that best selects reliable friends (see section 4.7.4). In order to exhibit the ϕ effect,

we have repeated the simulations with a playing item set that selects inappropriate

friends. Playing5 selects reliable agents based on similar opinions on three items

that the user has evaluated with an undeterminate value (around 0.5). These items

are not relevant to users, thus, Playing5 does not provide the best set of friends.
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Figure 4.46: Precision of the system with different
trust modifying factors II.

PARAMETERS

Training4

τ+ = 0.7 τ− = 0.3
Playing5
χ = 0.99

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0

As explained in section 4.7.1, the Training3 initial item set has been used in all

the simulations since it proved to be the best. This set consists of the three best

and worst evaluated items by the user. If we want to select friends by means of

Playing5, we need three items with an indeterminate assessment in the initial user

profiles. Therefore, we have designed Training4, which incorporates the three items

with the most indeterminate evaluation in Training3.

The results of the simulations with Training4, Playing5 and different trust

modifying factors are shown in Figures 4.46 to 4.51.

Precision. Figure 4.46 shows the precision of the simulations with these parame-

ters. We can see that the precision is lower than in the simulations with Training3

and Playing0 (compare Figures 4.45 and 4.46), but now the effect of the different

trust modifying factors is appreciable. All the simulations exhibit a higher preci-

sion when ω is confined in the [0.8-0.95] interval. As expected, the simulation with

the lowest precision is when ϕ = 1.0; that is, when no adaptation is performed.

Agents maintain their reliance on their friends regardless of the result of their opin-

ions/advice. The other simulations perform similarly (especially between ω = 0.85

and ω = 0.95), although precision is slightly better when ϕ = 0.85. Thus, in our

experiments, a slow adaptation of trust values performs best. The high precision

obtained when only the success of the last opinion/advice is taken into account is
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Figure 4.47: Recall of the system with different
trust modifying factors.

PARAMETERS

Training4

τ+ = 0.7 τ− = 0.3
Playing5
χ = 0.99

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0

very interesting. An adaptation of taking into account only the last result is con-

siderably better than maintaining static contact lists over time. This result proves

the importance of a continual validation of trust values.

Recall. Figure 4.47 shows the recall of the system when various trust modifying

factors are analysed. All the simulations exhibit the highest recall when many

agents are contained in the contact lists (around ω = 0.5) and the lowest when

no collaboration is performed (ω = 1.0). No important recall differences can be

appreciated in these simulations, thus, the trust modifying factor does not affect

the recall of the system.

F-Measure. When precision and recall are combined, the results corroborate the

fact that trust has to be updated according to the outcomes. When precision and

recall are equally weighted (see Figure 4.49), the simulation with no adaptation is

the one with the worst result, although a similar f-measure is observed between

ω = 0.8 and ω = 0.9. Since the recall of the simulation is lower in this interval when

ϕ = 0.85, the f-measure is also slightly lower. When precision is twice as important

as recall (see Figure 4.48), the f-measure is the lowest regardless of ω when ϕ = 1.0.

The other simulations exhibit a very similar result in both graphs.
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Figure 4.48: F-Measure of the system with differ-
ent trust modifying factors when b=0.5.

PARAMETERS

Training4

τ+ = 0.7 τ− = 0.3
Playing5
χ = 0.99

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0

Figure 4.49: F-Measure of the system with differ-
ent trust modifying factors when b=1.0.

PARAMETERS

Training4

τ+ = 0.7 τ− = 0.3
Playing5
χ = 0.99

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0
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Figure 4.50: Fallout of the system with different
trust modifying factors.

PARAMETERS

Training4

τ+ = 0.7 τ− = 0.3
Playing5
χ = 0.99

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0

Fallout. The simulations with different trust modifying factors present similar

fallout, although little difference can be observed (see Figure 4.50). The simulation

with the lowest fallout between ω = 0.4 and ω = 0.75 is clearly when ϕ = 0.85.

This result corroborates that, in this domain, this simulation performs better than

the others.

Friendship. The trust modifying factor does not affect the selection of new friends.

Therefore, all the simulations have the same friendship.

Diversity. No important differences can be seen in the diversity of the final case

bases due to the correlation between recall and diversity (see Figure 4.51). A similar

number of recommendations results in a similar diversity in the final case bases.

Summing up, the results of the simulations with different trust modifying factors

have shown that it is very important to update the trust values in other agents.

The size of ϕ is strongly related to the speed in which the user interests change over

time. Reasonably, if users change their preferences constantly, trust values should be

updated frequently in order to better adapt contact lists. Contrarily, if the interests

of the users remain the same as time passes, a good/bad recommendation should not

affect trust in other agents very much. Since it is very difficult to know the speed in
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Figure 4.51: Diversity of the system with different
trust modifying factors.

PARAMETERS

Training4

τ+ = 0.7 τ− = 0.3
Playing5
χ = 0.99

Simulation1 - ϕ = 0.0
Simulation2 - ϕ = 0.5
Simulation3 - ϕ = 0.85
Simulation4 - ϕ = 1.0

which the interests of the users of the other agents change, we assert that the trust

modifying factor has to be determined according to the domain of recommendation.

In domains where users use to change their preferences quickly (for example in the

supermarket purchases), a low trust modifying factor provides fast adaptation to

the outcomes. However, in domains where the interests of the users persist for a

long time (for example, the domain in which the experiments of this thesis has been

performed: the restaurant domain), a higher trust modifying factor is suitable.

4.8 Chapter Conclusions

When recommender systems want to take advantage of the collaborative world, pri-

vacy issues arise. Recently, the protection of personal data has gained a great deal of

importance with the disproportionate growth of Internet. The typical collaborative

filtering method, which has proved very efficient, does not ensure the privacy of the

user’s information. In this chapter we have proposed a new method to deal with the

trade-off between privacy and collaboration. We propose recommender agents that

encapsulate personal data and collaborate by means of the opinion-based filtering

method (OBF) and the collaborative filtering method based on trust (CFT). The

OBF method allows users to exchange opinions that represent the user interests in a

certain item. By means of these opinions, agents can interact and find other agents
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on which to rely. Reliability is expressed through a trust value. A model that con-

templates trust dynamics has been proposed as well. Thanks to this trust model, the

CFT method can be applied. Agents obtain collaborative recommendations from

their reliable friends taking advantage of the collaborative world.

Therefore, only general information about the user interest is revealed. This is

how we deal with the trade-off between privacy and collaboration.

In order to study the OBF and the CFT methods and the effect of the different

parameters involved in the collaboration process, a new evaluation method has also

been proposed in this chapter: the profile discovering procedure with collaborations

simulates a MAS of recommender agents exchanging opinions and advice.

The experimental results show that the methods proposed improve the results ob-

tained with the typical content-based and collaborative filtering methods. However,

the OBF and the CFT methods are very sensitive to the number of reliable agents

contacted in the collaboration process. The outstanding performance is obtained

when only agents with a high trust value are kept in their contact lists.

After presenting the results of our proposal from a global point of view, we anal-

ysed how different doubt thresholds, different playing item sets and different trust

adaptation parameters affect the performance of the system. After this exhaustive

analysis, we can conclude:

• If agents recommend only new items to the user with a high certainty of being

accepted (high doubt threshold), the precision of the system is extremely high,

although only very few items are recommended. When the certainty of the

recommendation is low (low doubt threshold), recall is very high, but precision

decreases considerably. Therefore, the doubt thresholds have to be selected

depending on the purposes of the recommender system.

• The set of items to be compared in order to make reliable friends conditions

the results of the system. A small set of items is very selective and only a few

agents are considered as reliable. If we compare all the items in the profile

(the collaborative filtering approach), the contact lists contain more agents

but results are worse. It is important to have a good criteria when selecting

items to compare. The best results are obtained when only the three most

preferred and the three most disliked items are presented to the user.
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• A periodical decrease of the trust values produces a better performance of

the system when many agents are considered as reliable. A suitable trust

decreasing factor helps recommender agents to select which reliable agents are

the most useful.

• It is very important to update the trust in other agents according to the

outcomes. When agents give bad opinions/advice, their trust values should be

decreased. On the contrary, a beneficial collaboration should be rewarded by

increasing trust values. The size of such modifications is relative to the speed

in which the user interests change over time.

Finally, we want to note that this new approach emphasises proactiveness of

agents while preserving privacy. That is to say, when an agent does not have enough

knowledge to decide about a recommendation, it will turn to other agents on the

web in order to look for similar agents from whom to gather information.
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Chapter 5

Conclusions and Future Work

This chapter presents the principal contributions of this thesis. Further work in

certain subjects in which the research of this thesis can continue is also included. In

conclusion, there is a list of related publications and prizes.

5.1 Contributions

This thesis has focussed on the study of recommender systems. In particular, we have

proposed a recommender system consisting of collaborative recommender agents

based on case-based reasoning (CBR) and trust.

The main contributions of this thesis work are:

1. Taxonomy of recommender systems: A thorough analysis of existing rec-

ommender systems has resulted in a survey of state-of-the-art recommender

systems on the Internet. This work has been organised as a taxonomy, which

classifies recommender systems into 8 general dimensions; five regarding pro-

file generation and maintenance and three concerning profile exploitation. The

taxonomy provides a comprehensive explanation of existing recommender sys-

tems which we hope will contribute towards progress in this area of research.

2. CBR approach to recommender systems: the CBR cycle has been rede-

fined in order to perform the recommendation task. Assuming that the user

has similar interests in similar items, the recommender system predicts the

195
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user preferences in new items from the implicit/explicit interest given by the

user in similar items.

3. Forgetting mechanism for case-based profiles: One of the main contri-

butions of this thesis is a forgetting mechanism for case-based profiles. This

mechanism is based on the drift attribute, a case attribute that controls the

relevance and age of the cases. The drift attribute is a real value that is up-

dated as time passes according to the results of the recommendation process.

The experimental results have proved that the forgetting mechanism increases

the precision of the system while reducing the number of cases in the case

base. Thus, the proposed mechanism better adapts the case-based profile to

the user and solves the utility problem.

4. Collaboration with privacy: Recommender systems sharply improve the

quality of their results when information about other users is utilised when

recommending to a given user. The collaborative filtering method has shown

important results in this sense, although this method requires the revelation

of personal information about the users. In order to maintain the privacy of

the users’ personal data, we have proposed a new mechanism of collaboration

based on intelligent agents. Agents encapsulate the user profile and are in

charge of recommending interesting items to the user. In order to deal with

the trade-off between privacy and collaboration, recommender agents exchange

opinions representing the user’s general interests without revealing detailed

information.

5. Opinion-based filtering method: Another contribution to recommender

systems is a new multi-agent information filtering method called the opinion-

based filtering method. This method consists of reinforcing the recommen-

dation process with opinions from other agents. When recommender agents

are not sure about a recommendation, they ask for an opinion on the given

item to other agents. If the opinions are favourable, the item is recommended

to the user. Experimental results have shown that this method improves the

performance of a non-collaborative recommender system and maintains the

privacy of personal information.

6. Social model of trust for recommender agents: Recommender agents

consider other agents as personal entities on whom they can rely or not in the
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collaboration process. Reliability is expressed through a trust value with which

each agent labels its neighbours. Our contribution to the multi-agent systems

is a social model of trust for recommender agents. This model comprehends

the initialisation and evolution of trust; that is, trust dynamics. Thanks to

the opinion-based filtering method, agents can exchange opinions and learn

about each other in order to generate and update trust values. The proposed

social model of trust makes personal agents more robust when collaborating

with other agents of the system.

7. Collaborative filtering method through trust: When a recommender

system is implemented as a distributed world of recommender agents, the

typical collaborative filtering method cannot be applied. The fact that recom-

mender agents encapsulate user profiles makes it impossible for direct compar-

ison between them; the basis of the collaborative filtering method. However,

thanks to the trust model generated with the opinion-based filtering method,

agents know who will give them good advice. Thus, we also contribute to the

multi-agent information filtering methods with an evolution of the collabora-

tive filtering method based on our social trust model. This method improves

the performance of the system sharply when only the most reliable agents are

enquired. The collaborative filtering method through trust, together with the

opinion-based filtering method, can be seen as an evolution of the existing

methods due to the agent’s theory (see Figure 5.1).

8. Evaluation procedure for recommender systems: In order to test the

CBR approach to recommender systems and the forgetting mechanism for

case-based profiles, we have provided a new methodology for measuring the

performance of a recommender system. The profile discovering procedure sim-

ulates the exploitation of a recommender system based on real user profiles.

Based on this procedure, we have developed a simulator in order to carry out

repeatable and perfectly controlled experiments quickly. Furthermore, we have

also designed a new evaluation methodology in order to test our collaborative

recommender agents. This method is called the profile discovering procedure

with collaboration and is an extension of the procedure used to evaluate non-

collaborative recommender systems. We have also designed a simulator that

emulates the recommendation process and the collaboration of recommender

agents based on real user profiles. Our contribution is general enough to be
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Figure 5.1: Evolution of Information Filtering Methods.
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applied to other CBR/non-CBR recommender systems.

5.2 Future Work

The design of a recommender system involves the consideration of a wide range of

questions. In addition to the different solutions which have been adopted and de-

scribed in this thesis, many ideas have been proposed, discussed and finally rejected.

On the other hand, other questions have remained as undeveloped ideas, which need

to be analysed further and worked on in depth in future work.

Some subjects in which the research of this thesis can continue are:

• Trust adaptation functions: The adaptation of contact lists in our trust

model according to the outcomes of the recommendation process have been

proved useful in order to better collaborate. The functions selected in this

thesis are an easy approach that modifies trust values according to the results

of the recommendations provided by the enquired agents. Our first future

goal is to study other trust adaption functions in order to improve agents

acquaintance.

• Social networks: Contact lists represent the social relation an agent has with

others. The representation of all the contact lists together results in a social

network where nodes represent the recommender agents of the users and links

the collaborative relations. A very important project in our future research

is the study of such social networks. Social behaviours, network evolution,

community formation and community structures are interesting aspects to be

studied.

• Agentification of existing recommender systems: An important ob-

jective in the continuing research of this thesis is to test our proposals in

different existing recommender systems in order to validate the outstanding

performance shown in our experiments. In particular, we want to study the

possibility of applying the proposed information filtering methods to existing

recommender systems by means of agentification. For example, the Computer

Science Department of the University of Bath (UK) is interested in integrating
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our proposal of collaborative recommender agents into their bed and breakfast

reservation system (B&B-Bath).

• Apply the opinion-based filtering method to rescue: Our research

group recently started a project of rescue in coordination with other univer-

sities. The intention of this project is to promote research and development

in the domain of disaster rescue at various levels. In particular, we are in

charge of optimising the coordination among the different emergency services

by means of multi-agent team work coordination, information infrastructures,

personal digital assistants and decision support systems. Our aim is to study

the performance of the opinion-based filtering method in such a crucial do-

main.

• CBR multi-domain collaboration: Certainly, the food that people buy in

the supermarket reflects their interests in restaurants. A user who likes Italian

restaurants will buy pasta at the supermarket. Thus, recommender systems

should be able to predict the user interests in one domain from information

about another one. Our idea is to study the possible collaboration among

case-based profiles of different domains in order to improve the performance

of a CBR recommender system.

• Smart user models: The idea is to create an adaptive user model that

captures the evolution of the users regarding their emotions. Emotional In-

telligence has been described as an important part of human decision making

[Goleman 95]. It has been proved that, at a neurological level, emotions play

a definitive role in the cognitive process [Joseph 01]. From our point of view

then, a user model based on a set of objective and subjective characteristics,

quantitatively and qualitatively measurable, is not enough to build systems

aimed at supporting human decision-making. The emotional factors have to

be added to the user model in order to define a Smart User Model.

5.3 Related Publications and Prizes

The motivation of this thesis has been published as a book chapter:
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• de la Rosa J.Ll., del Acebo, E., López, B. and Montaner, M., “From Phys-

ical Agents to Recommender Agents”. Intelligent Information Agents - The

AgentLink Perspective. Edited by Matthias Klusch, Sonia Bergamaschi, Pete

Edwards and Paolo Petta. Lecture Notes in Computer Science 2586. ISBN

3-540-00759-8. pp. 165-178. Springer. March, 2003.

The general study of recommender agents presented in chapter 1 has been published

in an international journal:

• Montaner, M., López, B., de la Rosa, J. Ll., “A Taxonomy of Recommender

Agents on the Internet”, Artificial Intelligence Review, Kluwer Academic Pub-

lishers. Volume 19, Issue 4, pp. 285-330. June, 2003.

The proposals of this thesis have been presented and discussed in different interna-

tional conferences:

• Montaner, M., López, B., de la Rosa, J. Ll., “Developing Trust in Recom-

mender Agents”. In Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS’02). Cristiano Castel-

franchi and W. Lewis Johnson (Eds). ACM Press. vol. 1, pp. 304-305.

Bologna (Italy). 15-19 July, 2002.

• Montaner, M., López, B., de la Rosa, J. Ll., “Improving Case Representation

and Case Base Maintenance in Recommender Agents”. In Proceedings of

the 6th European Conference on Case Based Reasoning (ECCBR’02). Susan

Craw, Alun Preece (Eds.), Lecture Notes in AI No2416. Springer-Verlag. pp.

234-248. Aberdeen (Scotland). 4-7 September, 2002.
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202 Chapter 5. Conclusions and Future Work

The implementation of the recommender system proposed in this thesis has been
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• “IRES: On the Integration of Restaurant Services”. Awarded with the Special
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6-8 February, 2003.
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