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ABSTRACT
This paper shows the benefits obtained when the dynamic
behaviour of the agent’s physical body is taken into account. The
agent oriented language Agent0, highlighted the need of declaring
the capacities of agents in their reasoning.  An example of
convoying two controlled autonomous mobile robots as agents is
shown. The responsibilit y of avoiding colli sions is for the rear
agent, but the reliabilit y of sure decisions based on dynamics is of
both of them.  The deliberative co-operative decisions based on
dynamics provide the controllers with safer set points.  Finally,
some experimental results using the RoboCup real robots are
shown.

Keywords
Modelli ng the behaviour of other agents, autonomous robots,
designing agent systems.

1. INTRODUCTION
A real challenge to AI is to come up with solutions to the
problems that are solved routinely by humans without any
measurements or any computations in a co-operative way.

Let us consider a range of driving automation problems such as:
(1) freeway driving with no traff ic; (2) freeway driving with light
traff ic; (3) freeway driving with moderate traff ic; (4) freeway
driving with heavy traff ic; (5) city driving in Helsinki; (6) idem in
London; (7) idem in Rome; (8) idem in Istanbul.

The current developments, according to L. Zadeh’s opinion, show
that automation of (1) is achievable; (2) might be possible, with
some quali fications; (3) is not possible today but might be in the
future.  Beyond (3), the problems are intractable, with no solution
in sight.

This paper tries to do a step forwards approaches of higher degree
of complexity than (2) by using the football robots technology of
RoboCup.  It contains the problems of driving or manoeuvring
one car, and its non-straightforward extension to multiple cars,

problems (2) to (8). The fact is that not only feedback control is
necessary for solving these problems, but also the co-operative
aspects of AI have to be integrated. In this paper, small robots that
have clear dynamic movements will emulate the cars. The robots
were developed for MIROSOT (Micro Robot Soccer Tournament)
and RoboCup events from 1996 [2] and [4]. There is no lack of
generality in this approach since we will stress on the co-operative
decisions among autonomous mobile robots by considering the
dynamics of emulated vehicles [3] and [9]. Techniques applied to
Cupertino use the agent oriented analysis that has to be finally
implemented on mobile robots.

This paper in section 2 introduces concepts of physical agents that
pretend to represent the situation of embodying one software
agent in an autonomous robot.  The section 3 completes the
notion of physical agent with dynamical knowledge of
autonomous vehicles emulated by autonomous robots. Section 4
shows an example of the advantage of using some robot
dynamics’ knowledge in a case of convoying two autonomous
vehicles. Finally, in section 5 some conclusions show open
research on the formulation of knowledge about dynamics.

2. PHYSICAL AGENTS
Previous to the physical agents’ definition, software agents will be
introduced.

Definition 1: Software agents. This term denotes a software-based
computer system that has several properties [13] as autonomy,
social abilit y, reactivity, pro-activeness, mobilit y, rationality, etc.

Physical Agents are software agents that contain the N/S
(Numerical/Symbolical) and S/N (Symbolical / Numerical)
interface that is typical of real systems, which according to [1] and
[8] are constrained by imprecision, uncertainty, changing through
time, and others.

One typical implementation of physical agents (but not the
unique) is mobile robots, that in current research are progressively
more and more autonomous and co-operative. The traditional AI
has focused on symbolic paradigms (toy problems) and has not
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expended time on real applications. On the other hand, robotics
has focused on design and construction of hardware and its
control.

For solving current problems in autonomous robots, traditional AI
has evolved into perception based and multi -agent approaches.
The conjunction of AI and robotics in autonomous mobile robots
that solve in an emergent way, complex problems by Cupertino is
important, especially when the environment continuously changes
because of the movement of the physical agents.

Having a “physical body” according to [1] could be summarised
as:

�  Sensorial and action capacities are closely related.
�  The agent’s sensorial and actuation spaces have to be

abstracted in the onboard resources (CPU memory, CPU
speed, controllers, etc.).

�  This abstraction depends on the interactions that this agent
experiments in the environment.

�  As a result of the abstraction, every agent has a
representation model of the environment.

�  The interactions among agents and environment-agents are
asynchronous, complex, and in concurrency in the real
world.  The physical agents are continuously running in
continuous time.

�  On the other hand, the real physical interactions give good
data for learning (software agents lack this).

Definition 2: Extension of the agent concept from software to
physical agent. This definition consists of definition 1 and also a
physical body.

Let us assume, for reasons of performance, that there is no single
agent capable of doing a task alone. Every agent has to apply to
the others for help. Then, each individual has to decide between
the following problems: Which agent am I going to help to? On
what terms am I committed to? The decision could be either
deliberative or reactive. An interpretation of commitment [11]
will be used for the agents. Agents that accept to help (are
committed), have to know the implications of these commitments.
In other words, whether they could do it or not.

For knowing what is possible or not to be done, some physical
knowledge has to be taken into account.  This means, physical
inputs and outputs from the environment have to be mapped in the
knowledge base of each agent. This is because agents have to
control their physical body by means of proper physical decisions.

3. DYNAMICS OF PHYSICAL AGENTS

Previous analysis is true but now consider systems whose
movements can be described by differential equations, that is, can
be portrayed by its dynamics. Then the automatic control theory
has something to assert.

Definition 3: Extension of the agent concept from physical agent
to dynamical physical agent. Complementing Definition 2 with
the following new assertion: The knowledge is obtained from

dynamics of the physical body, which is represented by a further
declarative control and supervision levels [4] [9].

Let us show this new knowledge through the following example
that explains the utilit y of inter-agent negotiation in terms of
dynamic behaviour and that improves deceleration decisions.
Steps will be as follows:

1. To model and simulate two autonomous vehicles.

2. To implement convoying by a distance controller in the rear
vehicle that follows the reference of the first one. The
specification is to keep steady a safer distance.

3. To see a conflict: decelerating to 0 m/s. Coll isions!

4. To implement a negotiation procedure by means of dynamics
included within the capacities inspired from Agent0 language
[11].

5. And to avoid colli sions using this approach.

A problem arises in the two vehicles convoying when they try to
maintain a constant distance between them. The distance
oscillates when the vehicles’ dynamics are different, even though
their static behaviour is equally achievable. As a result, the
possibilit y of colli sions increases accordingly to the changes of
the guiding vehicle’s speed. The responsibilit y of keeping this
distance constant falls on the rear vehicle, which reaches this goal
modifying its dynamical behaviour. Since sometimes the vehicles
cannot avoid colli ding, the up to day solution is to keep some
minimum static distance. This facilit ates steady state control
solutions.

Decisions of changing the convoying speed are not proper under
some conditions, although the control of the vehicles has been
well designed.  The situation is that the guiding vehicle commonly
decides to accelerate or decelerate without considering the
dynamics of the other vehicle. So, the creation of decision-making
procedures that take into account these dynamics is proposed.
This brings the systems to co-operate in taking co-ordinate
decisions.

The procedure of the autonomous and co-operative decisions is
defined by using an agent paradigm. In the agents’ state of the art
programming languages, the Agent0 language by Shoham  [11] is
chosen, since the dynamic knowledge of the system could be
included within the capacities of agents. A capacity is defined as
follows:

Capacity: CANt
a(ϕ),

is such that in time t agent a is able to do ϕ.

Example: CAN5
robot go_to (0m/s)8

The robot knows at time 5 that it can decelerate to 0m/s at
time 8.  This is the same as saying the robot can execute in
its current state a trajectory towards the final state in three
sample instants.

An immediate version of CAN is ABLE, for example:

ABLErobot go_to (0m/s)5 =   CAN5
robot go_to (0m/s)5:

The robot knows at time 5 that it can open decelerate to
0m/s at the same time 5 (now).

The immediate question is how to design and create the base of
capacities CAN/ABLE.  This paper proposes a first proposal by



assigning some determinant information about dynamics of the
physical body of agents.

The big interest is to see how these physical knowledge of the
dynamical capabiliti es affect the co-operative behaviour of the
whole co-operative world, as [7].

3.1 Modelling and simulation of two
autonomous vehicles convoy
There are two types of behaviour for the agents: reactive and
deliberative. In the first type the guiding agent (first in the convoy
and hereafter agent A) decides to decelerate or accelerate without
taking into account the dynamics of the rear vehicle (rear in the
convoy, and hereafter agent B). However, agent B is responsible
for not colli ding.  In the second type, agent A modifies, if it is
possible, its own dynamics based on agent’s B dynamics until
they agree on the decelerating time; and again agent B has to keep
constant the distance between them.

In the deliberative behaviour, the agent A communicates to the
agent B its decision of decelerating at a given time. Agent B
simulates its behaviour and answers agent A with its certainty
associated to this action. This coeff icient lets agent A to decide
about the action. If there is no agreement, then agent A proposes
to do the same action but in a different execution time, what is
reached modifying its dynamic behaviour with a new controller.
These steps are repeated until to obtain an agreement.

Transfer functions are used for analysing dynamics. In this first
approach, only very ideal systems will be analysed, then first
order transfer functions are the proper way to represent dynamics
in linear speed (one-dimensional movements). Other higher order
transfer functions, non-linearities and other variables (li ke angular
orientation, etc.) will be analysed in future work.

The system closed loop transfer function F(s) is
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Where Vref(s) is a speed step input, K is the static gain, and τ the
time constant.

To start easy, agents have proportional controllers that change the
position of the single pole of the closed loop system transfer
function.

3.2 About controllers and dynamics
Let us start with the simplest feedback solution. The agent B
modifies its speed set point proportionally to the separation
distance to keep it constant. The time to decelerate td is defined to
be at most three times the time constant τ of the agent A. This
time will be used as a first approach to represent the certainty of
executing actions.  Agent A will use this coeff icient to accept or
discard decisions. The certainty coeff icient e is initially defined as
follows:

iniend

tdend

V-V

V-V
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Where:

Vend = final speed

V ini = initial speed

V td = speed at the time td

Figure 1 shows the temporal response of both systems to a step of
1 m/s. If td is chosen as td >> τA, where τA is time constant of
agent A, this value e will be close to 1 and the action will be
always certain. With lower values of td , e will l ead to lower
certainties associated to actions.
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Figure 1: Estimation of certainty according to the time
constant of the system, based on the steady state error

measure.

Figure 2 shows the whole system in blocks diagram, where GA(s)
is the closed loop transfer function of agent A, GB(s) is the same
for agent B, XA and XB linear distance of A and B from the origin,
and D the distance to keep between the agents.

VA ref GA(s) 1/s

GB(s) 1/s

+
-

+
-

D

XA

XB

Convoy
Linear

ControllerVB

Figure 2: Whole system block diagram.

From the linear point of view, dynamics of the controlled
convoying system is as follows: the agent A has its internal
control that is apparently independent of agent B.  Agent B has
inherently more complicated structure since, so far, the
responsibilit y for convoying and avoiding risky situations (e.g.
colli sions) is up to it. Assuming that agent A dynamics shows a
first order closed loop transfer function GA(s), and that agent B
has the same closed loop behaviour GB(s), then the convoying
behaviour of the agent B is indeed a second order transfer
function. This is due to the dependency of speed set points of
agent B on the position controller, as seen in Figure 2. In other
words, the variable to be controlled is the set point of speed VB.

Up to these days there are obvious static specifications to take into
account, i.e., to maintain regular distance D between the two
autonomous systems D - (XA-XB) ≅ 0.  This can be easily
accomplished by the use of a proportional KP controller (Convoy
Linear Controller), that is to say, using the value KP· (D - (XA-XB))
as the signal control VB. Under these assumptions, if GA(s) and
GB (s) are first order systems, then D - (XA-XB) is a second order
system response.



Suppose initial conditions D=5m, VA (t=0)=8 m/s and VB (t=0)=8
m/s, XA=5m. (The vehicles keep the safety distance D at 8 m/s
regime).  Then vehicle A changes the speed to VA=2 m/s.  The
result is clearly, a 2nd order behaviour of convoying B, as depicted
in the following plot:
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Figure 3: Speed response of mobiles A and B.

This paper tries to point out the fact that in the previous analysis
there is no discussion about the possibilit y of colli sion between
the two mobiles. How can this occurrence be established as a
control specification? Next figure shows the evolution of distance
between the systems and, as can be seen, at t=6s there is a
coll ision.

Collision point

Permanent
distance

0 5 10 15 20 25
-4

-2

0

2

4

6

8
XA-XB (m) Distance between two dynamical physical agents

D

Forbidden zone

Time (s)

Figure 4: Lower limit of XA-XB = D.

Due to this 2nd order nature of the convoying system, it can be
clearly asserted that static information for deceleration decision is
not enough at all . Then, decision based only on static is dangerous
in case of dealing with dynamical physical agents.

4. CO-OPERATION MADE BY MEANS OF
KNOWLEDGE ABOUT DYNAMICS.
Let us see the theoretic of the previous section with the following
real scenario. Two mobile robots (hereafter agents) will describe a
rectili near movement, and in the beginning a security distance
separates them. The relative position between the agents is
obtained by a camera, which has a global vision of the convoy.
For this reason, the distance that the robots can go over is limited

Both agents have two Proportional-Integral (PI) controllers to
change their behaviours, different from the previous section,

because it was not possible to reach the set point only with a
Proportional controller. In the same way, there is a PI controller to
keep constant the distance between them. The controllers, as the
agents, are located in a host computer. The communication
between the agents is made in the main program. A radio
transmitter is used to send the calculated set points to the robots.

The GA(s) block of Figure 2, here is the first robot of the convoy
and its controllers. Likewise, GB(s) is the second robot of the
convoy and its controllers. Each robot is a closed loop dynamical
system governed by an agent who takes decisions.

The proposal is to include the dynamics of the robots within the
capacities (Agent0 language) of the agents. One important reason
for doing it is that it is possible to work without knowing the
transfer function of the system. In the particular case, and
referring to section 3, is not possible to simulate the behaviour of
the robots due to the higher time consumed by this operation
(total distance is limited by the camera vision field). Consequently
and as a first approach, capacities are proposed to be an ordered
set with the following information:

< initial_state, final_state, specified_time_for_action,
certainty, controller_parameters  >

These capacities will be contained in the base of capacities,
together with other type of them (social, static, etc.) defined by
Agent0.

The variable specified_time_for_action td is any time considered
from the beginning of the action to any time before the system
reaches the steady state. The certainty is a coeff icient obtained by
observation, from the dynamics of the system and it is completely
dependent of td. The initial_state ei is the initial speed; the
final_state ef is the final speed; and the controller_parameters are
the proportional and the integral constants of the PI controller.

The decision is here based on the certainty. The way to take
decision is a classical implementation of expert systems that fires
the rules that overcome a pre-specified threshold. The agent A
determines whether any action has to be done or not.  The
innovation is that the decision is also based on the dynamics of
agent B. For agent B, an action is possible if it can pass from the
initial_state to final_state within the specfied_time_for_action
time interval that the agent A proposes.

Once both agents agree, that is, the certainty about the decision is
high enough, they fire their respective decisions. This negotiation
algorithm is as follows:

Negotiation Algorithm

1. Agent A decides to change the speed and sends a request
message to Agent B as follows:

request ( agent_A, agent_B, initial_speed, final_speed, time);

2. Agent B receives the message and looks in it base of capacities,
for one that fulfil the requirements.

IF CAPACITY exist

 THEN

   inform ( Agent_B, Agent_A, final_speed, certainty);

ELSE

   inform ( Agent_B, Agent_A, final_speed, 0.0);



END

3. Agent A receives the answer:

IF certainty > threshold

THEN

   inform ( Agent_A, Agent_B, DO_ACTION);

Agent B starts to do the action.

   do (agent_A, final_speed, controller_parameters);

ELSE

4. Agent A looks in its base of capacities for one where the final
and initial speeds match with the requirements, but using another
controller, so the specified time changes.

IF CAPACITY exist

 THEN

   request ( Agent_A, Agent_B, final_speed,time);

5. The algorithm goes to step 2.

ELSE

   inform ( Agent_B, Agent_A,DO_NOT_ACTION);

6. End of the negotiation.

END

4.1 CAPACITIES
As stated, the capacities are a set of parameters that contains
information about the dynamics of the systems. Both robots have
a very similar behaviour, so agents have the same controllers and
the same base of capacities, shown in Table 1.   

Initial
Speed
cm/s

Final
Speed
cm/s

Specified
time td     

s

Certainty Proportional
constant

Integral
constant

20 0 1.6 0.96 0.45 1.0

20 0 9.4 0.91 0.45 0.3

25 0 1.55 0.93 0.45 1.0

25 0 8.5 0.93 0.45 0.3

30 0 1.5 0.92 0.45 1.0

30 0 7.5 0.96 0.45 0.3

35 0 1.45 0.91 0.45 1.0

35 0 6.0 0.99 0.45 0.3

Table 1: list of capabilities

The time td and the certainty associated to it have been obtained
applying the different set points to the robots and using the
camera to get data.

For the following experiments, agent B has always the PI
controller with the integral constant equal to 0.3. Agent A has
initially the PI controller with the integral constant equal to 1.0,
so agent B is slower than agent A is.

Negotiation in the deliberative case is as follows: agent A requests
agent B to decelerate to 0 cm/s in the time td corresponding to the

different set points. Agent B looks in the base of capacities the td
necessary to do the action with the current controller. As this time
is not the same, agent B responds to agent A that the certainty of
decelerating at this time is zero. Then agent A looks in its base,
for a new td. When it finds it, it requests to agent B the same
action but with a different time proposal. Agent B searches again
in its base of capacities and answers A with a new certainty. If this
coeff icient is greater than 0.8, agents A and B agree on
decelerating. As a result of the negotiation, agent A has to change
the parameters of its PI controller.

Besides these controllers, there is another PI controller, used to
keep constant the distance between the agents, that changes the set
points of agent B (Convoy Linear Controller block in Figure 2).

In the beginning of the experiments both vehicles are stopped.
When the program starts, they begin the acceleration. Five
seconds later, agent A decides to stop.

4.2 CASE 1: INITIAL SPEED OF 20 CM/S,
DISTANCE 10 CM.
Figure 5 shows the separation distance between the agents for
reactive behaviour (dotted line) and deliberative behaviour
(continuous line). As it can be seen, both curves are similar until 5
seconds, time when Agent A decides to stop. Few seconds after,
the reactive agents have a colli sion, while in the deliberative case,
the distance decreases but never is zero.
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Figure 5: Distance between the agents.

The increase of distance at the beginning is because the agents are
stopped when the program starts to run. The distance between the
agents never gets the desired set point because the camera limits
and more time is needed to reach the steady state. This also makes
agent B not to get the desired set point of speed as shown in
Figures 6 and 7.

Figure 6 and Figure 7 compare the speed of the agents. In both
pictures, agent A reaches the steady state (20 cm/s) but agent B
not. This is because of the distance controller (the 10-cm
separation distance is not achieved). In Figure 7 a pick can be
seen in the speed of the agents. This is due to the change of the
controller in agent A.

The same experiments are repeated for other cases with several
speeds and analogous results.



As result in this section 4, the deliberative behaviour of both two
agents leads to better control of distance D.  This is the main
advantage of distributing the response of the convoying.  This
idea is extendable to more than two physical agents.  The
experiments are done in several speed setpoints to test the
generality of the results.  Additionally, the capacities have been
used as a reasonable alternative to transfer function representation
of dynamical systems, because to have such type of models
(transfer functions) often is very diff icult.
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Figure 6: Speed of the agents for the reactive case.
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Figure 7: Speed of the agents for the deliberative case.

5. CONCLUSIONS
This work shows that a joint decision based on not only
knowledge about statics but also about dynamics of the physical
body that will drive to better co-ordinated control. This is because
of the application of safer decisions concerning dynamical
behaviour of the open or closed loop physical body and other
dynamics-related information. As a strong result, some colli sions
could be avoided.

Capacities seem to be the best way to represent the knowledge
about the dynamics of a system without having its transfer
function. But it is still diff icult to choose the necessary
information to include in the capacities.

Finally, there are open researches in how to take advantage at the
co-operative level, planning, learning, etc, of this physical
introspection.  Furthermore, to select one paradigm for
implementation of these concepts is not trivial at all , and the
application of the agent oriented programming is still open.
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