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ABSTRACT

This paper shows the benefits obtained when the dynamic
behaviour of the ggent’s physicd body is taken into acourt. The
agent oriented language Agent0, highlighted the need of dedaring
the coadties of agents in their reasoning. An example of
convoying two controlled autonomous mohil e robas as agents is
shown. The resporsibility of avoiding collisions is for the rea
agent, but the reliability of sure dedsions based on d/namicsis of
baoth of them. The deliberative m-operative dedsions based on
dynamics provide the cntrollers with safer set points. Findly,
some eperimental results using the RoboCup red robds are
shown.
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1. INTRODUCTION

A red challenge to Al is to come up with solutions to the
problems that are solved routinedly by humans withou any
measurements or any computationsin a @-operative way.

Let us consider a range of driving automation problems auch as:
(1) freawvay driving with notraffic; (2) freavay driving with light
traffic; (3) freeway driving with moderate traffic; (4) freavay
driving with heavy traffic; (5) city driving in Helsinki; (6) idemin
Londor (7) idemin Rome; (8) idemin Istanbu.

The airrent developments, acording to L. Zadeh's opinion, show
that automation o (1) is achievable; (2) might be possble, with
some qualifications; (3) is not posshle today but might be in the
future. Beyond (3), the problems are intractable, with nosolution
in sight.

This paper triesto doa step forwards approaches of higher degree
of complexity than (2) by using the football robas techndogy of
RobaoCup. It contains the problems of driving or manoeuvring
one ca, and its nongraightforward extension to multiple cas,
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problems (2) to (8). The fad is that not only feedbadk control is
necessary for solving these problems, but also the w-operative
aspeds of Al have to beintegrated. In this paper, small robas that
have dea dynamic movements will emulate the cas. The robas
were developed for MIROSOT (Micro Roba Soccea Tournament)
and RoboCup events from 1996 [2] and [4]. There is no ladk of
generdity in this approach sincewe will stresson the m-operative
dedsions among autonamous mobile robas by considering the
dynamics of emulated vehicles [3] and [9]. Techniques applied to
Cupertino e the agent oriented andysis that has to be finaly
implemented onmobil e robds.

This paper in sedion 2introduces concepts of physicd agents that
pretend to represent the situation d embodying one software
agent in an autonamous roba. The sedion 3 completes the
notion d physicd agent with dynamicd knowledge of
autonamous vehicles emulated by autonomous robas. Sedion 4
shows an example of the alvantage of using some roba
dynamics knowledge in a cae of convoying two autonomous
vehicles. Findly, in sedion 5 some nclusions sow open
reseach onthe formulation o knowledge éou dynamics.

2. PHYSICAL AGENTS
Previous to the physicd agents' definition, software agents will be
introduced.

Definition 1 Sdtware agents. This term denotes a software-based
computer system that has sveral properties [13] as autonomy,
social ability, readivity, pro-adiveness mobhility, rationality, etc.

Physical Agents are software agents that contain the N/S
(Numericd/Symbolicd) and S/N (Symbolicd / Numericd)
interfacethat istypicd of red systems, which acarding to [1] and
[8] are mnstrained by impredsion, uncertainty, changing through
time, and athers.

One typicd implementation d physicd agents (but not the
unique) is mobile robds, that in current reseach are progressvely
more ad more autonamous and co-operative. The traditional Al
has focused on symboalic paradigms (toy problems) and hes not



expended time on red applicaions. On the other hand, robaics
has focused on design and construction o hardware and its
control.

For solving current problems in autonomous robas, traditional Al
has evolved into perception based and multi-agent approaches.
The onjunction d Al and robdics in autonamous mohil e robas
that solve in an emergent way, complex problems by Cupertino is
important, espedally when the eavironment continuowsly changes
because of the movement of the physicd agents.

Having a “physicd body” according to [1] could be summarised
as.

=  Sensoria and adion capadties are dosely related.

= The gent’'s snsorial and aduation spaces have to be
abstraded in the onbard resources (CPU memory, CPU
spedl, controll ers, etc.).

=  This abstradion depends on the interadions that this agent
experiments in the ewironment.

= As a result of the astradion, every agent has a
representation model of the environment.

= The interadions among agents and environment-agents are
asynchronows, complex, and in concurrency in the red
world. The physicd agents are cntinuowsly running in
continuows time.

=  On the other hand, the red physicd interadions give good
datafor leaning (software agents lad this).

Definition 2 Extension d the agent concept from software to
physical agent. This definition consists of definition 1and also a
physicd body.

Let us assume, for reasons of performance that there is no single
agent cgpable of doing a task alone. Every agent has to apply to
the others for help. Then, ead individual has to dedde between
the following problems: Which agent am | going to help to? On
what terms am | committed to? The dedsion could be dther
deliberative or readive. An interpretation o commitment [11]
will be used for the aents. Agents that accept to help (are
committed), have to know the impli cations of these mmmitments.
In ather words, whether they could doit or not.

For knowing what is posshble or not to be dore, some physical
knowledge has to be taken into accourt. This means, physicd
inpus and ouputs from the environment have to be mapped in the
knowledge base of eat agent. This is becaise gents have to
control their physicd body by means of proper physicd dedsions.

3. DYNAMICSOF PHYSICAL AGENTS

Previous analysis is true but now consider systems whose
movements can be described by differential equations, that is, can
be portrayed by its dynamics. Then the aitomatic control theory
has mething to asert.

Definition 3 Extension d the agent concept from physical agent
to dynamical physical agent. Complementing Definition 2 with
the following new assertion; The knowledge is obtained from

dynamics of the physicd body, which is represented by a further
dedarative mntrol and supervision levels[4] [9].

Let us $how this new knowledge through the following example
that explains the utility of inter-agent negotiation in terms of
dynamic behaviour and that improves decderation dedsions.
Steps will be & follows:

To mode and simulate two autonomous vehicles.

To implement convoying by a distance ®ntroller in the rea
vehicle that follows the reference of the first one. The
spedficationisto ke steady a safer distance

3. Tosee a onflict: decderating to Omv/s. Collisions!

4. Toimplement anegotiation procedure by means of dynamics
included within the cgadti esinspired from AgentO language
[11].

5. Andto avoid colli sions using this approach.

A problem arises in the two vehicles convoying when they try to
maintain a onstant distance between them. The distance
oscillates when the vehicles' dynamics are different, even though
their static behaviour is equally achievable. As a result, the
posshility of collisions increases acwrdingly to the canges of
the guiding vehicle's geead. The resporsibility of keeing this
distance mnstant falls on the rea vehicle, which reades this goal
modifying its dynamicd behaviour. Since sometimes the vehicles
canna avoid colliding, the up to day solution is to keep some
minimum static distance This fadlitates deady state ntrol
solutions.

Dedsions of changing the @mnvoying speed are not proper under
some ondtions, athough the cntrol of the vehicles has been
well designed. The situation is that the guiding vehicle cmmmonly
deddes to accéderate or decderate withou considering the
dynamics of the other vehicle. So, the aeaion o dedsion-making
procedures that take into acourt these dynamics is propaosed.
This brings the systems to co-operate in taking co-ordinate
dedsions.

The procedure of the aitonamous and co-operative dedsions is
defined by using an agent paradigm. In the agents state of the at
programming languages, the Agent0O language by Shoham [11] is
chosen, since the dynamic knowledge of the system could be
included within the capacities of agents. A cgpadty is defined as
follows:

Capacity: CAN',(),
is aich that intimet agent aisableto do¢.
Example: CAN® 50t gO_to (0nv/s)®

The robat knows at time 5 that it can decderate to Om/s at
time 8. Thisis the same & sying the robd can exeaute in
its current state atrgjedory towards the final state in three
sample instants.

An immediate version d CAN is ABLE, for example:
ABLE gpot 90_t0 (0M/s)® = CANZ,gp0t gO_to (0m/s):

The roba knows at time 5 that it can open decderate to
Omy/s at the sametime 5 (now).

The immediate question is how to design and creae the base of
capadties CAN/ABLE. This paper propases a first proposal by



asdgning some determinant information abou dynamics of the
physicd body of agents.

The big interest is to see how these physicd knowledge of the
dynamicd capabilities affed the m-operative behaviour of the
whole w-operative world, as[7].

3.1 Modelling and simulation of two

autonomous vehicles convoy

There ae two types of behaviour for the agents: readive and
deliberative. In the first type the guiding agent (first in the convoy
and heredter agent A) deddes to decderate or accéerate withou
taking into acmourt the dynamics of the rea vehicle (rea in the
convoy, and heredter agent B). However, agent B is resporsible
for not colliding. In the second type, agent A modifies, if it is
possble, its own dynamics based on agent’s B dynamics until
they agreeon the decderating time; and again agent B has to keep
constant the distance between them.

In the deliberative behaviour, the agent A communicaes to the
agent B its dedsion d decderating at a given time. Agent B
simulates its behaviour and answers agent A with its certainty
assciated to this adion. This coefficient lets agent A to dedde
abou the action. If there is no agreament, then agent A proposes
to dothe same adion bu in a different exeaution time, what is
reatied modifying its dynamic behaviour with a new controller.
These steps are repeaed urtil to oktain an agreement.

Transfer functions are used for analysing dynamics. In this first
approadh, only very ided systems will be analysed, then first
order transfer functions are the proper way to represent dynamics
in linea spead (one-dimensional movements). Other higher order
transfer functions, nonlineaities and aher variables (like angular
orientation, etc.) will be analysed in future work.

The system closed looptransfer function F(s) is
V(i) K
(9 T s+l

F(s) =
ref

Where V «(S) is a speed step inpu, K is the static gain, and T the
time cnstant.

To start easy, agents have propartiona controll ers that change the
position o the single pole of the dosed loop system transfer
function.

3.2 About controllersand dynamics

Let us gart with the simplest feaedbad solution. The ayent B
modifies its eal set point propationdly to the separation
distanceto keep it constant. The time to decderate ty is defined to
be & most three times the time nstant T of the ayent A. This
time will be used as afirst approach to represent the cetainty of
executing adions. Agent A will use this coefficient to accept or
discard dedsions. The cetainty coefficient eisinitialy defined as
follows:

V

e=1-
V

th
V.

ini

end ~
end ~

Where:

Veng = final spedd

Vini = initial speed

Vi = spedl at thetime ty
Figure 1 shows the temporal resporse of both systemsto a step of
1 m/s. If ty is chosen as ty >> 14, Where 14 is time constant of
agent A, this value e will be dose to 1 and the adion will be

always certain. With lower values of ty , e will lead to lower
certainties asociated to adions.
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Figure 1: Estimation of certainty according to thetime
constant of the system, based on the steady state error
measure.

Figure 2 shows the whaole system in blocks diagram, where Ga(s)
is the dosed loop transfer function d agent A, Gg(9) is the same
for agent B, X, and Xg linea distance of A and B from the origin,
and D the distanceto keep between the gents.

Convoy
Linear
Controller

Figure 2: Whole system block diagram.

From the linea point of view, dynamics of the ntrolled
convoying system is as follows: the ggent A has its interna
control that is apparently independent of agent B. Agent B has
inherently more mplicated structure since so far, the
resporsibility for convoying and avoiding risky situations (e.g.
collisions) is up to it. Asuming that agent A dynamics ows a
first order closed loop transfer function G(s), and that agent B
has the same dosed loop tehaviour Gg(s), then the @nvoying
behaviour of the aent B is indeed a second ader transfer
function. This is due to the dependency of speal set points of
agent B on the position controller, as e in Figure 2. In other
words, the variable to be cntrolled isthe set point of speed V.

Up to these days there ae obvious gatic spedficaionsto takeinto
acour, i.e, to maintain regular distance D between the two
autonamous gistems D - (Xa-Xg) [J 0. This can be ealy
acomplished by the use of a propartional Kp controller (Convoy
Linea Controller), that isto say, using the value Kp- (D - (Xa-Xg))
as the signal control V. Under these assumptions, if Ga(s) and
Gg () arefirst order systems, then D - (Xa-Xg) is a second ader
system resporse.



Suppcse initial condtions D=5m, V, (t=0)=8 m/s and Vg (t=0)=8
m/s, Xa=5m. (The vehicles keep the safety distance D at 8 m/s
regime). Then vehicle A changes the speal to V=2 m/s. The
result is clealy, a2™ order behaviour of convoying B, as depicted
in the foll owing plot:

o Speed (m/s) of each dynamical physical agent

:
Ga(e)= 1
. A = —s—
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N
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6 \ G 15t
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Figure 3: Speed response of mobiles A and B.

This paper tries to pdnt out the faa that in the previous analysis
there is no dscusson abou the posshility of collision between
the two mobiles. How can this occurrence be established as a
control spedficaion? Next figure shows the evolution d distance
between the systems and, as can be seen, at t=6s there is a
collision.

Xa-Xg (M) Distance between two dynamical physical agents
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Figure4: Lower limit of X5-Xg =D.

Due to this 2™ order nature of the @mnvoying system, it can be
clealy asserted that static information for decderation dedsionis
not enough at all. Then, dedsion besed orly on static is dangerous
in case of deding with dynamicd physicd agents.

4. CO-OPERATION MADE BY MEANS OF
KNOWLEDGE ABOUT DYNAMICS.

Let us eethe theoretic of the previous sdion with the foll owing
red scenario. Two mobile robas (heredter agents) will describe a
redilinea movement, and in the beginning a seaurity distance
separates them. The relative position between the gents is
obtained by a canera, which has a global vison d the mnvoy.
For this reason, the distancethat the robds can go over islimited

Both agents have two Propationd-Integral (Pl) cortrollers to
change their behaviours, different from the previous sdion,

because it was not possble to read the set point only with a
Proportional controller. In the same way, thereisaPl controller to
keeg constant the distance between them. The ntrollers, as the
agents, are locaed in a host computer. The @mmunicaion
between the agents is made in the main program. A radio
transmitter is used to send the cdculated set pointsto the robds.

The Ga(s) block of Figure 2, here is the first roba of the convoy
and its controllers. Likewise, Gg(s) is the second roba of the
convoy and its controllers. Each robat is a dosed loop d/namicd
system governed by an agent who takes dedsions.

The proposd is to include the dynamics of the robds within the
cgpadties (Agent0 language) of the agents. One important reason
for doing it is that it is posdble to work withou knowing the
transfer function d the system. In the particular cese, and
referring to sedion 3 is not possble to simulate the behaviour of
the robas due to the higher time cnsumed by this operation
(total distanceislimited by the caneravision field). Consequently
and as a first approach, capadties are proposed to be an ordered
set with the foll owing information:

< initial_state, final_state,
certainty, controller_parameters >

specified_time_for_action,

These cgadties will be ontained in the base of cgpadties,
together with other type of them (socia, static, etc.) defined by
AgentO.

The variable spedfied_time for_action ty is any time mnsidered
from the beginning of the adion to any time before the system
reades the steady state. The certainty is a wefficient obtained by
observation, from the dynamics of the system and it is completely
dependent of ty. The initial_state g is the initial speed; the
final_state g isthe fina speed; and the controller_parameters are
the propartional and the integral constants of the Pl controller.

The dedsion is here based on the cetainty. The way to take
dedsionis a dasdcd implementation o expert systems that fires
the rules that overcome a pre-spedfied threshold. The agent A
determines whether any adion hes to be dore or not. The
innovation is that the dedsion is aso based on the dynamics of
agent B. For agent B, an adion is posshle if it can passfrom the
initial_state to final_state within the spedied_time for_action
timeinterval that the agent A proposes.

Once both agents agreg that is, the cetainty abou the dedsionis
high enough, they fire their respedive dedsions. This negotiation
algorithmisasfollows:

Negotiation Algorithm

1. Agent A deddes to change the speed and sends a request
message to Agent B as foll ows:

request ( agent_A, agent_B, initial_speed, final_speed, time);

2. Agent B recaves the message and looks in it base of capadties,
for one that fulfil the reguirements.

IF CAPACITY exist
THEN
inform (Agent_B, Agent_A, final_spedd, certainty);
ELSE
inform ( Agent_B, Agent_A, final_speed, 0.0);



END
3. Agent A receves the aswer:
IF cetainty > threshold
THEN
inform (Agent_A, Agent_B, DO_ACTION);
Agent B startsto dothe adion.
do (agent_A, fina_speed, controll er_parameters);
ELSE

4. Agent A looks in its base of capadties for one where the fina
and initial speeds match with the requirements, but using another
controll er, so the spedfied time dhanges.

IF CAPACITY exist
THEN
request ( Agent_A, Agent_B, final_speed,time);
5. The dgorithm goes to step 2
ELSE
inform (Agent_B, Agent_A,DO_NOT_ACTION);
6. End d the negotiation.
END

4.1 CAPACITIES

As dgated, the cqadties are a set of parameters that contains
information abou the dynamics of the systems. Both robas have
avery similar behaviour, so agents have the same wntrollers and
the same base of cgpadties, shown in Table 1.

Initial | Fina | Spedfied | Certainty | Propational | Integra
Speed | Speed | timety constant constant
cm/s | cm/s S
20 0 16 0.96 0.45 1.0
20 0 9.4 0.91 0.45 0.3
25 0 155 0.93 0.45 1.0
25 0 85 0.93 0.45 0.3
30 0 15 0.92 0.45 1.0
30 0 75 0.96 0.45 0.3
35 0 1.45 0.91 0.45 1.0
35 0 6.0 0.99 0.45 0.3

Table 1: list of capabilities

The time ty and the cetainty associated to it have been oltained
applying the different set points to the robas and wsing the
camerato get data.

For the following experiments, agent B has aways the Pl
controller with the integral constant equal to 0.3. Agent A has
initially the PI controller with the integral constant equal to 1.0,
so agent B is dower than agent A is.

Negotiationin the deliberative caeis as follows: agent A requests
agent B to decderate to 0 cm/sin the time ty correspondng to the

different set points. Agent B looks in the base of cgpadties the ty
necessary to dothe adion with the arrent controller. Asthistime
is not the same, agent B responds to agent A that the cetainty of
decderating at this time is zero. Then agent A looks in its base,
for a new tg. When it finds it, it requests to agent B the same
adion bu with a different time proposal. Agent B seaches again
in its base of cgpadti es and answers A with anew certainty. If this
coefficient is greder than 0.8, agents A and B agree on
decderating. As aresult of the negotiation, agent A has to change
the parameters of its Pl controller.

Besides these antrollers, there is another Pl controller, used to
ke constant the distance between the agents, that changes the set
points of agent B (Convoy Linea Controller block in Figure 2).

In the beginning of the experiments both vehicles are stopped.
When the program starts, they begin the accéeration. Five
se@nds later, agent A deddes to stop.

4.2 CASE 1: INITIAL SPEED OF 20 CM/S,

DISTANCE 10 CM.

Figure 5 shows the separation dstance between the aents for
readive behaviour (dotted line) and deliberative behaviour
(continuous line). Asit can be seen, bath curves are similar until 5
seconds, time when Agent A deddes to stop. Few seands after,
the readive agents have a olli sion, whil e in the deliberative cae,
the distance deaeases but never is zero.

Relative distance (cm)

25

- Reactive behavior

20 —— Deliberative behavior

15

10

5  Security|Distance

0 2 4 5 6 8 10
Time (s)

Figure 5: Distance between the agents.

Theincrease of distance d the beginning is becaise the ayents are
stopped when the program starts to run. The distance between the
agents never gets the desired set point becaise the canera limits
and more time is neaded to read the stealy state. This also makes
agent B not to get the desired set point of speed as sown in
Figures6 and 7.

Figure 6 and Figure 7 compare the speal o the agents. In bah
pictures, agent A reades the steady state (20 cm/s) but agent B
not. This is becaise of the distance ontroller (the 10-cm
separation dstance is not achieved). In Figure 7 a pick can be
sea in the spead of the agents. This is due to the change of the
controller in agent A.

The same experiments are repeaed for other cases with severa
speeds and analogous results.



Asresult in this dion 4 the deliberative behaviour of both two
agents leads to better control of distance D. This is the main
advantage of distributing the resporse of the @nvoying. This
idea is extendable to more than two physicd agents. The
experiments are dore in severad speeal setpoints to test the
generality of the results. Additionally, the cgadties have been
used as areasonable dternative to transfer function representation
of dynamicd systems, becaise to have such type of models
(transfer functions) often is very difficult.

Linear velocities (cm/s) Reactive Behavior

35
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Figure 6: Speed of the agentsfor thereactive case.
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Figure 7: Speed of the agentsfor the deliberative case.

5. CONCLUSIONS

This work shows that a joint dedsion besed on na only
knowledge abou statics but also about dynamics of the physicd
body that will driveto better co-ordinated control. Thisis becaise
of the gplicaion d safer dedsions concerning dynamicd
behaviour of the open or closed loop plysicd body and caher
dynamics-related information. As a strong result, some ®lli sions
could be avoided.

Capadties am to be the best way to represent the knowledge
abou the dynamics of a system withou having its transfer
function. But it is 4ill difficult to choose the necessry
information to include in the caadties.

Finally, there ae open researches in haw to take alvantage & the
co-operative level, planning, leaning, etc, of this physicd
introspedion. Furthermore, to seled one paradigm for
implementation d these @ncepts is nat trivial at all, and the
applicaion d the agent oriented programming is gill open.

6. ACKNOWLEDGEMENT

Thiswork is funded by projeds TAP98-0955C03-02 “Disefio de
agentes fisicos (DAFNE) / Physicd Agents Design” and TAP99-
1354E, "Euroba-lberiac red temética e agentes fisicos /
Thematic Network on plysicd agents' of the Spanish Reseach
Foundition CICYT.

7. REFERENCES

[1] Asada M., Kuniyoshi Y., et a. The RoboCup Physical Agent
Challenge. First RoboCup Workshop in the XV 1JCAI-97
International Joint Conference on Artificial Intelligence, pp.51-56,
1997

[2] delaRosad LI, Oller A, et a., Sccca Team based on Agent-
Oriented Programmning, Robdics and Autonamous Systems. Ed.
Elsevier, Vol 21, pp. 167-176, October 1997.

[3] delaRosald. Ll., Garcia R., Innocenti B., et a., Rogi Team Real:
Research on Physical Agents. 3rd Workshop on RoboCup, 16th
1JCALI, July 31-August 6, 1999

[4] Kitano H., Veloso M., et a., The RoboCup Snthetic Agent
Challenge 97. XV 1JCAI-97 International Joint Conference on
Artificia Intelligence, Vol 1, pp.24-29, Nagoya, August 1997

[5] Jennings N., Sycara K., and Woddridge M. A Roadmap o Agent
Research and Devdopment. Autonomous Agents and Multi-Agent
Systems, Kluwer Academic Publishers.Val. 1, n. 1, pp. 7-38, 1998

[6] Kitano H. and Honder J. A., Massvdy Parallel Artificial
Intelligence The AAA| Press/ The MIT Presspp: 1-52, 1994.

[71 Madworth A., The Dynamics of Intelligence: Constraint-Satisfying
Hybrid Systems for Perceptual Agents. AAA| Spring Symposium in
Hybrid Systems and Al, 1999

[8] Muiller J., The Design d Intelligent Agents: a layered appoach.
Lecture Notes in Artificia Intelligence, Vol. 1177, Ed. Springer
Verlag, 1996

[9] Oller A, delaRosaJ.Ll., and del Acebo E., DPA2: Architedure for
Co-operative Dynamical Physical Agents;, MAMAAW ’'99,
Valencia June 1999

[10] Oller A., JLI. de la Rosa, B. Innocenti. Seminario Anua de
Automética, Electrénica Indwstrial e Instrumentad6n (SAAEI'99).
pp. 311-314. 1999

[11] Shoham. Agent-oriented programming, Artificia Intelligence, vol.
60 (1), pp.51-92, 1993 & Technicad Report STAN-CS-133590,

Computer Science Department, Stanford University, Stanford, CA,
1990

[12] Steds L., The Origins of Syntax in Visualy Grounded Robadic
Agents. The 15 1JCAI Procealings, pp: 16321641, 1997.

[13] Woddridge M., Jennings N. Intelligent Agents: Theory and
Practice Knowledge Engineging Review, October 1994



