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Abstract. A novel method to obtain correspondence between land-
marks when comparing pairs of mammographic images from the same
patient is presented. Our approach is based on automatically established
correspondence between linear structures (i.e. ducts and vessels) which
appear in mammograms using robust features such as orientation, width
and curvature extracted from those structures. In addition, a novel multi-
scale feature matching approach is presented which results in a reliable
correspondence between extracted features.

1 Introduction

Detection of abnormal structures or architectural distortions in mammographic
images can be performed by comparing different images of the same patient,
either the same breast taken at different times (temporal comparison) or using
mammographic images of the left and right breast (contralateral comparison).
This comparison is not straightforward due to additional dissimilarities between
images which are related to patient movement, sensor noise, different radiation
exposure and variation of breast compression specially as 2D mammographic
images are projections of 3D mammographic structures. Therefore, in order to
efficiently compare two mammograms and avoid non target dissimilarities, an
initial alignment (also referred to as registration) must be carried out. Methods
that are able to recover local deformation (e.g. [1]) rely on corresponding land-
marks between images, which turns out to be the most difficult task and plays an
important role in registration accuracy. Manually landmark generation is a te-
dious and time consuming task when the number of control points is large and,
moreover, introduces variability. Automatic landmarking methods are, there-
fore, more suitable but also difficult to develop. Automatically extracted mam-
mographic landmarks include breast boundary [4], pectoral muscle [4], salient
regions [5] and crossings of horizontal and vertical structures [7].

This paper presents a novel method to establish image correspondence in
mammographic images based on matching their major linear structures (ducts
and vessels). Establishing correspondence involves various steps: 1. to identify
linear structures in both mammograms (section 2), 2. to extract reliable infor-
mation from those structures (section 3), 3. to obtain correspondence between
the structures (section 4) and 4. registration using a point based method [1].
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2 Detection of Linear Structures

We use a non-linear line operator [3] to detect linear structures in both mam-
mograms. At a given scale, the line operator provides for every pixel a strength
and orientation of the linear structure. Line strength is obtained by comparing a
straight line of pixels with its neighbourhood and obtaining the maximum value
from a number of orientations. Direction of the line strength is determined by
the angle of the line which gives the highest line strength. Scale information is
obtained from the maximum line strength of the detector at different scales.

2.1 Scale Information

In order to obtain more reliable scale information we investigate the feasibility
of normalising the individual line strength images before the scale information
is extracted. For the evaluation we have used a dense mammographic back-
ground to which synthetic linear structures of different scales have been added.
Table 1 compares the scale information obtained with (a) no normalisation,
(b) histogram stretching and (c) histogram stretching with the top 1% of the
grey-levels mapped to the maximum grey-level value. Scale information using
non-processed line strength images results in a biased scale estimation towards
the higher scales and detected lines often overestimate the scale information.
On the other hand, maximum mapping in combination with stretching provides
more reliable scale information with no bias as shown in table 1c. It is our un-
derstanding that without normalisation the resulting line strength at the lower
scales is affected (and relative to the higher scales suppressed) by relative noise
levels.

Table 1. Scale detection using (a) no normalisation (45% detected), (b) histogram
stretching (51% detected) and (c) histogram stretching with the top 1% of the grey-
levels mapped to the maximum grey-level value (87% detected)

True scale
1 2 4

(a) 1 0.04 0.00 0.00
Detected 2 0.28 0.12 0.00
scale 4 0.01 0.27 0.29

True scale
1 2 4

(b) 1 0.22 0.00 0.00
Detected 2 0.11 0.00 0.00
scale 4 0.01 0.38 0.29

True scale
1 2 4

(c) 1 0.33 0.09 0.02
Detected 2 0.00 0.27 0.00
scale 4 0.00 0.02 0.27

The fact that scale information is improved when using the proposed nor-
malisation is clear, but it is also important to analyse how this normalisation
affects detection results, that is, the resulting line strength image. Receiver oper-
ating characteristic curves obtained by comparing true structures with the ones
detected showed that no processing of strength images gives slightly better de-
tection results, but this is only a small percentage and not comparable to the
improved scale detection as indicated in table 1.
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2.2 Line Processing

Once strength, direction and scale information have been obtained we perform
different operations to facilitate the feature extraction process. First, we set a
conservative threshold on the line strength image in order to remove background
noise. Then non-maximum suppression is applied which removes pixels with low
intensity values compared to their neighbours along the normal of the linear
structure. Scale information extracted from the line operator (see section 2.1) is
used here to determine the position of candidate pixels to be suppressed. In ad-
dition, short lines which do not provide reliable information are removed taking
the Euclidean distance between the centre pixel and its neighbours into account.
Finally a thinning operation will obtain the backbone of the most representative
linear structures in the mammograms.

3 Feature Extraction

Feature extraction is needed in order to obtain descriptors of the structures to
be used in the matching process. Corresponding linear structures in two mam-
mograms can present large differences related to line strength and line continuity
(due to different imaging conditions) but width and orientation of the line and
local curvature and branching points are more likely to be preserved and often
are features used by radiologists when comparing mammograms. Therefore, fea-
tures which take line length, end points and line strength into account turn out
to be unreliable features to tackle the correspondence problem. In this paper we
use local features such as curvature, width and orientation. The basic idea of
our method is to extract characteristic points of linear structures determined by
the maximum curvature along the structure. Position, orientation (φ) and width
(w) are then extracted for those points and used in the matching process.

Curvature measures are extracted for each pixel along the linear structures.
Maximum curvature points are likely to be characteristic for a linear structure
in terms of local curvature and branching points. Before computing curvature
we need to extract the orientation of the structures which is obtained directly
from the thinned linear structures. Although orientation information could be
retrieved from the line detector results, experiments have shown (results not
included) that the approach adopted here gives more accurate orientation mea-
sures. Curvature values at each pixel are obtained with a similar approach as
used in [2]. Curvature (or directional change) between two pixels p and q is de-
fined by the scalar product of their normal vectors. Hence, the curvature measure
of a given pixel p is obtained by computing the scalar product between p and its
neighbouring pixels.

Cp =
1
N

N∑

i=1

exp(−d2
ip)(1− cos(φp − φi)) (1)

where φi is the angle of the normal at each pixel i. As we will be extracting
curvature from binary thinned images, we assume unit vectors. N is the number
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of points in a local neighbourhood and dip is the Euclidean distance between
points i and p. The distance factor is used here to weight the curvature of each
point i, in order to incorporate a bias to points closer to p.

Width information is extracted after non-maximum suppression of the strength
images (section 2.2). The improved scale information from the line detection step
(section 2.1) is indirectly used to extract width information as scale information
is used to perform the non-maximum suppression. Width of a linear structure
at a point is given by the number of pixels along the normal of the structure.

4 Matching

The matching process needs to consider the following assumptions:

– Non-rigid motion: linear structures in mammograms suffer local distortions,
therefore they may move independently and no geometrical relationship is
established between neighbouring structures.

– Multiple matches: a linear structure in one mammogram can match more
than one structure in the other mammogram, and vice versa.

– Non-bijectivity: a linear structure in one mammogram may not have a cor-
responding linear structure in the other, and vice versa.

– Localisation: After global breast misalignment is removed, matched linear
structures lie in approximately the same area in both mammograms. We
will refer to this area as the localisation area M .

We adopt here a similar but more general approach than the one used in [7]. We
denote the set of feature points from both mammograms, as {ai|1 ≤ i ≤ Ni} and
{bj |1 ≤ j ≤ Nj}, where Ni and Nj are the number of feature points used, which
may not be the same. Subsequently, we build a distance matrix (DM) in which
each position DM(i, j) describes the normalised distance between features of
points ai and bj . Hence, a low value means good matching between points. The
computation of the feature distance will be discussed later. Once all distances
have been entered, the minimum value of each row is detected (and remaining
positions in each row deleted) in order to have a unique match in each row. Then,
the minimum value of each column is extracted ending up with a set of potentially
matched points. It must be mentioned that the approach only works when there
are distinct minima in each row and column and that points that do not conform
to this are removed from the data-set. Reliable matches are those with a distance
smaller than a particular threshold. The use of the distance matrix structure
fullfills the first three assumptions: independent motion (matched points ai, bj

do not imply matching ai+1, bj+1); a point ai may have multiple matched points
bj ; and a point in either mammogram may remain unmatched.

As mentioned previously the distance matrix contains the normalised dis-
tance between features of points ai and bj . Satisfying the last assumption, local-
isation, positionDM(i, j) will only have a finite value if points ai and bj are in the
same localisation area in both mammograms. This assumption can only be stated
if mammograms are globally aligned, that is, global deformation (i.e. rotation,
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translation and scale) is removed. Therefore, we initially register mammograms
maximising a mutual information measure using an affine transformation [6].
Registration will provide the transformation parameters (α) needed to compare
feature points coordinates and establish the localisation area (M) in both mam-
mograms. The normalised distance is determined by three components. The first
distance is the Euclidean distance (DE) between point coordinates. Coordinates
of one of the points are transformed (Tα) using the parameters obtained from
the registration mentioned earlier. The second distance is the orientation differ-
ence between two points (Dφ). Finally, the last distance is the width difference
between two points (Dw) normalised using the maximum width of all the linear
structures (W ). Using equal weighting the normalised distance is given by

DM(i, j) = Dφ +Dw +DE

=
1− cos(φi − φj)

2
+

|wi − wj |
W

+
|Tα(ai)− bj)|

M
. (2)

4.1 Multi-level Matching

The described matching process may obtain matching points which lie localised
in small areas and not spread over the whole image, as it would be necessary
for image registration. In addition, the localisation area defined using the global
registration may not be accurate enough and a local registration should be used.
A novel multi-level registration approach is used here to tackle those problems.
At the first level, the full images are registered obtaining the transformation pa-
rameters. Subsequently, we move to the second level dividing each mammogram
in six rectangular sub-images and again register each sub-image. Transformation
parameters are carried through each level, assuming that each sub-image at lower
levels would suffer a different transformation but it would be related to the defor-
mation on the higher level. Assuming this, we speedup the optimisation process
as well as avoiding local minimum situated away from the optimum solution.
Once the last level is reached, transformation parameters in each sub-image on
that level establish the correspondence of localisation areas for structures within
each sub-image. In addition, extracting the local best matches in each sub-image
assures that a minimum number of matches will be present, having a more ho-
mogeneous point distribution over the whole mammogram.

5 Results

In this section we present initial results using the described approach applied
to temporal and contralateral mammographic comparison. Figure 1 shows two
mammograms of the same patient taken three years apart where matches be-
tween the linear structures are indicated by numbers. As mentioned earlier,
matched points can be used as control points in mammographic registration,
using a point based method such as thin plate splines [1]. Figure 1c shows the
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subtracted image (where darker areas mean larger misalignment) obtained after
automatic registration using the proposed method. Although mis-registration
can be observed near the breast outline using our method, registration of in-
ternal breast regions is comparable to manual placement of control points. This
statement is corroborated in figure 2 which shows temporal and contralateral reg-
istration results using our method compared to manually placed control points.
Graphs are obtained measuring normalised mutual information between refer-
ence and registered images. A high value denotes high similarity between images,
therefore good registration. Graph results show that automatic registration per-
forms equally or slightly better in most cases, although some poor results are
also obtained. These are due to specific breast characteristics such as the lack
of major linear structures (mammograms 4 and 5 in figure 2a) or large image
deformation (mammograms 15 and 16 in figure 2b).

Fig. 1. Correspondence in temporal mammograms (from left to right): reference image,
warped image, difference between registered image and reference
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Fig. 2. Registration results for temporal (left) and contralateral (right) experiments
where automatic registration (�) is compared to manual registration (�)

6 Conclusions

The work presented here describes a novel approach to solve the problem of
extraction of reliable features in mammographic images and establishes corre-
spondence between them in pairs of mammograms. We have shown that features
extracted from linear structures can provide an automatic approach to the gener-
ation of control points for image registration. Features based on scale, orientation
and position have been used. Initial results look promising, but further work will
be needed to establish the full benefit of our approach.

The proposed method will be tested on a larger mammographic dataset and
compared to a radiologist gold standard. In addition, other features could be
incorporated such as breast boundary and the position of the nipple.
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