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Abstract

In this paper we present a novel approach for the 3D Eu-
clidean reconstruction of deformable objects observed by a
perspective camera with variable intrinsic parameters. We
formulate the non-rigid shape and motion estimation prob-
lem as a non-linear optimization where the objective func-
tion to be minimised is the image reprojection error. Our
approach is based on the observation that often some of the
points on the observed object behave rigidly, while others
deform from frame to frame. We propose to use the set of
rigid points to obtain an initial estimate of the camera’s
varying internal parameters and the overall rigid motion.
The prior information that some of the points in the object
are rigid can also be added to the non-linear minimization
scheme in order to avoid ambiguous configurations. Results
on synthetic and real data prove the performance of our al-
gorithm even when using a minimal set of rigid points and
when varying the intrinsic camera paremeters.

1. Introduction

Tomasi and Kanade’s factorization algorithm [7] has
been one of the most successful approaches to solve the
structure from motion problem for rigid scenes. During
the last years different works have presented extensions
of this factorization framework to deal with non-rigid ob-
jects [1, 3, 8, 10]. These methods assume weak perspec-
tive viewing conditions and are based on the fact that any
configuration of the shape can be explained as a linear com-
bination of basis shapes that define the principal modes of
deformation of the object.

Several factorization algorithms have also been pro-
posed for rigid scenes viewed under full perspective con-
ditions. These are based on the observation that if the pro-
jective depths were known the measurement matrix could
be rescaled and decomposed into motion and shape matri-
ces using factorization. Xiao and Kanade [9] have recently
proposed a factorization method for reconstruction of 3D

non-rigid shapes under the full perspective camera model.
Their method uses the subspace constraint to estimate the
projective depths and then upgrades the projective recon-
struction to a metric one using an extension of their affine
closed form solution to the perspective camera case. How-
ever, their method still relies on the assumption that there
be a set of frames in which the basis shapes are known to
be independent. Besides, as pointed out by Brand [2], their
affine closed form solution breaks down with noisy data.

In this paper we propose an approach to obtain a met-
ric reconstruction of a deformable object observed by a
perspective camera with varying intrinsic parameters. Our
main assumption is that the observed object is composed of
a mixture of some points which undergo purely rigid mo-
tion and others which exhibit deformations. This situation
occurs frequently: for instance when observing a human
face the points on the nose or temples typically do not de-
form and only undergo overall rotations and translations.
We then formulate the non-rigid shape estimation problem
as a non-linear optimization where the objective function to
be minimised is the image reprojection error. We propose
to use the set of rigid points to obtain an initial estimate
of the camera’s varying internal parameters and the overall
rigid motion — using a standard self-calibration algorithm
— which in turn provides the transformation to upgrade the
non-rigid structure to metric space. Besides, the knowledge
that some of the points on the object are rigid provides a
strong prior on the shape parameters which can guide the
non-linear minimization and allow to solve for ambiguities.

The experimental evaluation of our algorithm is per-
formed on both synthetic and real sequences. We concen-
trate on analysing the effects of varying the intrinsic param-
eters of the camera throughout the sequence on the recovery
of 3D structure and motion.

2. Non-rigid factorization

Assuming a perspective projection camera model a 3D
point X is projected onto image frame i according to x;; =



%-,- P;X;, where x;; and X;; are both expressed in homoge-
neous coordinates, P; is the projection matrix and A;; is the
projective depth for that point. The projection matrix may
be parameterized as P; = K;[R;|T;] where K; is the calibration
matrix, R; the rotation matrix and T; the translation vector.
The collection of the projection of all the scene points X;;
in all image frames is known as the measurement matrix W.
For rigid objects when the measurement matrix is rescaled
with the correct projective depths its rank is constrained to
be at most 4. This rank constraint can then be exploited to
factorize W into its motion and shape components.

When the object is deforming the non-rigid 3D shape
can be approximated by a linear combination of a set of
D basis shapes B; which represent the principal modes of
deformation of the object. The 3D vectors are expressed in
homogeneous coordinates so the shape at frame i is
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where B, are the 3 X N shape bases (N is the number of
points), /;; are the corresponding deformation coefficients
and 1 is an N-vector of ones. The projection of the shape at
any frame i onto the image is then governed by:
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Note that if the projective depths are known the rank of the
rescaled measurement matrix is now at most 3D+ 1.

3. Our approach

The idea of our approach for solving the metric non-
rigid shape and motion estimation is to minimize the ge-
ometric distance between the measured image points and
the estimated reprojected points ¥, ; || x;; — &ij [|*= X ||
x;; —PiXij ||?. Therefore, the cost function being minimized
is:
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3.1. Initialization

Non-linear minimization schemes require the initial esti-
mate to be close to the global minimum. To obtain an initial
fit, we propose a novel method that, provided an initial seg-
mentation of the scene into rigid and non-rigid points, firstly
estimates the rigid metric structure and then models the re-
maining contributions of the deformations. In this paper we
do not cover the segmentation step and instead we assume
it has been achieved in a preliminary stage using a similar
approach to the work proposed by Del Bue et al. [4, 5].

To upgrade the rigid structure to metric, we apply the
well-known self-calibration method proposed by Pollefeys
et al. [6]. This provides initial estimates for the 3D metric
structure and for the intrinsic parameters, the overall rigid
motion and the mean shape. An initial estimate for the first
basis shape of the non-rigid points can be directly computed
given the original measurement matrix containing the tra-
jectories of the non-rigid points and the projection matrices
P; obtained by the self-calibration algorithm. The rest of the
basis shapes which encode the D — 1 non-rigid components
are initialized to small random values. Finally, the deforma-
tion weights associated with the mean shape are initialised
to 1 while the rest are initialised to small values. Similar
initialisation has previously been used in [4, 5, 8].

The prior information that some of the points in the ob-
ject are rigid can also be added to the non-linear minimiza-
tion scheme in order to avoid ambiguous configurations.
Our prior expectation is that the rigid points have a zero
non-rigid component and can therefore be modelled entirely
by the first basis shape. We write these constraints as pri-
ors on the coordinates of the basis vectors B;; and solve the
problem as a Maximum A Posteriori (MAP) estimation.

3.1.1. Varying intrinsic camera parameters

The self-calibration algorithm allows to impose different
constraints on each of the camera intrinsic parameters (fo-
cal length, principal point and aspect ratio). For instance,
in the minimization, each of the parameters may be con-
sidered to be known, unknown but constant between views
or unknown and varying. In the experimental section we
will analyse the effect of these different assumptions on the
Euclidean reconstructions.

4. Experimental results
4.1. Synthetic data

The 3D data consisted of a set of random points sampled
inside a box of size 100 x 100 x 100 units. Different se-
quences were generated using different ratios of rigid/non-
rigid points. In particular, we used a fixed set of 10 rigid
points while using 10 and 50 non-rigid points. The defor-
mations for the non-rigid points were generated using ran-
dom basis shapes and random deformation weights. The
first basis shape had the largest weight equal to 1. We
also created different sequences varying the number of ba-
sis shapes (D = 3 and D = 5) for both ratios of rigid/non-
rigid points. Finally, in order to evaluate different levels
of perspective distortion we used 2 different camera setups
in which we varied the distance of the object to the cam-
era and the focal length (Setup 1: z=250, f=900; Setup 2:
z=200, f=600). The 3D data was then projected onto 50 im-
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Figure 1. 2D error, 3D error and rotation error curves. First row: results obtained when the focal
length was constant. Second row: results obtained for the 4 experiments with varying intrinsics.

ages applying rotations and translations over all the axes.
Gaussian noise of increasing levels of variance was added
to the image coordinates.

4.1.1. Constant intrinsics

For the first set of experiments we assumed that all the
camera parameters remained constant over the sequence.
We then applied our 3D reconstruction algorithm to all the
experimental setups described before. The results are sum-
marized on the first row of Figure 1 where we show the
r.m.s. 2D image reprojection error (pixels), 3D metric re-
construction error (percentage relative to the scene size) and
the absolute rotation error (degrees). The plots show the
mean values of 5 random trials per level of noise.

Our proposed algorithm appears to perform well in the
presence of noise. The 3D reconstruction error is low even
for large perspective distortions and for a large proportion
of non-rigid versus rigid points. The 2D error is also small
and it appears to be of the same order as the image noise.
Figure 1 also illustrates that the rotations are correctly esti-
mated. Reliable estimates for the internal camera parame-
ters (focal length and principal point) were obtained even in
the presence of noise, although we do not show them here.

4.1.2. Varying intrinsics

We then performed a set of experiments in which some
of the internal parameters of the camera were varying
throughout the sequence. We designed 4 different exper-
iments using camera setup 2 (z=200,f=600), a ratio of 10
rigid to 50 non-rigid points and 5 basis shapes. For Ex-

periment 1 the focal length of the camera varied linearly
throughout the sequence while the rest of the internal pa-
rameters remained constant. In the optimization algorithm
we considered the focal length unknown and allowed it to
vary while the principal point and the aspect ratio were con-
sidered to be unknown but fixed throughout the sequence
and the skew was considered known and equal to zero. Ex-
periment 2 had the same setup with the focal length being
the only parameter that varied but during the optimization
process we allowed both the focal length and the princi-
pal point to vary. In Experiment 3 the focal length and the
principal point both varied throughout the sequence. In the
minimization we considered the focal length unknown and
allowed it to vary but the principal point was assumed to be
fixed but unknown. Finally, in Experiment 4 we used the
same setup as in Experiment 3 but allowed both the focal
length and the principal point to vary in the minimization.

The results for all 4 experiments are illustrated on the
second row of Figure 1. The results obtained for the internal
camera parameters are summarised on table 1. Note that for
the noisy cases in which the real principal point was varying
better estimates were obtained assuming the principal point
constant during the minimization.

4.2. Experiments with real data

The real scene consisted of a set of 12 rigid points (9 on
two boxes and 3 over a chair) and a set of 20 deformable
points situated on a pillow which was deforming during the
sequence (see first row of Figure 2). The 3D data was cap-
tured using a VICON motion capture system. The 3D points
were then projected synthetically onto an image sequence



[ Noise [ 0 [ 05 [ 1 [ 15 T 2 |

mean f 0 0.56 1.68 1.69 3.90

std. dev f 0 0.18 1.26 0.94 1.99

Expl | max. err f 0 0.83 3.49 3.22 7.16
mean p, 0 0.59 1.48 1.29 6.03

mean p, 0 0.91 243 2.50 3.46

mean f 0.01 | 293 5.14 | 10.28 | 10.97

std. devf | 0.01 0.79 2.92 6.96 4.33

Exp2 | max.errf | 0.02 | 391 836 | 20.12 | 14.92
mean p, | 0.09 | 11.17 | 18.01 | 26.68 | 27.50

mean p, | 0.08 | 6.66 | 14.80 | 22.93 | 2891

mean f 0.69 1.04 1.16 3.10 2.92

std. devf | 0.27 | 0.50 0.38 2.58 1.15

Exp3 | max.errf | 1.04 1.75 1.81 5.96 4.47
mean py 297 | 2.96 3.01 3.77 3.97

mean p, 349 | 334 3.47 5.88 3.79

mean f 0.05 | 2.11 4.93 10.40 | 10.38

std. devf | 0.04 | 1.05 3.51 2.92 4.66

Exp4 | max.errf | 0.09 | 3.60 8.80 | 14.27 | 14.17
mean p, | 0.10 | 5.95 12.71 | 16.01 | 16.31

mean p, | 0.07 | 3.49 10.61 | 14.34 | 15.54

Table 1. Mean, standard deviation and max-
imum value of the relative error in the focal
length estimate. Absolute mean error in prin-
cipal point estimate.

75 frames long using a perspective camera model. Gaus-
sian noise of 0.5 pixels was added to the image coordinates.
The size of the scene was 61 x 82 x 53 units, it was at a
distance of 150 units from the camera and the focal length
was 900 pixels and constant during the sequence. Figure 2
shows the ground truth (squares) and reconstructed shape
(crosses) from two different viewpoints. The number of ba-
sis shapes was D = 6, the 2D reprojection error was 0.95
pixels, the absolute 3D error was 1.34 units, the absolute
rotation error was 2.11 degrees and the focal length was
estimated to be 899. Note that the deformations are well
captured even for the frames in which they were most exag-
gerated. We repeated the same experiment but varying the
focal length from 700 to 1000 pixels during the sequence.
In this case, the 2D error was 0.96 pixels, the absolute 3D
error was 1.65 units, the rotation error was 2.77 degrees and
the mean focal length error was 34.84 pixels.

5. Conclusions

We have proposed a new approach for the estimation of
Euclidean non-rigid shape from uncalibrated images. The
experiments have shown that even when using a minimal set
of rigid points and when varying the intrinsic parameters it
is possible to obtain reliable metric information.
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Figure 2. First row shows examples of the
analysed scene. Second and third rows show
two views of the reconstructed scene.
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