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Abstract

In this paper we focus on the estimation of the 3D Eu-
clidean shape and motion of a non-rigid object which is
moving rigidly while deforming and is observed by a per-
spective camera. Our method exploits the fact that it is of-
ten a reasonable assumption that some of the points are de-
forming throughout the sequence while others remain rigid.
First we use an automatic segmentation algorithm to iden-
tify the set of rigid points which in turn is used to estimate
the internal camera calibration parameters and the overall
rigid motion. Finally we formalise the problem of non-rigid
shape estimation as a constrained non-linear minimization
adding priors on the degree of deformability of each point.
We perform experiments on synthetic and real data which
show firstly that even when using a minimal set of rigid
points it is possible to obtain reliable metric information
and secondly that the shape priors help to disambiguate the
contribution to the image motion caused by the deformation
and the perspective distortion.

1. Introduction

The extensive work of the past years on structure from
motion for the case of rigid objects has recently been ex-
tended to deal with non-rigid structure. Bregler et al. [4]
introduced a representation for non-rigid 3D shape where
any configuration can be expressed as a linear combination
of basis shapes that define the principal modes of deforma-
tion of the object. They proposed a factorization method
for weak perspective viewing conditions that exploits the
rank constraint on the measurement matrix and enforces or-
thonormality constraints on camera rotations to recover the
motion and the non-rigid 3D shape. Torresani et al. [16]
extended the method to a trilinear optimization problem us-
ing Alternating Least Squares while Brand [2] proposed an
alternative optimization method adding the extra constraint

that the deformations should be as small as possible relative
to the mean shape.

The main problem with these approaches stems from the
fact that the shape and motion are ambiguous. Recently,
Xiao et al. [18] proved that the orthogonality constraints
were insufficient to disambiguate rigid motion and defor-
mations. They identified a new set of constraints on the
shape bases which, when used in addition to the rotation
constraints, provide a closed form solution to the problem
of non-rigid structure from motion. However, their solution
is based on a strong assumption as it requires that there be
D image frames (where D is the number of basis shapes)
in which the basis shapes are known to be independent. Be-
sides, it was later pointed out by Brand [3] that their method
provides an exact solution with noiseless data and when
the number of basis shapes D is known but it breaks down
with noisy data or when D is not correctly estimated. Non-
linear optimization schemes that minimize image reprojec-
tion error have also been proposed to refine an initial solu-
tion [1, 6]. Torresani et al. [15] proposed an algorithm that
learns the time-varying shape of a non-rigid 3D object from
uncalibrated 2D tracking data and where prior information
on the motion or shape is introduced to avoid ambiguities.

Crucially, all the methods described previously assume
the case of images acquired under weak perspective view-
ing conditions. In this paper we are interested in the case
when the images are acquired at closer distances or with
a wide field of view and perspective distortions appear.
Xiao and Kanade [17] have more recently developed a two
step factorization algorithm for reconstruction of 3D de-
formable shapes under the full perspective camera model.
In this paper we present an alternative approach to non-rigid
shape and motion recovery under the full perspective cam-
era model. Our method adopts similar assumptions to the
work by Del Bue et al. [5] where the observation is made
that frequently a scene might contain a mixture of rigid
and non-rigid points. Similarly, our approach first performs



rigid and non-rigid motion segmentation on the image data
to separate both types of motion where the main contribu-
tion in this paper is to deal with the projective camera case.
To obtain the metric upgrade information we perform self-
calibration on the rigid set of points which provides esti-
mates for the camera intrinsic parameters, the overall rigid
motion and the mean shape. We then formalise the prob-
lem of non-rigid shape estimation as a constrained non-
linear minimization using the estimates given by the self-
calibration algorithm as the starting point for the minimiza-
tion and providing priors on the degree of rigidity of each
of the points. Finally we show results on synthetic and real
data.

2. Non-rigid factorization: Background

2.1. Weak perspective camera model

The model introduced by Bregler et al. [4] to express
non-rigid deformations is point-wise and the 3D shape Si at
frame i (in non-homogeneous coordinates) is approximated
by a linear combination of a set of D basis shapes Bd which
represent the principal modes of deformation of the object:

Si =
D∑

d=1

lidBd Si, Bd ∈ �3×N lid ∈ � (1)

where each basis shape Bd is a 3×N matrix which contains
the 3D locations of N object points for that particular mode
of deformation. Assuming an orthographic camera model
the shape is then projected onto an image giving N image
points:

Wi =
[

ui1 ... uiN

vi1 ... viN

]
= Ri

(
D∑

d=1

lidBd

)
(2)

where [uijvij ]T are the horizontal and vertical image coor-
dinates of point j – referred to the centroid of the object –
and Ri encodes the first two rows of the rotation matrix. If
all N points are tracked in F image frames we may con-
struct the measurement matrix W which can be expressed as:

W =



W1

...
WF


 =




l11R1 . . . l1DR1

...
...

lF1RF . . . lFDRF





B1

...
BD


 = M B (3)

Clearly, the rank of the measurement matrix is constrained
to be at most 3D. This rank constraint can be exploited
to factorize the measurement matrix into a motion matrix ~M
and a shape matrix ~B by truncating the SVD of W to rank 3D.
However, this factorization is not unique since any invert-
ible 3D×3D matrix Q can be inserted in the decomposition
leading to: W = (~MQ)(Q−1~B). The problem is to find a trans-
formation matrix Q that renders the appropriate replicated

block structure of the motion matrix shown in Equation (3)
and that removes the affine ambiguity, upgrading the recon-
struction to a metric one.

2.2. Perspective camera model

If we now assume a perspective projection model for the
camera a 3D point Xj will be projected onto image frame i
according to the equation:

xij =
1

λij
PiXj (4)

where xij and Xij are both expressed in homogeneous co-
ordinates (i.e. xij = [uijvij1]T and Xj = [XjYjZj1]T ),
Pi is the projection matrix and λij is the projective depth for
that point. Scaling the image coordinates of all the points in
all the views by their corresponding projective depth gives
a 3F × N measurement matrix:

W =




λ11x11 . . . λ1Nx1N

...
...

λF1xF1 . . . λFNxFN


 =




P1

...
PF


 X (5)

where X = [X1 . . .XN ] is a 4 × N shape matrix which
contains the homogeneous coordinates of the N 3D points.
In the case of rigid structure, when the measurement matrix
is rescaled with the correct projective depths, the rank of W
is constrained to be at most 4. Various algorithms [9, 11]
have been proposed to use the rank 4 constraint to estimate
the projective depths first and then obtain a projective re-
construction of the scene based on the factorization of the
scaled measurement matrix.

However, for non-rigid shape the 3D structure changes
from frame to frame where Xi = [Xi1 . . .XiN ] is the shape
at frame i. As we mentioned above, the deformation of a
shape can often be explained as a linear combination of a
set of shape bases. In the projective case [17] the 3D vectors
are expressed in homogeneous coordinates and so the shape
may be written as:

Xi =
[ ∑D

d=1 lidBd

1

]
Xi ∈ �4×N Bd ∈ �3×N (6)

where Bd are the (3 × N) shape bases, lid are the corre-
sponding deformation coefficients and 1 is an N-vector of
ones. The projection of the shape at any frame i onto the im-
age is then governed by the projection equation Wi = PiXi.
In matrix form this can be re-written for all frames as [17]:

W =




l11P
(1:3)
1 . . . l1DP

(1:3)
1 P(4)

1
...

...
...

lF1P
(1:3)
F . . . lFDP

(1:3)
F P(4)

F






B1

...
BD

1


 (7)



where P(1:3)
i are the first three columns of the projection ma-

trix, P(4)
i is the fourth and 1 is an N-vector of ones. Clearly,

the rank of the measurement matrix is at most 3D + 1 for
the projective case [17]. Once more if the projective depths
λij were known the measurement matrix could be rescaled
and decomposed into motion and projective shape matri-
ces using factorization. In their most recent work Xiao and
Kanade [17] proposed a new method to estimate the projec-
tive depths using the 3D + 1 subspace constraint and then
upgrade the projective reconstruction to a metric one using
an extension of their affine closed form solution to the per-
spective camera case. However, their method still relies on
the assumption that there be D frames in which the basis
shapes are known to be independent.

In this paper we propose an alternative method to ob-
tain a metric reconstruction of a non-rigid object observed
by a perspective camera using the assumption that some of
the points on the object might be undergoing rigid motion.
The point trajectories are segmented and then the rigid set
is used to obtain the information that will allow to upgrade
the structure from projective to metric space. Finally we
formalise the problem of non-rigid shape estimation as a
constrained non-linear minimization. In the next section we
describe the automatic segmentation algorithm we propose
to separate the rigid and non-rigid motions.

3. Segmentation of rigid and non-rigid motion
under perspective viewing

In the case of a weak perspective camera, the rank of a
measurement matrix containing a set of rigid points is con-
strained to be at most 3. However (see equation 5), when the
camera is described by the perspective model, the rank of
the measurement matrix is 4, provided that the measurement
matrix has been rescaled with the correct estimates of the
projective depths λij . When the points in the measurement
matrix are non-rigid the rank increases to 3D+1 in the pro-
jective camera case where D is the number of basis shapes.
Unfortunately, the rank constraint cannot be used directly
to segment rigid and non-rigid points, since the rigid points
could always be explained as non-rigid points with zero
configuration weights for the non-rigid shape bases.

Instead, our approach is based on the fact that rigid
points will satisfy the epipolar geometry while the non-
rigid points will give a high residual in the estimation of
the fundamental matrix between pairs of views. We use a
RANSAC algorithm [7] to estimate the fundamental matri-
ces and to segment the scene into rigid and non-rigid points
(which we consider to be outliers).

However, a well known drawback of random sampling
and consensus techniques is the computational cost required
to obtain a valid set of points when the percentage of out-
liers is high due to the large number of samples needed to

be drawn from the data. Unfortunately, this is the most
likely scenario in non-rigid structure from motion where we
normally deal with a small proportion of completely rigid
points. In this paper we exploit a measure of the degree of
deformability of a point to infer a prior distribution of the
probability of a trajectory being rigid or non-rigid given that
measure. These distributions are then used as priors to per-
form guided sampling over the set of trajectories in a similar
approach to the one proposed by Tordoff and Murray [14]
for the stereo matching problem.

3.1. Building the rigidity priors

3.1.1 Degree of non-rigidity

Kim and Hong [10] introduced the notion of Degree of Non-
rigidity (DoN) of a point viewed by an orthographic cam-
era as an effective measure of the deviation of the point
from the average shape. If the average 3D shape of a time
varying shape Si = [Si1 . . .SiN ] (in non-homogeneous
coordinates) is given by S̄ = [S̄1 . . . S̄N ] the Degree of
Non-rigidity for point j can be expressed as DoNj =∑F

i=1(Sij − S̄j)(Sij − S̄j)T . The projection of the DoN

will be thus be given by sj =
∑F

i=1 Ri(Sij − S̄j)(Sij −
S̄j)TRiT =

∑F
i=1(xij − x̄j)(xij − x̄j)T where xij are

the image coordinates of point j in frame i and x̄j are the
coordinates of its projected mean shape. An estimate of
the average projected 2D shape x̄j could simply be given
by the rank-3 approximation of the measurement matrix W
computed using singular value decomposition and given by
SV D3(W) = M̄B̄. The projected deviation from the mean
for all the points would then be defined by {xij − x̄j} =
~W = W− M̄B̄. Kim and Hong computed a more sophisticated
estimate of the average shape, but for simplicity in this pa-
per we have used the above description which has shown to
give a good measure of the degree of deformability.

Notice that the previous definitions all assume affine
viewing conditions. However, in this paper we are deal-
ing with points in projective space so we need to re-define
the measure of non-rigidity. First, the original measure-
ment matrix W must be re-scaled by the estimated projective
weights λij . We calculate the projective depths λij using
subspace constraints ([9]) and express the rescaled measure-
ment matrix as Wrescaled = {λijwij}. Then we estimate
the mean shape as the rank-4 approximation of the rescaled
measurement matrix computed using singular value decom-
position and given by SV D4(Wrescaled) = W̄ = M̄B̄. The
projected deviation from the mean would then be defined as
before by {xij − x̄j} = ~W = W − M̄B̄ and the projection of
the DoN can finally be computed as:

sj =
F∑

i=1

(xij − x̄j)(xij − x̄j)T . (8)
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Figure 1. Conditional densities for the score given: (a) that a point
is rigid p(s|r) or (b) non-rigid p(s|r̄)
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Figure 2. Estimated prior given by the estimated densities p(s|r)
and p(s|r̄).

3.1.2 Computation of the prior

Tordoff and Murray [14] showed that guided sampling
based on knowledge extracted from the images can greatly
improve the performance of a random sampling method, es-
pecially in the presence of noise or of a high number of
outliers. In these cases standard RANSAC becomes com-
putationally prohibitive given the large number of random
samples that must be drawn from the data. In this paper we
use the 2D projection of the DoN defined in the previous
section to provide a score sj for each point trajectory which
will be used to build a prior distribution of the conditional
probability of each point in the object being rigid or non-
rigid given this score.

We have inferred the conditional probability density
functions for the score s given that a point is rigid p(s|r)
(see Figure 1(a)) or non-rigid p(s|r̄) (see Figure 1(b)) by
computing the normalised frequency histograms over many
experimental trials with synthetic (and real) sequences with
different perspective distortions, degrees of deformation
and ratios of rigid/non-rigid points. We have then approxi-
mated the histograms by fitting appropriate analytical func-
tions. To derive the prior conditional density function of a
point being rigid given the non-rigidity score p(r|s) we use
Bayes theorem:

p(r|s) =
p(s|r)p(r)

p(s)
∝ p(s|r)

p(s|r) + p(s|r̄) (9)

Figure 2 shows an example of a prior obtained from our

experiments. We are studying alternative measures to the
DoN which might give better prior distributions of the
probability of a point being rigid. Note that although the
computation of the score is specific to each method the
derivation of the prior given the distribution of the score
is general.

3.2. Guided RANSAC

We use guided RANSAC to estimate the fundamental
matrices between pairs of views. This process will be used
to provide a segmentation of the image trajectories into rigid
and non-rigid ones since the non-rigid trajectories will not
satisfy the epipolar geometry and will therefore give a high
residual in the computation of the pairwise fundamental ma-
trices. To speed up the process we use the prior derived
in the previous section to draw the point samples: points
with the highest conditional probability of being rigid will
be chosen more frequently. The method employed to esti-
mate the fundamental matrix is the standard 8-point algo-
rithm [8]. Notice that we do not consider outliers in the
point matching from frame to frame.

We show results of the guided sampling RANSAC al-
gorithm applied to the segmentation of rigid and non-rigid
points in the experimental section.

4. Non-rigid shape and motion estimation

Once the scene has been segmented into the rigid and
non-rigid point sets we compute metric non-rigid shape in
two steps. First we use the rigid point set to estimate the
camera intrinsic parameters – which provide the necessary
information to upgrade the structure to metric – and the
overall rotations and translations. Secondly we formulate
the estimation of metric non-rigid shape as a global non-
linear minimization.

4.1. Computing the metric upgrade

Given a set of rigid points observed by a perspective
camera a variety of projective reconstruction algorithms
[13, 9] can be applied to the rigid trajectories to obtain the
3D shape in projective space. It is then possible to up-
grade this reconstruction to a metric one by using a self-
calibration method which will provide estimates of the in-
ternal camera calibration parameters and of the motion and
shape parameters in Euclidean space. We have used the
well-known self-calibration method proposed by Pollefeys
et al. [12]. The main advantage of this method is that it al-
lows to impose different constraints on each of the camera
intrinsic parameters (focal length, principal point and aspect
ratio) since the camera calibration matrix K is parameter-
ized explicitly in terms of them. Each of the parameters may
be considered to be known, unknown but constant between



views or unknown and varying. As we will show in the ex-
perimental section the algorithm provides good results even
when a very small number of rigid points is used.

4.2. Non-linear optimization

Our approach to solve for the non-rigid shape and mo-
tion given the 2D image tracks is to minimize image re-
projection error. The cost function being minimised is the
geometric distance between the measured image points and
the estimated reprojected points χ =

∑
i,j ‖ xij − x̂ij ‖2=∑

i,j ‖ xij −PiXij ‖2 where Pi is the projection matrix for
frame i and Xij are the metric 3D coordinates of point j in
frame i. We parameterize the projection matrices in terms
of the calibration matrices Ki, the rigid rotation matrices Ri

and the translation vectors Ti. The coordinates of the non-
rigid points Xij can be parameterized in terms of the basis
shapes Bjd and the deformation coefficients lid. We may
now write the non-linear minimization scheme as:

min
KiRiTiBdj lid

∑
i,j

‖ xij−Ki[Ri|Ti]
[∑D

d=1 lidBdj

1

]
‖2 (10)

This problem is known as bundle-adjustment and it can be
solved using a sparse implementation of a non-linear mini-
mization algorithm such as Levenberg-Marquardt.

4.3. Initialization

The initial estimates for the calibration matrices Ki, the
overall rotations Ri and translations Ti have been obtained
directly from the self-calibration algorithm applied on the
rigid point set. An initial estimate for the first basis shape
of the non-rigid points (which encodes the mean shape) can
be easily computed given the rescaled measurement matrix
of the non-rigid points Wnonrigid, and the projection matri-
ces Pi (provided by the self-calibration algorithm) using the
expression:

[
Bnonrigid

1

1

]
=




P1

...
PF




+

Wnonrigid (11)

where Bnonrigid
1 encodes the first basis of the non-rigid

points. The coordinates of the rest of the basis shapes
which encode the D − 1 non-rigid components Bd with
d = 2, . . . , D are initialised to small random values. Fi-
nally, the configuration weights associated with the mean
shape li1 are initialised to 1 while the rest of the weights
lid are initialised to small values. This randomised initiali-
sation of basis shapes and coefficients has previously been
used by different authors [16, 6, 5] who report good conver-
gence of the algorithm.

Figure 3. First row: 2 views of the synthetic sequence with camera
setup 2. Second row: Ground truth (squares) vs reconstruction
(crosses) for (left) no noise (right) noise=2 pix.

4.4. Rigidity priors

If the motion of a point j is completely rigid for the
entire sequence, the structure referring to that point can
be expressed entirely by the first basis (d = 1) called
the rigid basis. From this it follows that for a rigid point
Bdj = 0 ∀ d > 1 where Bj = [BT

1j . . .BT
Dj1]T . Note

that Bj is a 3D+1 vector which encodes the D basis shapes
for point j and Bdj is a 3-vector which contains 3D coor-
dinates of basis shape d for point j. Notice that this forces
3(D − 1) zeros in each column of the shape matrix corre-
sponding to a rigid point. We write these expectations as
priors on the coordinates of the basis vectors Bdj and solve
the problem as a Maximum A Posteriori (MAP) estimation.

5. Results

5.1. Experiments with synthetic data

The synthetic 3D data consisted of a set of random points
sampled inside a cube of size 50× 50 × 50 units. Different
sequences were generated using 10 points which remained
rigid throughout the sequence (which included the vertices
of the cube) and 10, 20, 30, 40 and 80 which deformed.
The deformations for the non-rigid points were generated
using random basis shapes as well as random deformation
weights. The first basis shape had the largest configuration
weight equal to 1.

The data was projected onto 50 images using a perspec-
tive camera model and applying rotations and translations
over all the axes. We used 2 different camera setups with
different levels of perspective distortion. We varied the dis-
tance of the object to the camera and the focal length (setup
1: d=150, f=800; setup 2: d=100, f=500). Figure 3 shows



Noise level 0 0.5 1 1.5 2
10/10 0 0.2 0.3 0.5 0.6
10/20 0 0.3 0.4 0.5 0.7
10/40 1.6 1.9 1.7 2.2 2.3
10/80 1.8 2.0 2.7 2.6 2.4

Table 1. Mean misclassification error (expressed in number
of points) for different levels of noise and different ratios of
rigid/non-rigid points.

two frames of a sequence obtained with camera setup 2.
For all the experiments we assumed that the focal length,
aspect ratio and the principal point were constant over the
sequence while the skew was set to be 0. Gaussian noise of
different levels was added to the image coordinates.

5.1.1 Motion segmentation

The experimental setup described above is first used to ob-
tain an indication of the validity of our segmentation ap-
proach presented in Section 3. Guided RANSAC was per-
formed using a conditional density prior given the non-
rigidity score that was generated empirically from the data.
The camera setup with strongest perspective distortions
(d=100, f=500) was used and the ratio of rigid/non-rigid
points was varied to study the performance of the algorithm
given increasing numbers of outliers.

Various trials were performed with the number of ran-
dom samples fixed to 2500. The distance threshold t which
decides whether a point is an inlier or an outlier (rigid or
non-rigid in this case) was set empirically to be t = 4.12.
It was fixed by taking into account the sum of the resid-
uals given by the estimation of F-1 fundamental matrices
using normalised coordinates. Table 1 shows the degree
of misclassification (measured as number of misclassified
points) for varying ratios of rigid/non-rigid points and for
increasing levels of noise. Note that a very good segmen-
tation is achieved for ratios of rigid/non-rigid points above
10/40. At 10/40 the mean misclassification error was ap-
proximately of 2 points and higher values of misclassifica-
tion appear for a rigid/non-rigid point ratio of 10/80. We
have noticed a better algorithmic behaviour in the case of
stronger perspective distortions compared to weaker ones
since the effects of perspective distortions and deformations
are less ambiguous in such cases. Obviously, a misclassifi-
cation error in the segmentation will affect the recovery of
the 3D structure and camera parameters. We will analyse
this situation in the next section and we will see that for the
error levels we see here, the effect of misclassification is not
very significant on the final 3D reconstruction.

5.1.2 3D metric reconstruction

The aim of this section is to show the performance of our
reconstruction approach under different situations assuming
that a correct segmentation has been achieved. In particular,
we performed an exhaustive evaluation over three different
sets of experiments:

1. Varying the number of basis shapes (D = 3, 4 and 5).
We used 10 rigid and 30 non-rigid points with the first
camera setup to project the 3D data.

2. Varying the ratio of rigid/non-rigid points. We used 10
rigid points while varying the number of non-rigid to
10, 20, 40 and 80. We fixed the number of basis shapes
to 3 and used the first camera setup.

3. Varying the levels of perspective distortion (camera
setup 1 and 2). We fixed the number of basis shapes
to 5 and used 10 rigid and 30 non-rigid points.

We also used the last experimental setup to test the be-
haviour of our algorithm when some non-rigid points were
misclassified as rigid points after the automatic segmenta-
tion. Following the results obtained in the previous section
we added 2 non-rigid points to our rigid set.

The results obtained for the three sets of experiments are
summarised in Figure 4 where we show the r.m.s. 2D image
reprojection error expressed in pixels, 3D reconstruction er-
ror expressed in percentage relative to the scene size (which
we defined as the maximum of the x, y and z coordinates)
and absolute rotation error expressed in degrees. The plots
of this figure show the mean values corresponding to 5 ran-
dom trials on each level of noise. Our proposed method ap-
pears to perform well in the presence of image noise. Note
that the 3D reconstruction error is well below 1.5% even for
large perspective distortions and a large proportion of non-
rigid points. The 2D error is also small and it appears to
be of the same order as the image noise. The bottom row
of Figure 4 also includes results obtained for both camera
setups when 2 non-rigid points were incorrectly classified
as rigid points showing that the impact of the presence of
some outliers in the motion segmentation on the 3D recon-
struction is not severe.

The non-linear optimization algorithm usually converges
within around 30 iterations. Results in Figure 4 show that
the algorithm always converges in the absence of noise. In
this sense, the added priors are fundamental to avoid local
minima given by ambiguous configurations of motion, per-
spective distortion and deformation parameters. Besides,
the convergence in the absence of noise validates the ran-
domised initialization used for the non-rigid basis shapes
and coefficients.

Table 2 summarises the results of the focal length esti-
mation. Observe that reliable estimates are obtained even in
the presence of noise.
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Figure 4. 2D, 3D and rotation error curves for each set of experiments: different number of basis shapes (top row), rigid/non-rigid points
(middle row) and camera setups (bottom row). The bottom row also includes results obtained when 2 non-rigid points were incorrectly
classified as rigid showing that the impact of errors in the motion segmentation on the 3D reconstruction is not severe.

Noise level 0 0.5 1 1.5 2
mean 0 0.18 0.50 0.88 1.17

std. dev 0 0.15 0.48 0.83 0.93
maximum 0 0.70 2.04 3.51 5.15

Table 2. Mean, standard deviation and maximum relative error (%)
of the focal length for the different levels of noise. Results ob-
tained over all the experimental tests.

5.2. Real experiment

In this experiment we use real 3D data of a human face
undergoing rigid motion while performing different facial
expressions. The 3D data was captured using a VICON mo-
tion capture system by tracking a subject wearing 37 mark-
ers on the face. The 3D points were then projected syn-
thetically onto an image sequence 74 frames long using a
perspective camera model. The size of the face model was
169×193×102units and the camera setup was such that the
subject was at a distance of 300 units from the camera and
the focal length was 600 pixels so the perspective effects
were significant.

In this case the segmentation of points was done manu-
ally selecting 14 rigid points situated on the nose, temples
and the side of the face. Figure 5 shows the ground truth and
reconstructed shapes from front, side and top views. The se-
lected set of rigid points is highlighted in the frontal view
of the first frame. The obtained 2D reprojection error was
0.67 pixels, the absolute 3D error was 2.24 units while the
estimated focal length was 595.12. The results are satisfac-
tory considering that the selected rigid points were not per-
fectly rigid during all the sequence. Note the deformations
are very well captured by the model even for the frames in
which the facial expressions are more exaggerated.

6. Conclusions

In this paper we have presented a new approach to the
computation of metric non-rigid shape from a sequence of
uncalibrated images. The method first performs a segmen-
tation of scene points into rigid and non-rigid and then ob-
tains the metric upgrade information and estimates for the
overall motion and mean shape from the rigid point set. The
estimation of non-rigid shape is then formulated as a non-



Frame 1 Frame 31 Frame 74

Figure 5. Front, side and top views of the reconstructed face for
frames 1, 31 and 74. Crosses indicate estimated reconstructed
points while squares refer to the ground truth. Highlighted marks
on the frontal view of frame 1 indicate rigid points.

linear optimization problem. Our experiments show that
even when using a minimal set of rigid points it is possible
to obtain reliable metric information. We have also shown
that the reconstruction algorithm appears to have some re-
silience to some of non-rigid points being misclassified as
being rigid.
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