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Abstract— Many applications in mobile and underwater
robotics employ 3D vision techniques for navigation and map-
ping. These techniques usually involve the extraction and 3D
reconstruction of scene interest points. Nevertheless, in large
environments the huge volume of acquired information could
pose serious problems to real-time data processing. Moreover,
In order to minimize the drift, these techniques use data asso-
ciation to close trajectory loops, decreasing the uncertainties in
estimating the position of the robot and increasing the precision
of the resulting 3D models. When faced to large amounts of
features, the efficiency of data association decreases drastically,
affecting the global performance.

This paper proposes a framework that highly reduces the
number of extracted features with minimum impact on the
precision of the 3D scene model. This is achieved by minimizing
the representation redundancy by analyzing the geometry of the
environment and extracting only those features that are both
photometrically and geometrically significant.

I. INTRODUCTION

Vision-based navigation and mapping algorithms use vi-

sual features to create maps of the environment. As the robot

navigates the map increases in size and complexity to a point

where the computational costs become too high for real-time

processing. Moreover the efficiency of data association, a

crucial part of of the systems, decreases as the complexity of

the map augments. Therefore, it is essential for these systems

to extract few but representative environment features.

Most of the 3D vision proposals found in the literature

[1], [2], [3], [4], [5], [6] are based on the reconstruction of

sets of scene key points. These points are matched in various

views of the scene, either supplied by multiple cameras or

by a single moving camera. Provided the position of the

camera(s) within a reference frame (either by pre-calibration

on the case of multiple cameras or on-the-fly auto-calibration

in case of moving cameras), the 3D position of the key points

is estimated. The result is a cloud of 3D points with respect

to the chosen reference frame that can be interpreted as a set

of discrete measurements of the viewed region. However,

the vast majority of natural scenes are hardly discrete and

a sparse model of them could be hard to interpret either by

humans or by machines. In order to overcome this problem,

the key points are interpolated using linear or quadratic

techniques resulting in a continuous model.

It is obvious that the precision of the 3D model is highly

dependent on the accuracy of the estimation of the 3D points

position. Therefore, the key points have to be reliably tracked

over multiple views.

(a) (b)

Fig. 1. Using Harris corner detector on two views of a synthetic scene top
view (a) and perspective view (b). Most extracted features (represented by
white circles) have little geometric significance

The problem of extracting key image features has rep-

resented a topic of intensive research in the last decade,

resulting in the development of a variety of interest point

detectors: Shi and Tomasi [7], SIFT [8], SURF [9], affine

covariant [10], etc. All of these proposals use a similar

approach based on extracting points that represent regions

with high image intensity gradient. Practice has proven that

these regions are highly discriminative and they are more

robust to image noise, changes in illumination, camera point

of view, etc.

However, even an accurate reconstruction of the 3D points

obtained by an interest point detector cannot guarantee a

consistent 3D reconstruction of the scene. Changes in image

intensities could be a result of rich textures, shadow/light

changes and do not necessarily represent edges/corners of

scene objects. Hence, as image features are extracted using

image intensity measurements, they do not necessarily have

a geometric meaning. A representative example is illustrated

in Fig. 1. Harris corner detector was applied on two views

of a synthetic scene. The features are cluttered in the regions

with high texture and very few on the actual corners/edges

of the object. The 3D model based on these features would

represent a poor approximation of the real geometry of the

3D objects. In order to overcome this problem, the 3D

reconstruction algorithms found in the literature extract dense

sets of points from the scene. By increasing the number of

measurements, the accuracy of the resulting model increases.

Although this is an acceptable solution for 3D reconstruction

of small areas, in the case of robot navigation it imposes a set

of drawbacks mostly related to the incremental complexity of

the problem. Therefore, it is important to devise solutions to

extract a minimum number of features that could efficiently

model the environment. To the best of our knowledge no

previous work has addressed the problem of reducing the
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(a)

(b)

(c)

Fig. 2. Simple 2D example of ideal features extraction from topological
point of view: (a) 4 feature points provide a good initial piece-wise linear
approximation of the curved profile; (b) absolute value of first derivative;
(c) the 4 features correspond to the maxima of the response of the second
derivative.

amount of the extracted features by jointly analyzing the

geometrical and photometrical characteristics of the environ-

ment.

We propose an algorithm that extracts image features that

are consistent with the 3D structure of the scene. The features

can be robustly tracked over multiple views and serve

as vertices of planar patches that suitably represent scene

surfaces, while reducing the redundancy in the description

od 3D shapes. In other words, the extracted features will

offer good tracking properties while providing the basis for

3D reconstruction with minimum model complexity.

In order to better understand the concept, consider the

simple example in Fig. 2a, which illustrates a 2-D profile

as the cross section of a 3-D relief. By extracting features

around the edges of the slopes (marked in dark grey) and

applying linear interpolation (dotted lines), a good initial

approximation of the shape is obtained.

The following section provides a detailed description

of the approach along illustrative example, followed by a

presentation of a set of experimental results validating the

proposal. The paper concludes with a brief presentation of

what we have accomplished and what is still to be done.

II. ALGORITHM DESCRIPTION

The proposed algorithm was developed for Autonomous

Underwater Vehicle (AUV) navigation based on monocular

vision systems. This particular application imposes a series

of problems in addition to those mentioned earlier:

• underwater environments are cluttered with very few

well defined geometrical characteristics (i.e. edges and

corners);

• illumination changes, back-scattering and light attenua-

tion increase the difficulty of feature tracking;

• 3D reconstruction is based on a single moving camera,

using no external information regarding the camera

motion.

Fig. 3 outlines the main modules of the proposal, which is

designed to process the data as it is acquired. There are

two parallel modules of processing: (i) geometric features

processing and (ii) photometric features processing. The in-

formation of the two modules is merged in order to generate

features that are both geometrically representative and ro-

bustly trackable. The obtained features are 3D reconstructed

and interpolated in order to obtain the 3D model.
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Fig. 3. Flowchart of the feature extraction algorithm.

A detailed description of each module of the proposal in

provided hereafter.

A. Optical Flow and Depth Map Computation

The first step of the geometrical features extraction is the

computation of the 2-D optical flow v = [u v]T from pairs

of images. The adopted generalized dynamic image model

(GDIM) based method was proposed by Negahdaripour [11],

and later generalized to take advantage of color in addition to

intensity information for improved robustness and estimation

accuracy [12]. The computed optical flow for each pair

{In, In+1} of consecutive images provides an estimate of

local disparities for depth computation.

The Longuet-Higgins differential image motion model is

the basis of the depth estimation module:

v = Aωω +
1

Z
Att (1)

Here, ω and t are camera rotation and translation velocities

respectively, and Z is the distance to a scene point along the

optical axis. Based on (1), pairwise 3-D motions and depth

maps are computed iteratively from the optical flow [13].

It should be noted that both the depth maps are computed

up to scale (due to the well-known scale-factor ambiguity

of monocular vision). The correct scaling can be determined

with a single distance (depth) measurement, or knowledge

of motion magnitude. Fig. 4b illustrates the depth map

estimation for the synthetic scene shown in Fig. 4a.

B. Depth map derivatives

In order to extract the geometric features, the system

focuses its search on two types of regions of interest: (i)

object edges and (ii) surface inflexions. Practically, these

types of regions correspond to high responses of the second

derivative of the depth map and will be called edges hereafter.

Analyzing Fig. 2, it can be observed that the 4 ideal feature

points correspond to local maxima of the second derivative

(Fig. 2c).

The second derivative of the depth map is obtained by:

D′′

m(x, y) =
1

N
ΣN

i=1Dm(x, y) ∗ LoG(σi) (2)
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Fig. 4. Main steps of the proposal: (a) depth map of the scene, (b)
computation of second derivative, (c) normalization and binarization and
(d) edge traces (× represent line ends, + represent line junctions and ◦

represent high curvature points)

where ∗ is the convolution operator, LoG(σi) is the Lapla-

cian of Gaussian with standard deviation σi = m ·i, m being

a predefined constant. By using this approach, D′′

m becomes

less sensitive to noise, while having high responses on the

edges of the surfaces(see Fig. 4b).

C. Extraction of Regions-of-Interest (ROI)

As mentioned earlier, the regions of interest correspond to

those areas where D′′

m has high values. In order to extract

these regions a simple binarization would suffice. However

the steepness and area of the slopes influence the magnitude

and width of the peaks in D′′

m. In this case, applying a

binarization would either not detect certain edges or would

generate false edges due to image noise. In order to obtain

a constant binarization, D′′

m is locally normalized using:

D̂′′

m(x, y) =
D′′

m(x, y) − wn(x, y)√
vn(x, y) − w2

n(x, y)
(3)

where

wn(x, y) =

∑x+n

i=x−n

∑y+n

j=y−n D′′

m(i, j)

(2n + 1)2
(4)

and

vn(x, y) =

∑x+n

i=x−n

∑y+n

j=y−n(D′′

m(i, j))2

(2n + 1)2
(5)

(Fig. 4c) shows the result after normalization and bina-

rization using a preestablished threshold.

D. Geometrical features extraction

The extraction of interest regions along surface edges

greatly decreases the size of the area where features are

extracted, reducing drastically the complexity of the model.

Nevertheless, in order to minimize even further the redun-

dancy, the system extracts only key edge points. First, the

edges are recovered by applying a thinning algorithm to the

regions of interest [14]. The result is a pixel wide trace line

following the edge (hereafter called traces), with each pixel

corresponding to the local maxima of D′′

m along the direction

perpendicular to the edge (hence corresponding to points of

maximum surface inflexion) (Fig. 4d).

In order to extract the geometrical interest points, three

types of features are defined along the trace: (i) line end

points, (ii) lines junction points and (iii) high curvature

points. The trace image is a binary image with 0’s corre-

sponding to background and 1’s corresponding to line traces

(Fig. 4d). Line end points and line junction are obtained

by convolving the binary image with specific kernels and

extracting points with local maxima. The curvature of the

trace line along each point p is obtained by computing Cp

within a 2n + 1 1D window along the line [15], with:

Cp =
1

(2n + 1)

p+n∑

i=p−n

exp(−d2
ip)(1 − cos(φp − φi)) (6)

where φp and φi represent the angles of the line normals

at points p and i respectively; dip represents the euclidean

distance between p and i.

High curvature points are extracted by locating local

maximum of Cp where Cp > tc. The threshold tc is imposed

in order to avoid false positives due to image aliasing.

Fig. 4d illustrates the extracted geometric features: line

junctions are represented by a cross (+),line ends are repre-

sented with a diagonal cross (×) and the circles (◦) denote

high curvature points.

E. Photometric features extraction and matching

As outlined earlier, in order to recover the 3D position

of the interest points, the system has to track them over

multiple images. However the neighboring areas of the

geometric features might not provide sufficient information

for reliably tracking the features. This drawback becomes
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even more evident in the case of underwater scenes, where

light attenuation and back-scattering effects dim the textures,

limiting the efficiency of feature tracking. The solution to this

problem consists in substituting the geometric features with

neighboring photometric features. Among the wide set of

alternatives present in the literature, the proposed approach

makes use of Scale Invariant Features (SIFT) [8], as it

presents a series of advantages in the context of the proposal:

• it generates dense sets of image features – increasing

the chances of having neighboring photometric and

geometric features;

• allows matching under a wide range of image transfor-

mations (i.e. rotation, scale, perspective) – an important

aspect when imaging complex 3D scenes at close range

as in the case of underwater vision;

• the image descriptors are highly discriminative – pro-

viding bases for data association (loop closing, SLAM,

etc.).

As a first step the SIFT algorithm generates a scale space

L(x, y, σ) by convolving repeatedly an input image I(x, y)
using a variable-scale Gaussian, G(x, y, σ):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (7)

In order to detect scale-invariable image locations, the al-

gorithm analyzes the images at different scales and extracts

the key points. These points represent scale-space extrema

in the difference-of-Gaussian function D(x, y, σ) convolved

with the image:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y) (8)

where k is a constant multiplicative factor.

Once extracted, each feature is assigned with a scale and

an orientation vector (major direction of the local image

gradient at the scale where the feature was extracted).

The feature descriptor is calculated after aligning (rotating)

the nearby area of the feature according to the assigned

orientation, thus achieving invariance of the descriptor to

rotation. Each set of feature descriptors is represented by a

128 elements vector obtained by analyzing image gradients

in 4×4 windows around the feature. For each window a

local orientation histogram with 8 bins is constructed. This

way, every feature can be represented as a point in a 128-

dimension descriptor space. The matching is carried out by

computing point to point distances between features in the

descriptors space. Each two closest points are considered

matches if the distance between them is lower than a

predefined threshold tm, that allows to eliminate features that

do not have any proper match and avoid specific instances

of feature ambiguity.

F. Outlier rejection and camera motion estimation

To ensure robust tracking as each image feature position

pn+1 is determined in image In+1, an outlier rejecting pro-

cess is carried out. This process uses a RANSAC approach

that evaluates the first order approximation of the geometric

error d (Sampson distance) using the fundamental matrix (F )

[1]. Once F is obtained from the set of correct matches,

the camera motion is recovered for later use by the 3D

reconstruction algorithm:

F = (K−1)T SRK−1 (9)

where K is the matrix encoding the intrinsic camera param-

eters (obtained by pre-calibration), S is the skew-symmetric

translation matrix (Sx = t × x for any vector x), and R is

the rotation matrix of the camera.

G. Feature pairing

In order to obtain reliable key points for 3D reconstruction,

the algorithm attempts to substitute geometric features with

nearby photometric features that can be reliably tracked.

The substitution of each geometric feature with a pho-

tometric feature is carried out using criteria based on two

measurements: the quality of the photometric feature and the

distance between the geometric and photometric features. In

the case of pairwise 3D reconstruction, the quality of the

photometric feature is given by Dss(i), which represents

the distance between the feature and its match in the 128-

dimension descriptor space, scaled by tm. The decision

criteria is defined as:

ps(k, i) = (1 − Dss(i)) · cos(−
π

2
·
DG(k, i)

maxDG

) (10)

where DG(k, i) is the euclidean distance between geometric

feature k and photometric feature i and maxDG represents

the maximal accepted distance between i and k. The use of

the cosine function in (10) applies a nonlinear weight that

rewards features which are closer to the geometric feature

and penalizes those towards the outer radius maxDG.

For each each geometric feature k, ps is computed for

all image features that fall within a radius of maxDG. The

photometric feature with the highest score ps is considered

the pair of k. This approach creates a tradeoff between

feature tracking reliability and geometric precision.

III. EXPERIMENTAL RESULTS

The testing of the technique was carried out in two steps:

• synthetic data, focused on testing the efficiency of the

geometrical features in ideal cases;

• real data to assess the proposed approach when faced

to real underwater scenes.

A. Synthetic Data

The objective of these experiments is to test the efficiency

of the extractor of geometric features. This was carried out

by reconstructing the scene using image pairs. In this first

case it was assumed that the geometric features are matched

in absence of noise. As the camera motion is known, the 3D

points corresponding to the geometric features are computed

and interpolated resulting in a 3D model of the scene.

In order to quantify the efficiency, the obtained 3D model

is compared with the ground truth. The error is computed on
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Fig. 5. 3D reconstruction of the synthetic scene. The model was obtained
using 30 geometrical features

a point-to-point basis using a grid with the same resolution

as the input images:

es[%] =
1

n · m

m∑

x=1

n∑

y=1

|ZE(x, y) − ZG(x, y)|

ZG(x, y)
· 100 (11)

Here es is mean error, ZE(x, y) is the estimated depth value

at point (x, y), ZG(x, y) is the ground truth depth at point

(x, y) and m,n is image width and height.

Depending on the complexity of the scene, the error es

was found to vary between 0.6% and 1.6%. In the case

of the scene presented in Fig. 1a, the system extracted 30

geometrical features resulting in a 3D model illustrated in

Fig. 5 with a reconstruction error of es = 0.8%. Again, it

should be taking into account that the tests using synthetic

data were intended solely to validate the effectiveness of the

3D reconstruction based on geometrical key points.

B. Real Data

The proposal was tested using various underwater scenes

with the main objective of examining the error between the

model obtained by using the full set of photometric features

and the model obtained using the proposed technique. In

other words, how the precision of the 3D model is affected

by the reduction of its complexity. This error was defined

similarly as in (11):

er[%] =
1

n · m

m∑

x=1

n∑

y=1

|ZGP (x, y) − ZP (x, y)|

ZP (x, y)
· 100 (12)

where ZGP (x, y) is the depth at (x, y) corresponding to

the 3D model obtained using the proposed approach and

ZP (x, y) is the depth at (x, y) as estimated from the model

computed using the full set of photometric features.

The first data set presented in this paper was extracted

from an image sequence of a coral reef in Bahamas. The

images were acquired by the Underwater Vision Laboratory

of University of Miami during a survey where the camera

was located at an altitude of approximatively 2 meters. The

resolution of the images is 360 by 240 pixels and the depth

variance of the scene is around 1.5 meters.

After processing the dataset, the algorithm yielded a set

of 56 geometrical features and 343 photometric features.

One of the input images is illustrated in Fig. 6a. Once

the depth map has been extracted (Fig. 6b), the system

computes the edges of the scene surfaces (Fig. 6c). The final

geometrical features are shown in 6d. Regarding the image

TABLE I

RESULTS IN CASE OF THE BAHAMAS DATA SET.

maxDG Resulting features Complexity [%] er[%]

10 23 6.7 7.52
15 39 11.37 5.2
19 51 14.87 4.5

25 53 15.45 4.92
30 59 16.03 5.22

Model error er and complexity are affected by tuning maxDG. The
complexity represents the percentage of final features out of the total

number of photometric features.

processing and feature extraction, there are a few adjustable

parameters: range of σi in (2), Dm′′ binarization thresh-

old, tc for extracting curvature points, maximal scale-space

match distance tm and maxDG in (10). The optimal value

of these parameters has been empirically established and

proved to generate consistent results trough extensive testing

using multiple datasets. However, among these parameters,

adjusting maxDG has proven to have the greatest impact and

it is discussed hereafter.

Table I shows that different values of maxDG influence

both the complexity and precision of the 3D model. Using

low values, few geometric features are paired with photo-

metric features resulting in a higher er. As illustrated in

Fig. 7, as maxDG is increased, more features are added

(Fig 7b) decreasing the model error (Fig 7a) down to a

minimum. Testing on different datasets showed that the

minimum model error is achieved when 15 ≤ maxDG ≤
25. If maxDG is increased beyond this range, it decreases

the influence of the euclidean distance DG(k, i) in (10),

resulting in the extraction of feature points further from the

ideal geometrical position. The obtained model with texture

rendering is illustrated in Fig.8.

IV. CONCLUSIONS AND FURTHER WORK

A framework for optimizing the extraction and tracking of

image features has been proposed. The presented technique

is intended to reduce the computational costs for robot

navigation and to improve data association efficiency in large

scene reconstruction. The key aspect of the methodology

is the extraction of geometrical representative regions and

to associate them with image features that can be robustly

tracked in multiple views. The experimental results have

shown that this approach enables the reduction of 3D model

complexity up to 90% with a precision cost of only 4-5%.

An important topic of ongoing research is to assess the

reliability of the resulting features for data association and

loop closure. This will be carried out by testing the behavior

of the proposal under extreme image transformations.
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Fig. 6. Results on the Bahamas coral reef data: (a) image where feature
extraction takes place, (b) computed depth map, (c) resulting edge traces
and (d) geometrical features.
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Fig. 7. Model evolution as function of maxDG for Bahamas dataset: (a)
model error and (b) model complexity

Fig. 8. Texture render of the obtained 3D model for Bahamas dataset.
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