

EXPLORING GENETIC ALGORITHMS AND SIMULATED ANNEALING FOR IMMOBILE LOCATION-ALLOCATION PROBLEM

Ferran Torrent Víctor Muñoz Beatriz López

Introduction

- Motivation
- Objectives
- The data
- The problem
- Genetic algorithms approach

Index

- Simulated annealing approach
- Experimental results
- Conclusions and future work

Motivation

Objectives

M∦ UdG

- Model the optimization problem
- Implement GA & SA
- Analyze GA & SA according our data
- Compare GA and SA solutions

- Coordinates from 15578 bars from Catalunya taken from Páginas Amarillas and a maps server
- Different clusters of bars due to the impossibility to tackle the whole problem at the same time
- Customers are randomly generated
 - Number of customers: around each bar are generated between 0 and 30 customers
 - Customers' coordinates: they are computed according a Gaussian distribution function centered to the corresponding bar
 - Customers' match: each customer chooses a match from a list. Each match has a certain probability to be chosen

Introduction

• The problem

- Location-allocation
- Immobile location-allocation

Index

- Genetic algorithms approach
- Simulated annealing approach
- Experimental results
- Output Conclusions and future work

Location-allocation

- Determine optimal location for one or more facilities that will service demand for a given set of points
- Every facility offers the same service
- Customers positions are known

• Complexity:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 where $\begin{cases} n \to number of possible positions \\ k \to number of facilities \end{cases}$

Immobile location-allocation

- Given a set of facilities with known positions and a demand with known positions, determine the optimal service each facility has to offer
- Facilities cannot be moved and their positions are known
- Customers' positions are known
- Complexity $\rightarrow (N_{matches})^{N_{bars}}$

Immobile location-allocation

Mathematical model

- Introduction
- The problem
- Genetic algorithms approach
- Simulated annealing approach
- Experimental results
- Conclusions and future work

Genetic algorithms approach

Chromosome

Mutation

- Probability μ_m to change the match
- Crossover
 - Single point crossover

• Fitness

Selection

- Roulette rule

Index

- Introduction
- The problem
- Genetic algorithms approach
- Simulated annealing approach
 - Simulated annealing
 - Neighborhood function
 - Neighborhood function comparison
- Experimental results
- Output Conclusions and future work

Simulated annealing approach

Solution

 \bigcirc

Neighborhood function

- Non-coordinate search space → Need of a new neighborhood function
 - Each bar has a probability to change its match

- The probability varies depending the problem the algorithm's phase

Neighborhood function

- Non-coordinate search space → Need of a new neighborhood function
 - The probability changes depending on the occupation

– Different exponential curves depending on the features of the problem

Neighborhood function comparison

Exponential probability with variable $ au$			Exponential probability with $ au=0.05$			Variable uniform probability			Constant uniform probability		
	% of	% of bars		% of	% of bars		% of	% of bars		% of	% of bars
Е	allocated	with	Ε	allocated	with	Е	allocated	with	Ε	allocated	with
	customers	occupation		customers	occupation		customers	occupation		customers	occupation
		< 4%			< 4%			< 4%			< 4%
217.04	95.33	0	211.34	94.00	0	214.45	95.00	0	216.15	93.00	0
104.43	97.82	1	103.85	98.55	3	103.04	98.55	2	104.01	96.38	3
1223.49	99.43	0	1218.94	98.93	0	1221.93	98.93	0	1218.18	98.93	2
616.49	99.86	3	616.55	100	3	614.95	99.86	5	613.67	99.86	6
2010.62	100	0	2013.74	100	1	2005.71	100	8	2007.23	100	13
996.03	100	12	994.11	100	11	993.98	100	19	991.81	100	23
5579.03	99.83	1	5571.28	99.71	3	5535.93	99.73	48	5531.09	99.68	41
2622.78	99.86	20	2622.36	99.89	28	2612.07	99.96	89	2606.94	99.75	91
						1			1		

JdG

- Introduction
- The problem
- Genetic algorithms approach
- Simulated annealing approach
- Experimental results
- Conclusions and future work

Experimental results

- Individual LA finds the worst solutions
- SA achieves the best solutions
- SA is faster than GA

Number	Fitness			% of allocated customers			% of facil. with occupation < 4%			Elapsed time (s)		
of												
facilities	Individual	GA	SA	Individual	GA	SA	Individual	GA	SA	Individual	GA	SA
8	81.39	109.56	108.27	56.73	79.30	78.13	0.00	4.29	0.00	0.000	0.467	0.129
18	170.38	279.91	281.86	51.39	94.16	95.72	0.00	1.11	0.00	0.001	3.103	0.662
42	438.26	707.69	723.27	56.94	99.88	99.83	0.00	12.61	0.00	0.009	17.164	4.140
46	427.11	681.92	706.08	55.50	98.17	99.68	2.17	13.06	2.61	0.009	11.741	2.440
48	479.4	824.50	838.18	53.85	99.50	99.58	0.00	4.58	0.00	0.011	22.155	5.660
50	484.39	754.45	776.96	57.10	97.58	97.97	2.00	12.40	0.00	0.004	16.409	4.067
72	622.92	1057.11	1079.42	54.89	98.89	98.97	0.00	4.58	3.06	0.021	34.486	11.088
127	1389.85	2374.754	2421.44	55.58	100.00	100.00	0.79	14.80	0.16	0.028	159.720	50.617
313	3019.05	5144.42	5258.10	55.75	99.58	99.75	0.32	21.15	0.58	0.136	712.152	293.865
1495	14660.55	-	25826.85	55.91	-	99.97	0.07	-	0.54	3.571	-	5285.298

- Introduction
- The problem
- Genetic algorithms approach
- Simulated annealing approach
- Experimental results
- Output Conclusions and future work

Conclusions

- Formalization of the immobile location-allocation problem
- Implementation of GA and SA approaches
- The new neighborhood function improves the performance of SA
- SA outperforms GA
- A global optimization strategy outperforms an individual strategy

- Develop an estimator of the customers' position just before the match
- Use the true distance between bars (considering streets) or even the temporal distance (considering different means of transport)
- Study problem partition strategies in order to simplify the given problem
 - Study the use of clustering algorithms to divide the initial problem: 2nd International Conference on Applied and Theoretical Information Systems Research (2nd ATISR)

THANK YOU FOR YOUR ATTENTION

This research work has been partially funded through:

- CCIA's grant given to F. Torrent
- BRGR scholarship granted to F. Torrent
- Project DPI2011-24929