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Introduction

Background

® Immobile location-allocation

Given a set of facilities with known positions and a
demand with known positions, determine the
optimal service each facility has to offer

Facilities (bars) cannot be moved and their positions ' - S
are known N A N
—  Each customer desire a single service (match) from a . o s N2 - ' ‘1.'.-; 3
set and it is known B .on- : e
—  Customers’ positions are known SR UL Al #
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Introduction

Objectives

® Hypothesis

—  We can approximate the ILA solution by dividing the dataset converting the initial problem into several of easier
subproblems.

— Assumption: geographical distance is a key of the problem and clustering divides the problem according the
distance.

® Objectives

— Divide the problem into sub-problems = Clustering

—  Location-allocation (sub)problem solving—=> Simulated Annealing
—  Experimental tests

SA

SA SA SA SA SA
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Global solution

Global
solution
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Problem Formalization

The Model

® Mathematical model

Npars Ncustomers q
qx z z 1+ d?
Zij i ij

i=1 j=1
q
z;; € {0,1}
Subject to
Ncustomers
q
j=1
Npars
q
q q =1 q
xi * M] d Zij = 0; xi ’ M] € [11 “':Nmatches]

di1=1 7z, =
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Clustering

Algorithms

@ Division of the problem using different clustering algorithms:

Hierarchical clustering

a K-means Clustering
— Genetic algorithms based clustering
— Region growing .
Hard sy
(EM)

—  Affinity propagation

Agglomerative
Divisive 68

® We seek small and separated clusters (hierarchical)

Stochastic Deterministic

Parameter- Parameter- Non-Centroid based Centroid based
independent dependent Parameter- Parameter-

(GA) (k-means) dependent independent
(Region Growing) _ (Affinity propagation)
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Clustering

Experimentation Set-up

® We have conducted our experiments over different real datasets of bars

® We have simulated the demand
—  Customers are randomly distributed around bars according a Gaussian distribution
—  Each generated customer decides each desired match according to the audiences of the matches

@ Here we present the results obtained over three representative datasets
— Dataset 1: 373 bars and 6676 customers
— Dataset 2: 458 bars and 8258 customers
— Dataset 3: 1925 bars and 34954 customers
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Clustering

@ Different clustering quality results Calinski Index
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Clustering

® Trade-off between clusters size and

Elements in the biggest cluster
number of clusters
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Optimization

Simulated Annealing

®

It does not guarantee the optimal solution but (in practice) it provides near optimal
solutions

— Complete methods are unfeasible due to the number of solutions to be explored
It has mechanisms to avoid getting stacked on local optimums or flat regions

— There are many local optimums in the solution space = local search methods would have bad performances

It does not need any coordinate system to perform the search

— There is not any coordinate system in the solution space = algorithms such as particle swarm optimization need a
coordinate system to guide the search

It is faster than other heuristic methods like genetic algorithms

28 December 2012




Experimentation

ILA Results

®

Region growing partition
reduces the quality of the final 3500000
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Conclusions

® Formalization of the immobile location-allocation problem

®

Development of a new method based on the use of clustering techniques to divide the
whole problem

The use of clustering does not reduce the quality of the solutions
The use of clustering highly reduces the search time

Clustering indices such Cl or DBI are bad estimators of the quality of the final solutions

© ® ©®©® ®

The best results are provided by affinity propagation
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Future Work

Development of a customer position estimator
Development of a fairness system for bars
Simplification of the demand allocation process by demand aggregation

Include cluster permeability for customers
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