



# SOLVING LARGE LOCATION-ALLOCATION PROBLEMS BY CLUSTERING AND SIMULATED ANNEALING

Ferran Torrent Víctor Muñoz Beatriz López



### *M≵* UdG

### Introduction

- Motivation
- Background
- Objectives
- Problem formalization

## Olympic Clustering

- Algorithms
- Experimentation set-up
- Results

## Optimization

Simulated Annealing

## • Experimentation

- ILA results
- Onclusions
- Future work



## Introduction



#### Motivation







### Background

### • Immobile location-allocation

- Given a set of facilities with known positions and a demand with known positions, determine the optimal service each facility has to offer
- Facilities (bars) cannot be moved and their positions are known
- Each customer desire a single service (match) from a set and it is known
- Customers' positions are known
- Complexity  $\rightarrow (N_{matches})^{N_{bars}}$
- Problem dimensionality
  - Most research does not deal with problems of the same complexity/size (the system has to deal with bars from around the world)











### Objectives

### • Hypothesis

- We can approximate the ILA solution by dividing the dataset converting the initial problem into several of easier subproblems.
- Assumption: geographical distance is a key of the problem and clustering divides the problem according the distance.
- Objectives
  - Divide the problem into sub-problems  $\rightarrow$  Clustering
  - − Location-allocation (sub)problem solving  $\rightarrow$  Simulated Annealing
  - Experimental tests







### The Model

• Mathematical model













### Algorithms

- Division of the problem using different clustering algorithms:
  - Hierarchical clustering
  - K-means
  - Genetic algorithms based clustering
  - Region growing
  - Affinity propagation
- We seek small and separated clusters









### **Experimentation Set-up**

- We have conducted our experiments over different real datasets of bars
- We have simulated the demand
  - Customers are randomly distributed around bars according a Gaussian distribution
  - Each generated customer decides each desired match according to the audiences of the matches
- Here we present the results obtained over three representative datasets
  - Dataset 1: 373 bars and 6676 customers
  - Dataset 2: 458 bars and 8258 customers
  - Dataset 3: 1925 bars and 34954 customers







#### Results

- Different clustering quality results depending on the index.
- Region growing achieves the best results according to both indices



Davies-Bouldin Index







#### Results

- Trade-off between clusters size and number of clusters
- Region growing divides the dataset into a lot of small clusters
- GA, AP, Hier. clust. provide few big clusters
- It is not clear which provide the best partition



Number of clusters







### Simulated Annealing

- It does not guarantee the optimal solution but (in practice) it provides near optimal solutions
  - Complete methods are unfeasible due to the number of solutions to be explored
- It has mechanisms to avoid getting stacked on local optimums or flat regions
  - There are many local optimums in the solution space ightarrow local search methods would have bad performances
- It does not need any coordinate system to perform the search
  - − There is not any coordinate system in the solution space → algorithms such as particle swarm optimization need a coordinate system to guide the search
- It is faster than other heuristic methods like genetic algorithms



## Experimentation



### **ILA Results**

- Region growing partition reduces the quality of the final solution
- Algorithms which found few big clusters keep the quality of the final solution
- Clustering highly reduces the elapsed time by SA for seeking the solution











- Formalization of the immobile location-allocation problem
- Development of a new method based on the use of clustering techniques to divide the whole problem
- The use of clustering does not reduce the quality of the solutions
- The use of clustering highly reduces the search time
- Clustering indices such CI or DBI are bad estimators of the quality of the final solutions
- The best results are provided by affinity propagation







- Development of a customer position estimator
- Development of a fairness system for bars
- Simplification of the demand allocation process by demand aggregation
- Include cluster permeability for customers





# **THANK YOU FOR YOUR ATTENTION!**

This research has been partially funded through the project labeled DPI2011-24929 and BRGR Scholarship of the University of Girona granted to Ferran Torrent.