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Introduction 

Motivation 

Sport 
globalization 

Simultaneous 
sport events 

Barman decision 
problem 

Automatic 
decision system 

80 people wants match 1 

20 people wants match 2 

10 bars broadcast match 1 

8 people/bar 

8 bars broadcast match 1 

2 bars broadcast match 2 

10 people/ bar 
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Introduction 

 Immobile location-allocation 
– Given a set of facilities with known positions and a 

demand with known positions, determine the 
optimal service each facility has to offer 

– Facilities (bars) cannot be moved and their positions 
are known 

– Each customer desire a single service (match) from a 
set and it is known 

– Customers’ positions are known 

– Complexity  𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑁𝑏𝑎𝑟𝑠  

 

 Problem dimensionality 
– Most research does not deal with problems of the 

same complexity/size (the system has to deal with 
bars from around the world) 

 

 

 

      Division of the problem into subproblems 

𝑘 ∙ 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑠
𝑁𝑏𝑎𝑟𝑠

𝑘  
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Background 



Introduction 

 Hypothesis 
– We can approximate the ILA solution by dividing the dataset converting the initial problem into several of easier 

subproblems. 

– Assumption: geographical distance is a key of the problem and clustering divides the problem according the 
distance. 

 

 Objectives 
– Divide the problem into sub-problems  Clustering  

– Location-allocation (sub)problem solving Simulated Annealing 

– Experimental tests 
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Objectives 
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Problem Formalization 

 Mathematical model  
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The Model 



Clustering 

 Division of the problem using different clustering algorithms: 

– Hierarchical clustering 

– K-means 

– Genetic algorithms based clustering 

– Region growing 

– Affinity propagation 

 

 We seek small and separated clusters 
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Algorithms 

Clustering 

Hard 

Divisive 
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Clustering 

 We have conducted our experiments over different real datasets of bars 

 

 We have simulated the demand  
– Customers are randomly distributed around bars according a Gaussian distribution 

– Each generated customer decides each desired match according to the audiences of the matches 

 

 Here we present the results obtained over three representative datasets 
– Dataset 1: 373 bars and 6676 customers 

– Dataset 2: 458 bars and 8258 customers 

– Dataset 3: 1925 bars and 34954 customers 
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Experimentation Set-up 



Clustering 

 Different clustering quality results 
depending on the index. 

 

 Region growing achieves the best 
results according to both indices 
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Results 
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Clustering 

 Trade-off between clusters size and 
number of clusters 

 

 Region growing divides the dataset 
into a lot of small clusters 

 

 GA, AP, Hier. clust. provide few big 
clusters 

 

 It is not clear which provide the 
best partition 
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Results 
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Optimization 

 It does not guarantee the optimal solution but (in practice) it provides near optimal 
solutions 
– Complete methods are unfeasible due to the number of solutions to be explored 

 It has mechanisms to avoid getting stacked on local optimums or flat regions 
– There are many local optimums in the solution space  local search methods would have bad performances 

 It does not need any coordinate system to perform the search 
– There is not any coordinate system in the solution space  algorithms such as particle swarm optimization need a 

coordinate system to guide the search 

 It is faster than other heuristic methods like genetic algorithms 
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Simulated Annealing 



Experimentation 

 Region growing partition 
reduces the quality of the final 
solution 

 

 Algorithms which found few 
big clusters keep the quality of 
the final solution 

 

 Clustering highly reduces the 
elapsed time by SA for seeking 
the solution 
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ILA Results 
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Conclusions 

 Formalization of the immobile location-allocation problem 

 Development of a new method based on the use of clustering techniques to divide the 
whole problem 

 The use of clustering does not reduce the quality of the solutions 

 The use of clustering highly reduces the search time 

 Clustering indices such CI or DBI are bad estimators of the quality of the final solutions 

 The best results are provided by affinity propagation 
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Future Work 

 Development of a customer position estimator 

 Development of a fairness system for bars 

 Simplification of the demand allocation process by demand aggregation 

 Include cluster permeability for customers 
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