Additional Slides for Lecture 16
Test Hardware

- Your chip is designed to be assembled in a package
- The package is designed to be attached to a PC board
- Stimulus is applied to the pins of the chip by other chips or by peripheral devices
- Need to emulate this as part of the test environment
 - Emulate the package during wafer test
 - Emulate the system after the chip is assembled
Emulating the package: probe cards

- Chip packages can be expensive
 - Fifty cents to hundreds of dollars
- Want to test chips before they are assembled
 - Saves package cost for bad dies
- Use probe card to probe chips at the wafer level
 - Fine probe tips make contact with all the pads at once

Source - Accuprobe
Emulating the System: Automated Test Equipment

- Wafer probe is generally just an initial screen
- Still need to test final packaged parts
 - Testing them *in situ* usually isn’t practical
- Generally done on Automated Test Equipment (ATE)
 - Can drive (semi-) arbitrary test patterns on device pins
 - Can observe the data that the chip sends back
Automated Test Equipment

- Fairly expensive machines
 - $1M and up
- Cost is proportional to number of channels
 - A channel drives or observes a single pin on the device
 - Channel counts generally range from 32 up to 1024
 - Possible to test multiple devices in parallel

Agilent 95000
Handlers

• In a production test environment to get parts on and off the tester quickly
• Handler interfaces to tester and shuffles chips off/on it
 – Can handle thousands of devices per hour

Source: Advantest
Temperature testing

- Chips are slower at high temperature
- Transistor thresholds are higher at low temperature
- Need to test at different temperatures to ensure functionality
- Thermal equipment can set die temperature
- Thermal streamers
 - Fast, wide temperature range
 - Not popular with humans
- Peltier devices
 - Slower
 - Good for debug

Source: Temptronic
Picoprobing

- Touch down on surface of die with extremely fine whisker
 - Tip can be as small as 0.1µ
 - Moderate loading on internal nodes: 100fF, 10MΩ
- Top of die typically covered with Silicon Nitride for protection
 - Need to open hole to allow probing

source: GGB industries
Reconvergent Fanout

- Controllability and Observability much more complicated with reconvergent fanout
- Can’t independently set the inputs
- No value of B will make a stuck-at-0 both observable and controllable

(graphs of good and faulted circuits)
Looking Outward: Board test

- Also need to test Printed Circuit Boards (PCB’s)
 - Catch soldering errors, etc.
- Traditional Style: Bed of Nails Tester
 - Contacts to vias on board
- Less useful with surface mount components
 - Harder to get access
Adding and Using JTAG

• The JTAG standard defines a Test Access Port (TAP)
 – Five pins: Reset, Data In, DataOut, Clock, Test Mode Select
• JTAG ports for multiple devices can be connected in chain
 – Single test port for entire printed circuit board
• JTAG is pretty much a requirement for large boards
 – Impossible for system vendor to test/rework otherwise
• Most ASIC flows can automatically insert it
Next Generation JTAG (1149.6)

• Current JTAG spec only works for level sensitive circuits
• Many high speed links are now AC coupled and differential
 – They don’t pass DC signals
 – JTAG 1149.1 won’t work with them
• New specification being devised to test AC coupled I/O’s
 – JTAG 1149.6
 – Pulses data on lines to get through coupling caps