
MAH, AEN EE271 Lecture 12 1

Lecture 12:

MOS Decoders, Gate Sizing

MAH, AEN EE271 Lecture 12 2

Memory

Reading
W&E 8.3.1 - 8.3.2 - Memory Design

Introduction
Memories are one of the most useful VLSI building blocks. One reason for their
utility is that memory arrays can be extremely dense. This density results from
their very regular wiring.

Memories come in many different types (RAM, ROM, EEPROM) and there are
many different types of cells, but the basic idea and organization is pretty
similar. We will look at the most common memory cell that is used today, a 6T
sRAM cell, and then look at the other components needed to build complete
memory system. We will also look at other types of memories.

MAH, AEN EE271 Lecture 12 3

Peripheral Circuits

We need to build the decoder and wordline drive circuits, and the column select
and bitline drive circuits. For both we need to build a decoder -- something to
select the correct line. Lets look at building decoders for CMOS memories.

mux

decoder

MAH, AEN EE271 Lecture 12 4

Decoders

A decoder is just a structure that contains a number of AND gates, where each
gate is enabled for a different input value.

For a n-bit to 2n decoder, we need to build 2n, n-input AND gates. And we want to
build these AND gates so they layout nicely (in a regular way)

MAH, AEN EE271 Lecture 12 5

Large Fanin AND Gates

In CMOS building this type of gate causes a problem, since large fanin implies a
series stack. We will see a little later in the notes that the best way to do this is to
use a two-level decoder by predecoding the inputs.

In nMOS the problem was easy, large fanin NOR gates work well. So

a collection of NOR gates solves the problem very nicely.

MAH, AEN EE271 Lecture 12 6

CMOS Decoders

In CMOS, a large fanin gate implies a series stack. So we need to build a decoder
that does not use a large fanin gate. But how? Use a 2-level decoder.

• An n-bit decoder requires 2n wires

A0, A0, A1, A1, …

Each gate is an n bit NOR (NAND gate)

• Could predecode the inputs

Send A0 A1, A0 A1, A0 A1, A0 A1, A2 A3 …

Instead of A0, A0, A1, A1, …

Maps 4 wires into 4 wires that need to go to the decoder

Reduces the number of inputs to the decode gate by a factor of two.

MAH, AEN EE271 Lecture 12 7

Predecode Example

A0

A1
A0

A1

A0 A1

A0 A1

A0 A1

A0 A1

A0 A1

A0 A1

A0 A1

A0 A1

2 Bit Predecode No Predecode

MAH, AEN EE271 Lecture 12 8

Predecode

Predecode is just like what we did when we needed to make a single six input
AND gate. Did it in a few levels:

One can do a 2 input predecode, or a 3 input predecode

• A 2 input predecoder generates 4 outputs

• A 3 input predecoder generates 8 outputs

The difference with standard logic is that we need to decode all possible inputs.
This means that each predecode gate can be reused by many ‘final’ decode
gates. A little planning can yield a regular layout.

decode gate

predecode

MAH, AEN EE271 Lecture 12 9

Predecode

A predecoded decoder:

A0 A1 A4 A5A2 A3

MAH, AEN EE271 Lecture 12 10

Layout Issues

Often we need to build large array structures (for example we need a large RAM),
so we want to layout the decoder in as little space as possible. We need to find a
good way to layout this structure.

Clearly we need to run the address lines through each decoder cell, and stack the
decoder cells next to each other.

MAH, AEN EE271 Lecture 12 11

Predecode Layout

The output of the predecode gate need to drive the address lines.

• These address lines are usually high capacitance

So usually it is better to use a NAND with an inverter buffer as the
predecode cells.

• Cells can be placed on top of the address lines, or to the left of the address
lines.

decode cells

predecode cells

MAH, AEN EE271 Lecture 12 12

Decoder Cell Layout

• Need to have n and p transistors

• Need to take up minimum space

• Want it to be easy to ‘program’ the cell

While layout is regular each cell is different

It connects to a different set of inputs

• Look at a couple of layout styles

MAH, AEN EE271 Lecture 12 13

Decoder Layout

Cell Area is proportional to n2. Decoder area is n3.

The problem with this layout is that most of the space is wasted. All of the area
under the wires is wasted. We should rotate the gate to fit under the wires.

A2A2A1A1A0A0 Gnd Vdd

MAH, AEN EE271 Lecture 12 14

A Slightly Better Decoder Layout

Better cell design (like we have talked about)

In this layout, the basic cell remains unchanged, it is the wire contacts that are
programmed. This is sometimes a good idea, since it lets you optimize the decode
cell (in this case the 3 input gate)

A2A2A1A1A0A0
GndVdd

Out1

Out0

MAH, AEN EE271 Lecture 12 15

A Smaller Layout

Leave space for all the tracks in the cell

Need to program the decoder by placing transistors, or metal.

With predecode, you have more tracks per transistor.

A2A2A1A1A0A0

Gnd

Vdd

Out0

Out1

Address lines in M2/Poly

MAH, AEN EE271 Lecture 12 16

Wordline Driver

Decoder is just part of the wordline drive circuit

• Also need to qualify the wordline (AND with clock)

• Also need to buffer the signal to drive WL cap

Clock qualification can be done in the decoder

• A0 … An Phi1 - just another input to the decoder

Usually not a great idea, since this can lead to large skew

Clock AND is usually done in last stage before driver

Φ1

decode_s1 wordline_q1

or use normal NAND gate

can be large devices

MAH, AEN EE271 Lecture 12 17

Thin Drivers

Wordline pitch of memory cell is not that tight (about 40λ), but not that large either.
There are some memories (ROMs, dRAMs) with much tighter pitch. For many of
these applications you need thin gates and drivers. The minimum useful space is
16λ

For the wordline driver, I might use two of these drivers in parallel, to reduce the
horizontal length (effectively fold the transistors again)

Gnd Vdd Contacts can
be shared

16λDecoder
is here

In Out

MAH, AEN EE271 Lecture 12 18

Putting it Together

Floorplan for a memory

Built using Array constructs in Magic

• Decoder base is often array, with programming done by software

Memory is built by arraying a cell that contains the cell and its mirror

Column Mux

R
ow

 D
e

code

Memory Array

Bit Line Precharge

Decoder

2:1 Mux

Bit IO Bit IO
&

Drv

Drv Decoder

Φ1

P
re

de
co

d
er

Address

R
/W

Mem

Mem

MAH, AEN EE271 Lecture 12 19

Transistor Sizing

For memories (and other structures) you end up with long high cap wires

• Need to drive these large capacitors quickly, and this sets the device size

• We will look at chain of inverters first, and then think about gates

Factors to consider in gate sizing:

• Need to think about the load you are driving

• Need to think about the load you present to your predecessor

Why transistor sizes matter when you are driving a large capacitance

2pF (10mm of metal2)min

13ns falling
26ns rising

4λ:2λ

MAH, AEN EE271 Lecture 12 20

Buffer (or Gate) Sizing

But bigger gates have bigger input capacitance too:

Clearly we need to make the predriver larger too.
Is there an optimal solution? Yes, in a way

• Minimize delay of chain - for the minimum all delays will match (why?)

• Equalizing delay principle applies to any critical path through gates.

400-p
200-n

2pF

Delay = 0.3ns

min

Delay = 4ns - falling
8ns - rising

1 f f2 f3

MAH, AEN EE271 Lecture 12 21

Buffer Chains to drive a Big Load

Each gate drives a gate that is f times as large as it is.

• Assume that Wp = 2 Wn, so rise and fall times are the same

1. Final load cap is CL since the fanout (CL/Cin) of each gate is the same

fN * Cin = CL N = ln(CL/Cin)/ln(f)

• Most books assume that the delay of a gate is:

 = f ∗ Tgate = f * delay of a gate with a fanout of 1

Total delay = N ∗ f ∗ Tgate = ln(CL/Cin) ∗ Tgate ∗ f / ln(f)

0

1

2

3

4

has a minimum at e, but it is pretty flat

MAH, AEN EE271 Lecture 12 22

Analysis is Slightly Wrong

The optimal point of ‘e’ assumes no wire delay and that the gate delay is

Gate Delay = f ∗ Tgate

• But this is not true, since the delay of a gate with no load is not zero.

• Each gate has some intrinsic delay from its own diffusion capacitance

Gate Delay = T0 + f ∗ Tg = (f + α) Tg .5 < α < 2

Total delay = N ∗ f ∗ Tgate = ln(CL/Cin) ∗ Tgate ∗ (f + α) / ln(f)

So, really should use f about 4 between stages.

0

1

2

3

4

5

6

7

α = 0

α = 1

MAH, AEN EE271 Lecture 12 23

Gates

Two issues:

• What about things other than inverters? Principle still holds.

• What happens when the wire load is not negligible?

In general it is a little complicated

• General rule still holds -

You should not be able to make any transistor bigger and decrease the
delay (cost to your predecessor should equal your gain)

• For gates, you want to keep the loaded delays roughly equal

This is not the same as keeping the fanout the same

A NOR gate has a larger delay than an INV at the same fanout

This difference is sometimes called logical effort (more later)

MAH, AEN EE271 Lecture 12 24

Gate Sizing

For a fixed number of stages:

• If any of the delays are not equal,

Make the gate with the largest delay larger.

Decreases its delay, and increases its predecessor’s delay.

But since its delay started larger, there will be a net win.

Optimal is when the delays are equal

• For design, you don’t want tons of SPICE or irsim simulations.
What you really want is a spreadsheet or a program that solves the sizing
problem as a linear optimization problem where each size is a dimension of the
solution space.

MAH, AEN EE271 Lecture 12 25

Wire Cap

For fastest systems, want the wire capacitance to be small compared to gate
capacitance

• But this leads to very large transistors.

• Compromise is to try to keep ratio from 30% to 70% wire

For a standard cell library how big should the transistors be?

• Want the delay to have some tolerance to placements.

• Implies that the wire capacitance should be a small fraction of total

• Long wires are probably millimeters (.2pF)

• So, transistors should be pretty large (10-20x minimum size)

• OK, since transistors are the free things that fit under wires.

Trend is toward larger transistors. Stick layout diagrams should ‘show’ transistor
widths. In industry, you don’t default to minimum size transistors, you should
default to 5-10x minimum size.

MAH, AEN EE271 Lecture 12 26

+ Wire Resistance

Previous slides ignored wire resistance

• For short wires this is ok (Rwire « Rtrans)

• As wire gets longer

Rwire gets larger

Rtrans gets smaller (larger transistor to drive larger capacitance)

Can become an issue

• Wire resistance delay is proportional to length2,

Capacitance of wire is proportional to length

Resistance is proportional to length too

• Sometimes add repeaters to reduce the total wire delay.

Break the quadratic increase, but adds buffer delay

MAH, AEN EE271 Lecture 12 27

+ Long Wires

For long wires, we can separate the optimal wire into three regions:

In the middle region, there is an optimal spacing that minimizes the delay

• Added buffer delay is matched by reduced wire delay

Can use RC model to find optimal length, and repeater size

The chain at the start and end buffer up or down from the driver and load
to this “natural” size.

This optimum distance is about 4 to 7mm in typical 0.5µ fabs.

Buffer-Up/Down from input Buffer-Up/Down to Load

Optimal
Repeater
Distance

Optimal Repeater Size

MAH, AEN EE271 Lecture 12 28

General Rules of Thumb (for speed)

• Try to keep the fanout of all gates to be less than 5

• Try to keep the delays of the gates in a critical path roughly the same.

Large fanin gates should have smaller fanout

• Keep fanin limited

• Often need short buffer chains (one inverter)

• Be flexible on sense of logic (push inversions around)

• Don’t use minimum size transistors, unless you know the wire is short

