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Abstract: This paper describes a localization system for Autonomous Underwater 
Vehicles (AUV) in structured underwater environments. It uses a Doppler Velocity Log 
(DVL) sensor, a pressure sensor, a compass and a mechanically scanning imaging sonar. 
An Extended Kalman Filter (EKF) merges the information from the DVL and the 
compass to estimate the robot trajectory. In order to reduce the drift inherent to this 
process we use acoustic images from an imaging sonar to determine the absolute robot 
position in the environment and update the estimated trajectory. Copyright © 2007 IFAC  
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1. INTRODUCTION 

 
This paper addresses the localization problem of an 
AUV in a known structured environment. Solving 
the navigation problem for an AUV which moves in 
a water tank opens the door to further advanced 
control experiments in lab conditions. Different 
research teams with underwater robotic testbeds, 
have addressed this problem in the past. In the 
Autonomous System Laboratory of the University of 
Hawaii, X and Y range measurements gathered with 
two fixed-bearing sonar beams are used to update a 
Kalman Filter (Nie, et al. 1998). Using this system, 
and thanks to its omni-directionality, ODIN AUV 
can navigate keeping its relative orientation with 
respect to the walls of the water tank. A more 
elaborated system is described in (Caccia, et al. 
2001) where a profiling sonar is used to track the 
walls of the water tank and hence the robot is 
allowed to freely change its heading. In previous 
works, our team solved this problem using a coded 
pattern, lying on the bottom of a water tank, together 
with a real-time vision system able to provide 
accurate absolute position estimates at 12 Hz 
(Carreras, et al., 2003).  
 

Further, to take part in the SAUC-E AUV 
competition, two new algorithms were developed. 
The first one used an EKF together with a simple 
constant velocity kinematics model, readings from a 
DVL sensor and a compass to compute the vehicle 
trajectory. In order to reduce the drift inherent to this 
process, an imaging sonar and an a priori map 
(defined as a set of lines) were used. In short, for 
each single beam, a high intensity point which should 
correspond to one object from the map is determined. 
After a point-to-line association process, the 
discrepancy among them was used to update the 
vehicle position (Ribas, et al., 2006). This method 
requires to be initialised with the vehicle position 
within the map, which had to be previously 
computed using a complete 360º imaging sonar scan 
of the environment. Another problem arise when data 
association fails and the correction is computed with 
respect to the wrong element (line) of the a priori 
map, then the vehicle gets lost and the only way to be 
relocalized is to initialise the method again. The 
second developed algorithm was the one finally 
implemented for the competition. Basically, it 
consisted in an adapted version of the Hough 
Transform which used a complete 360º imaging 
sonar scan and a compass to vote for the vehicle pose 

 



     

 
 

 

 
Fig. 1. (a) Schematic representation of the water tank in the Underwater Robotics Research Centre at the 

University of Girona where the sonar data were gathered. The highlighted zones represent the expected sonar 
returns. Images generated from acoustic data: (b) distorted image, (c) undistorted image after integrating 
vehicle position, (d) bins selected from the thresholded image to vote in our Hough space. 

 
in a discretized space representing the environment 
(Ribas, et al., 2007). Its simplicity and the fact that it 
produced absolute position measurements were its 
main advantages. On the other hand, in order to fulfil 
the real time requirements, the cost of the voting 
process forced to reduce the rate at which the 
measurements were produced as well as its 
resolution.  
 
The algorithm presented in this paper takes the best 
from these two algorithms. An EKF is used to 
continuously estimate the vehicle pose by merging 
the information from the different sensors. 
Simultaneously, a votation process is carried out to 
provide periodic, drift free, corrections with absolute 
position measurements. The advantages of the 
method are threefold: First, the EKF estimates the 
state of the vehicle during the time gap between 
votations, reducing the rate at which those position 
fixes need to be produced. Secondly, the estimated 
vehicle motion is used to reduce the movement-
induced distortions of the acoustic images, which 
results in an improved votation process. Finally, 
obtaining absolute position fixes instead of relative 
ones, gets rid of the accumulating drift and avoids 
the vehicle getting lost. 
 
This paper is structured as follows: Section 2 
explains a method to obtain the robot position within 
a known environment using a voting procedure and 
the measurements from a mechanically scanning 
imaging sonar. Section 3 explains the EKF used to 
estimate the robot trajectory by merging the position 
fixes and all the sensor data. Finally, sections 4 and 5 
present experimental results and conclusions. 
 

 
2. DETERMINING POSITION WITH AN 

IMAGING SONAR 
 

Mechanically scanning imaging sonar (MSIS) 
perform scans in a 2D plane by rotating a sonar beam 
through a series of small angle steps. For each 
emitted beam, distance vs. echo-amplitude data (also 
called bins) is returned forming an acoustic image of 
the environment (Figure 1). MSIS’s usually need 
several seconds to obtain a complete scan (e.g. the 
one used in this work needs 6-20 seconds depending 
on the range configuration). If the vehicle is not 

stationary during the acquisition of the 
measurements, a movement induced distortion 
appears in the resulting acoustic data (Figure 1.b). 
However an undistorted scan can be obtained if 
vehicle displacements are taken into account (Figure 
1.c). The objects present in the environment (water 
tank walls) appear as high echo-amplitude returns. 
Therefore, we can determine a threshold below 
which data can be discarded without loss of 
information. Moreover, selecting only some local  
 
 

 
Fig. 2. (a) Diagram which represents the zone with 

all possible positions for the robot using a single 
bin from the acoustic image, (b) resulting Hough 
voting space for all the bins from a 360º scan. 

 
maximum among the thresholded bins reduce the  
number of involved measurements and hence, the 
computational cost (Figure 1.d). 
 
In order to determine the robot pose we use a voting 
procedure which, in fact, is an adapted version of the 
Hough transform. The first step of the procedure is to 
define a discretized space representing the 
environment (tessellation of the water tank area). The 
resolution of this discretized space is a key issue in the 
implementation of this method as it affects the 
performance and the computational cost of the 
algorithm. A good approach is choosing a grid 
resolution slightly smaller than the actual resolution of 
the acoustic images generated by the MSIS.  
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Next, the thresholded high intensity bins from a 
complete 360º scan are used to produce votes for the 
robot position. Assuming that both environment and 
vehicle orientation are known, we can define for each 
single bin the locus of all the compatible vehicle 
positions (Figure 2.a) that should receive the votes in 
the Hough space. After accumulating the votes from 
all the bins in the voting space (Figure 2.b) the real 
vehicle position (xMK,yMK) will correspond with the cell 
with the highest number of votes (i.e. the cell which 
accumulates more evidence about the real position of 
the vehicle). 
 
The process, however, can be improved by doing 
some arrangements during the voting. The bins that 
will vote in the space are accumulated by means of a 
data buffer so, at any moment, we can recall 
information from the most recent 360ºscan and 
produce a new votation to determine the actual 
position of the vehicle. As new areas are explored 
with each beam arrival, new bins are added to the 
data buffer. Simultaneously, older bins falling 
outside the most recent 360º scan sector can be 
removed. It is worth noting that each bin in the 
buffer is tagged with the position of the vehicle at the 
moment were the sensing took place. These positions 
are obtained from the EKF that is running 
simultaneously as explained in section 3. When we 
want to produce a votation, all these positions are 
used to determine the location of all the stored bins 
with respect to the last (actual) vehicle position. At 
this point, what we obtain is a set of measurements 
that are similar to those we would obtain if a sensor, 
placed in the actual vehicle position, took a snapshot 
of the scene. Voting with this corrected set of bins 
has two effects. First, as we take into account the 
relative vehicle positions, the voting is done with 
undistorted data. Second, as we have referenced all the 
bins with respect to the current vehicle position, the 
votes will fall within this position instead of letting 
them fall all along the vehicle trajectory. 
 
 

3. EKF BASED LOCALIZATION SYSTEM 
 

An EKF is used to estimate the vehicle position by 
merging the measurements from a DVL, a pressure 
sensor and a compass. Due to the integration of the 
velocity measurements the estimated trajectory will 
drift. To avoid this effect, we use the absolute 
position fixes obtained from the voting algorithm 
presented in section 2 to correct the current position.  
 
The estimate of the vehicle state x is represented as: 
 

[ ]ˆ ˆˆ T=x η υ , with [ ]ˆ ˆˆ ˆ ˆ Tx y z ψ=η , [ ]ˆ ˆ ˆ ˆ ˆ Tu v w r=υ (1)  
 

[ ][ ]( )ˆ ˆ |T
k k k kE= − −P x x x x Z            (2) 

 
where, as defined in (Fossen, 2002), η is the position 
an attitude vector of the vehicle while υ is its linear 
and angular velocity vector. Note that although the 
vehicle position is represented in a global base 

frame, the velocities in υ are represented in the 
vehicle coordinate frame. The position of the global 
base frame can be set arbitrarily. However, for 
simplicity we chose one of the corners of the water 
tank. 
 
 
3.1. Initialization. 
 
In order to initialize the filter, we gather a complete 
360º imaging sonar scan and then the voting 
algorithm is used to determine the initial position of 
the vehicle. We assume that at the beginning of the 
experiment, the velocity of the vehicle is almost zero 
and thus, the displacement can be neglected. The 
values in the diagonal of P should be initialized with 
the expected accuracy of the position measurements. 
 
 
3.2. Prediction. 
 
A simple 4DOF constant velocity kinematics model 
is used to predict the state of the vehicle. Since 
AUVs are commonly operated describing rectilinear 
transects at constant speed, we believe that such 
model is a simple but realistic way to describe the 
motion. 
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The unmodelled perturbations in the model are 
represented by an additive zero mean white Gaussian 
noise with covariance Q affecting the velocity terms 
and propagated to the position through integration. 
 
The state uncertainty is also predicted using the 
typical EKF equations:  

 

1
T T
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where F and G are the Jacobian matrices of partial 
derivatives of the model with respect to the state x 
and the noise respectively. 
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3.3. DVL update. 
 
A SonTek Argonaut DVL unit provides bottom 
tracking and water velocity measurements but also 
includes a pressure sensor for depth estimation. 
Hence, the measurement vector can be described as:  
 

T

DVL depth w w w b b bz u v w u v w⎡ ⎤= ⎣ ⎦z    (7) 

 
where subindex b stands for bottom tracking velocity 
and w for through water velocity. Note that we 
assume that no water currents are present in the 
application scenario, therefore through water velocity 
measurements can be used to estimate the vehicle 
velocities. As all those measurements are direct 
observation of the state vector we can use a linear 
measurement model as: 
 

, 1ˆDVL k DVL k DVL
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where sDVL (measurement noise) is a zero-mean 
white noise with covariance RDVL.  
 
Since the DVL sensor provides a status measurement 
for the bottom tracking and water velocity, 
depending on the quality of the measurements, 
different versions of the H matrix are used to fuse 
one (removing row 2), the other one (removing row 
3), or both readings (using the full matrix). 
 
The update can be done with the standard KF 
equations. 
 

( ) 1

1 1
T T

k k DVL DVL k DVL DVLK
−− −

+ += +P H H P H R  (10) 

 

   ( )1 1 , 1ˆ ˆ ˆk k k DVL k DVL kK− −
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( )1 1k k DVL kK −
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3.4. Compass update. 
 
A MRU MTi from Xsens Technologies provides 
information about the heading of the vehicle. Its 
measurement is described as:  
 

[ ]C Cψ=z                       (13) 
 

As this measurement is a direct observation of the 
state vector, we can use the following linear 
measurement model. 
 

, 1ˆC k C k C
−

+= +z H x s                      (14) 
 

with 
 

[ ]0 0 01 0 0 0 0C =H                         (15) 
 

where sC (measurement noise) is a zero-mean white 
noise with covariance RC..  
 
The standard KF equations are used to update the 
state: 
 

( ) 1

1 1
T T

k k C C k C CK
−− −

+ += +P H H P H R     (16) 

 

   ( )1 1 , 1ˆ ˆ ˆk k k C k C kK− −
+ + += + −x x z H x  (17) 

 
( )1 1k k C kK −

+ += −P I H P                    (18) 
 
 
3.5. Sonar beam arrival. 
 
As introduced in section 2, whenever a new beam is 
produced, a search for the high intensity bins is 
carried out and then, they are stored in the buffer 
together with its current position estimate from x̂ - .  
 
Periodically, the information from the data buffer is 
recalled to produce a votation with the bins from the 
most recent 360º scan (in our particular application a 
votation is performed each 25 beams). The output of 
this voting process is an estimate of the absolute 
vehicle position within the environment (xMK,yMK). 
Therefore, we can perform an update that will reduce 
the accumulated drift as:  

 

 [ ]T
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where sMK (measurement noise) is a zero-mean white 
noise with covariance RMK. It is worth noting that the 
measured absolute position  obtained from the voting 
process is not strictly a gaussian measurement 
because of the discretization of the voting space. 
However, we believe that assuming a pessimistic 
uncertainty description of the measurement copes 
with the induced non-gaussianities. The results 
presented in section 4 confirm the validity of this 
statement. 
  
Again, the update is done with the standard KF 
equations: 
 

( ) 1

1 1
T T

k k MK MK k MK MKK
−− −

+ += +P H H P H R  (22) 

 

   ( )1 1 , 1ˆ ˆ ˆk k k MK k MK kK− −
+ + += + −x x z H x  (23) 

 
( )1 1k k MK kK −

+ += −P I H P                  (24) 
  
As this is an absolute measurement, taken with 
respect to the walls of the water tank, the performed 
update will reduce the accumulated drift. 

 
 

4. EXPERIMENTAL RESULTS 
 

Experiments were carried out in the water tank of the 
Underwater Robotics Research Centre at the 
University of Girona (Figure 3). The ICTINEUAUV 
was used as testbed for these experiments. The 
vehicle was equipped with a Miniking Imaging sonar 
from Tritech, which during the experiment was set to 
work within a range of 18m and a resolution of 0.1m 
(180 measurements/beam). Its scanning rate was set 
to the maximum (around 6 seconds for a 360º scan 
with 200 beams). In order to estimate the vehicle 
movement an Argonaut DVL from Sontek and a 
MRU MTi from Xsens Technologies were used.  

 

 
 

Fig. 3. Representation of the water tank at the 
Underwater Robotics Research Centre 
(University of Girona) were the experiments took 
place. 

 

Two experiments have been carried out to check the 
algorithm. In the first one, the vehicle was operated 
near the surface in the deep part of the water tank 
(about 5 meters) to describe a square-shaped 
trajectory which ended with a diagonal transect. The 
second one was a similar trajectory, but this time, the 
vehicle also moved over the shallow zones of the 
tank. 
  
It is important to mention that the DVL sensor needs 
a minimum water volume to provide measurements. 
In the shallow parts of the tank, or when the vehicle 
is navigating near the bottom or the walls, no 
velocity measurements are available. Thus, the 
estimate only relies on the kinematics model and the 
fixes from the voting algorithm. The purpose of these 
experiments was to test the reliability of the 
algorithm in different working conditions. 
 
In Figure 4, the first experiment is shown. The 
trajectory represented with a black-dotted line 
corresponds to a dead reckoning obtained using only 
the measurements from the DVL and the compass. 
As expected in any dead-reckoning trajectory, it can 
be observed a significant drift which brings the 
vehicle out of the limits of the water tank 
(represented by a thick black line). Moreover, this 
drift is also increased because the measurements 
from the two sensors are affected by the proximity of 
the tank walls. On the other hand, using the absolute 
position fixes from the voting algorithm (blue dots), 
conveniently merged with the estimate from the EKF 
results in a more accurate trajectory without drift (in 
black). 
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Fig. 4. Resulting trajectory for the first experiment 

(black) after merging the position estimates from 
acoustic images (dots) with the dead reckoning 
trajectory (dotted line) with an EKF.  



     

Results for the second experiment can be observed in 
Figure 5. As commented before, we should expect a 
worse dead reckoning trajectory (dotted line) as the 
DVL do not work properly in the shallow zones of 
the tank. However, the proposed algorithm again is 
able to relocalize the vehicle into drift-free trajectory 
estimation.  
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Fig. 5. Resulting trajectory for the second experiment 

(black) after merging the position estimates from 
acoustic images (dots) with the dead reckoning 
trajectory (dotted line) with an EKF.  

 
If we take a look at the evolution of the uncertainty 
of the dead reckoning and the proposed process 
(Figure 6) we can observe how the dead reckoning 
trajectory suffers from an unbounded uncertainty 
growth (dotted line) while the integration of the 
position fixes reduces and bounds its value (in 
black). 
 

 
5. CONCLUSIONS 

 
In this paper we have presented an improved version 
of the localization algorithms proposed for the 
SAUC-E competition. An EKF based algorithm 
which relies in the output from traditional 
underwater navigation sensors together with position 
fixes from an adapted Hough transform voting 
process is presented. There are two enhancements as 
a result of the proposed method. First, we can get rid 
of the drift inherent in dead reckoning sensors. 
Second, an improved estimation of the vehicle 
movement can be obtained as we can rely in short-
term estimation from the EKF during the time gaps 
between absolute position fixes.  
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Fig. 6. Evolution of the uncertainty in x and y axis 

for the dead reckoning trajectory (dotted line) and 
the proposed evolution (black) during the first 80 
seconds of the first experiment. 
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