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Abstract. We have investigated a combination of statistical modelling and ex-
pectation maximisation for a texture based approach to the segmentation of mam-
mographic images. Texture modelling is based on the implicit incorporation of
spatial information through the introduction of a set-permutation-occurrence ma-
trix. Statistical modelling is used for data generalisation and noise removal pur-
poses. Expectation maximisation modelling of the spatial information in com-
bination with the statistical modelling is evaluated. The developed segmentation
results are used for automatic mammographic risk assessment.

1 Introduction

Texture is one of the least understood areas in computer vision and this lack of under-
standing is reflected in the ad-hoc approaches taken to date for texture based segmen-
tation techniques. Although no generic texture model has emerged so far a number of
problem specific approaches have been developed successfully [1–4]. Although the de-
scribed approach is developed with one particular application in mind, we do believe
that it is generic within the field of medical image understanding.

Since Wolfe’s [5, 6] original investigation into the correlation between mammo-
graphic risk (i.e. the risk of developing breast cancer) and the perceived breast density a
number of automatic approaches have been developed [7–11]. Some of these methods
are based on grey-level distributions whilst others incorporate some aspect of spatial
correlation or texture measure. While all these methods achieve some correlation with
manual visual assessment in general they are not good enough to progress to clinical
trials. We have investigated a process to separate the relevant background texture from
other image structures [8, 12]. This showed that based on only background texture sim-
ilar classification results could be obtained when compared to results based on the full
image information. It is also important to note that the breast density can change over
time for a number of reasons [13].

It is our thesis that the relative size of segmented image regions, representing dis-
tinct anatomical tissue classes, is correlated with mammographic risk assessment. Sta-
tistical modelling in combination with expectation maximisation (EM) [14] is used for
the segmentation of mammographic images. To our knowledge, we introduce a new
concept, the set-permutation-occurrence matrix, as a texture feature vector. Realistic



texture modelling is possible as spatial information is implicitly incorporated. Statis-
tical modelling has been used as a pre-processing step to generalise the data whilst at
the same time remove some noise aspects. Initial results from this automatic segmen-
tation of mammographic images are promising with a good correlation with annotated
regions. We show results for automatic mammographic risk assessment [5] and a com-
parison with expert manual classification is discussed.

To achieve segmentation a number of steps are required: a) information gathering,
b) texture feature extraction, c) statistical modelling, d) EM clustering, and e) image
segmentation.

2 Methods

A Gaussian mixture model� with � classes is defined as
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where � is an observation vector, � is a vector with parameters � � (weight),�� (mean)
and 	� (covariance) for each class, and ������� 	�� is defined as
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where ��� indicates the transpose of a vector, 	��� indicates the inverse of 	� and ���	��
stands for the determinant of 	�. The likelihood function is a function that gives a mea-
sure of how well the probability density function defined by the parameters fits the
data. If a set of parameter maximises the likelihood, then these parameters will be the
optimum set for the given problem. The likelihood function is defined as
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where � is the data set and ������ is the probability density function. Here the assump-
tion of independence for all data � is made. Usually, the log-likelihood function is used,
mainly to use a sum instead of a product and to reduce the magnitude of the result.
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The EM algorithm [14] is a numerical method to estimate a set of parameters that
describe a probability distribution, based on data that belongs to this distribution. On
each iteration of the algorithm, two steps are performed: first, the E-step evaluates a
probability distribution for the data using the parameters of the model estimated on
the previous iteration, then the M-step finds the new parameters that maximises the
likelihood function. It can be provenmathematically that on each iteration the likelihood
increases [14]. One of the problems of the EM algorithm in application to Gaussian
Mixture Models is the initialisation [15], with the end results depending on the initial



starting point. It is common to select a random starting point of the data set � for the
centre of each class. To make the overall classification more robust we initialise the
centre of the class with the result of the k-Means algorithm [15].

2.1 Texture Feature

In general the usage of the EM approach for image segmentation is based on the grey-
level information at a pixel level with no direct interaction between adjacent pixels.
However, it is well known that texture based segmentation should incorporate spatial
correlation information. The modelling should not be based on a single grey-level value
but incorporates spatial information implicitly. This is why we extract information from
a set of points. The information is extracted at several levels of a scale-space represen-
tation of the image.

Scale-Space Representation The first step in obtaining the texture features is the gen-
eration of an image-stack which is a scale-space representation. At the smallest scale the
original grey-level values are used and to obtain the larger scale images we have used
a recursive median filter [16], denoted �, and a circular structuring element, � (the
diameter of the structuring element increases with scale �). The resulting image-stack
is a set of images
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where � is an ordered set of scales. This effectively represents a blurring of the original
data and at a particular level in the image-stack only features larger than � can be found.
An alternative representation of the image-stack is given by
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where � is a set of scales. This represents the differences between two scales in �� and
hence the data in the image-stack at a particular level will only contain features at a
particular scale �.

Sampling Points To capture the texture information over a set of scales a feature vec-
tor will need to be extracted from all levels of the image-stack. It can be seen that small
size aspects (like noise and small objects) are represented at the top (least amount of
smoothing) of the image-stack. On the other hand, large size aspects (large and back-
ground objects) are represented at the bottom (after smoothing at the appropriate scale)
of the image-stack.

The developed method uses a model that can be seen as a generalisation of normal
co-occurrence matrices [1]. Indeed, if we just look at the co-occurrence of grey-level
values the information can be captured in matrix format, where the rows and columns
represent the grey-level values at two sample points. This process can include a set



of points ��. An example of the points used is shown in Fig. 1. In the experiments
described below we have used
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where � � ����������	��
���� �� �� 
� 	� ��� ���. This particular set was chosen
as it contains short and long range spatial, and directional information. Depending on
the level in the scale-space representation this can be used to emphasize small and large
scale structures in the image. In the case described here we generate the co-occurrence
between all the points in the set of sample points. This is illustrated in Fig. 2 for one
particular point, but it should be noted that the same approach is used in a round-robin
way or in other words the points are fully connected. When using �� �� (a similar nota-
tion can be obtained when using ����), this representation of the texture information in
the form of a matrix is given by
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where � denotes the number of elements in a set and �
 denotes the set of grey-level
values. It should be noted that this approach provides a different description than that
would be provided by using a set of co-occurrence matrices.

Fig. 1. Sample points ���. Fig. 2. Sample points connectivity.

Instead of using the co-occurrence of the grey-level values it is possible to use the
occurrence of the grey-level difference. Again, this is using the same set of sample
points �� (see Figs 1 and 2) at each scale (i.e. level in the image-stack). As we are
using the occurrence of the grey-level difference values our co-occurrence grey-level
value matrix reduces to a vector. When using the difference image-stack representation
(see Eq. 6) the feature vector at a single scale is given by
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where�
 is the set of grey-levels,� a given scale, Æ��
is the set of grey-level differences

and
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where, again, � denotes the number of elements in a set.
One of the main attributes of the feature vector is that descending the original

image-stack means that the occurrences of grey-level difference values becomes more
localised. In the extreme all grey-level values are identical and the occurrence becomes
a delta-function. The story with regard to the difference image-stack is less straight for-
ward. In general the information is sparse and when a structure is present at a particular
point and scale the representation changes which is represented as a set of side-bands
in the histogram. It should be noted that for a side-band to be regarded as to be caused
by an image structure its area should be related to the scale in the image-stack else it
can be regarded as noise.

2.2 Statistical Modelling

The texture feature described above is extracted at a pixel level. Combining all the in-
formation results in a feature vector which can be used to generate a statistical model.
In general such a model is used for noise removal and data generalisation. In this par-
ticular case the added bonus of data generalisation is a reduced dimensionality which
speeds up the processing. Here we have used principal component analysis [17], but
other statistical methods could have been used instead.

The principal components of a set of observation vectors �� �  � � �!!"� (in our
case the texture feature �

�
or �

�
) are the characteristic vectors, �, of the covariance

matrix, �, constructed from the data set. Projecting the data into its principal compo-
nents generally results in a compact and meaningful representation in which the char-
acteristic vectors associated with the largest characteristic values describe the major
modes of data variation. The characteristic values give the variances associated with
the principal components. An observation � � can be approximated from the principal
components using

�� 	 � �� ��� (12)

where � is the average vector and �� is a vector of weights. The dimensionality of
the data set can be reduced by ignoring the principal components with low (or zero)
characteristic values.

3 Results

For evaluation purposes we have used a subset of the Mammographic Images Analysis
Society (MIAS) database was used [8, 18]. These are screening xray mammograms, and
a detailed account of the database can be found in [18].



Although of interest, it is computationally impractical to base the EM modelling
on the original texture feature vector as this has a large number of elements (a high
dimensionality) and tends to be sparse. All the results presented in this section are based
on a PCA reduced feature vector where we typically capture 95% of the data variation.

Segmentation results for example mammograms are shown in Fig. 3. The original
mammograms are shown in Fig. 3a,b. The EM and statistical modelling process take
only the breast area into account whilst excluding the pectoral muscle and the back-
ground. For the results shown in Fig. 3c-f six classes were used. The selection of six
classes is based on an information theoretic approach [19]. In both cases the segmenta-
tion process produced plausible results which correlate with the original image.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Original fatty (a) and dense (b) mammographic images. Segmentation results where the
EM modelling is based on (c,d) ����, and (e,f) ����.



3.1 Risk Assessment

To evaluate the segmentation results for mammographic risk assessment all the images
were assessed by mammographic experts who provided an estimate of the proportion
of dense tissue (i.e. high intensity/non-fatty tissue, see also Fig. 3a,b) in each mam-
mogram. The segmentation results, based on EM and statistical modelling using �� ��
or ����, can also be used to obtain the relative size of the segmented regions for each
class. This feature is used as our classification space. The correlation between the rel-
ative region size distribution and the estimated proportion of dense tissue, when using
a nearest neighbour classifier on a leave-one-out basis, can be found in Table 1. This
shows an agreement for 66% of the mammograms when using �� ��. This increases to
86% when using ����. This compares well with an inter-observer agreement of 45%.
The intra-observer agreement on the used dataset is 89%.

Expert Classification
1 2 3 4 5 6
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2 0 0.22 0 0 0 0
3 0 0 0.08 0.08 0.06 0
4 0 0 0.03 0.19 0.11 0
5 0 0 0.06 0 0.17 0
6 0 0 0 0 0 0

(a)

Expert Classification
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n 1 0 0 0 0 0 0

2 0 0.17 0 0 0 0
3 0 0 0.14 0.06 0 0
4 0 0.06 0.03 0.22 0 0
5 0 0 0 0 0.33 0
6 0 0 0 0 0 0

(b)
Table 1. Comparison of the density estimate as given by an expert radiologist and automatic seg-
mentation. (a) ���� and (b) ����. Within the tables the proportion of dense tissue is represented
as 1: 0%, 2: 0-10%, 3: 11-25%, 4: 26-50%, 5: 51-75% and 6: 76-100%.

4 Conclusions

We have shown that a combination of EM and statistical modelling results in a robust
approach to the segmentation of mammographic images. We have introduced a texture
feature vector based on a set-permutation occurrence matrix which captures both spatial
and local grey-level information. The use of this type of matrix, especially the size and
shape of ��, will need further development to explore its limitations and full potential.
We have shown that the segmentation results can be used to provide valuable informa-
tion in mammographic assessment of density applications and therefor possibly such as
risk assessment.
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