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Foreword

Working with real systems is always a challenging task foAatificial Intelligence
Ph.D. student. They require a surplus of effort over thoeblpms that are comfortably
simulated by a computer program. This book explains one eddlthallenging tasks
successfully led to an end by Didac Busquets. An enthusfasfficulties.

Having autonomous robots solving complex problems is fatteoriginal dream
of artificial intelligence with an amazing potential for pteal and useful applications.
Programming such intelligent robots is clearly not an eask.t Didac Busquets has
faced the problem of programming a robot to autonomouslygad® towards a pre-
established target. The difficulty being on using just a aante guide the decision
making process. Not an easy problem because the only rewgritas that the target is
visible from the starting position of the robot but can gadisappear from the field of
view when the robot starts moving. Didac Busquets has useztal Al techniques in
order to tackle the problem: artificial vision, genetic aitfuns, reinforcement learn-
ing, multi-agent systems, and fuzzy reasoning. He has gexpa general multi-agent
architecture to structure and coordinate such complexrpmgand has effectively im-
plemented an instance of this architecture. Didac Busghas$ tested his approach
initially on simulation and then on a real robot. The resals excellent. From a sci-
entific perspective the book contains very interestingsadeahow all those techniques
can be combined in order to model the sense of orientatidratiimals exhibit. From
an engineering perspective it contains a way to co-ordimatkiple-decision making
entities into a coherent whole. Overall, a very interespirege of work.

Didac’s qualities helped him to successfully completéRtidD.: a perseverant char-
acter to overcome the difficulties and a high dose of pati¢oato the experimental
work. He has started a robotics research line within the thHat will certainly be the
seed of future challenges for all of us. Enjoy the book.

Bellaterra, October 2003

Ramon Lépez de Mantaras Badia
Carles Sierra Garcia
Institut d’Investigacio en Intdigéncia Atrtificial
Consell Superior d’Investigacions Cientifiques
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Abstract

Navigation in unknown unstructured environments is stilificult open problem in the
field of robotics. In this PhD thesis we present a novel apgirdar robot navigation
based on the combination of landmark-based navigatiorzyfdistances and angles
representation and multiagent coordination based on artgjaddechanism. The objec-
tive has been to have a robust navigation system with otientaense for unstructured
environments using visual information.

To achieve such objective we have focused our efforts on taim ithreads: navi-
gation and mapping methods, and control architecturesutmn@mous robots.

Regarding the navigation and mapping task, we have extathéedork presented
by Prescott, so that it can be used with fuzzy informationualtiee locations of land-
marks in the environment. Together with this extension, esetalso developed meth-
ods to compute diverting targets, needed by the robot whgststblocked.

Regarding the control architecture, we have proposed arglkarchitecture that
uses a bidding mechanism to coordinate a group of systersdhaol the robot. This
mechanism can be used at different levels of the controlitethre. In our case,
we have used it to coordinate the three systems of the robentigiition, Pilot and
Vision systems) and also to coordinate the agents that ceenihe@ Navigation system
itself. Using this bidding mechanism the action actuallingeexecuted by the robot
is the most valued one at each point in time, so, given thatgents bid rationally,
the dynamics of the biddings would lead the robot to exetgenecessary actions in
order to reach a given target. The advantage of using suchangn is that there is no
need to create a hierarchy, such in the subsumption artinéedut it is dynamically
changing depending on the specific situation of the robottheaharacteristics of the
environment.

We have obtained successful results, both on simulatioroarréal experimenta-
tion, showing that the mapping system is capable of buildingap of an unknown
environment and use this information to move the robot frastagting point to a given
target. The experimentation also showed that the biddinchar@ism we designed for
controlling the robot produces the overall behavior of exig the proper action at
each moment in order to reach the target.
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Resum

La navegaci6 en entorns desconeguts no estructuratg@&saam problema obert en el
camp de la robotica. En aquesta tesi presentem una apragiper a la navegacio de
robots basada en la combinaci6 de navegacit basada endeke] representacio fuzzy
d’'angles i distancies i una coordinacié multiagent basad un mecanisme de dites.
L'objectiu de la tesi ha sigut desenvolupar un sistema degeid robust amb sentit de
I'orientaciod per a entorns no estructurats usant infoitneisual.

Per tal d'assolir aquest objectiu, hem centrat els nossés@s en dues linies
d’investigacio: metodes de navegacio i construccitndges, i arquitectures de control
per a robots autobnoms.

Pel que fa als méetodes de navegacio i construccidé de mhpasextes el treball
presentat per Prescott per tal que es pugui utilitzar andsrimdcio fuzzy sobre la lo-
calitazcio dels landmarks. A part d'aquesta extensiapi@hem desenvolupat métodes
per a calcular objectius alternatius, necessaris quarpet tmba el cami bloquejat.

Pel que fa a I'arquitectura de control, hem proposat unai@ciura general que
utilitza un mecanisme de dites per a coordinar un grup dersest que controlen el
robot. Aguest mecanisme pot ser usat en diferents nivellkadguitectura. En el
nostre cas I'hem usat per a coordinar els tres sistemes bet (davegacio, Pilot i
Visi0), i també per a coordinar els agents que composestehsa de Navegaci6. Usant
aquest mecanisme de dites, 'accid que executa el roblat 8%®s ben valorada en
cada instant. D’aquesta manera, i si els agents fan lesdlitea manera racional, la
dinamica de les dites porta el robot a executar les accieosssaries per tal d'arribar
a l'objectiu indicat. L'avantatge d'utilitzar aquest megane és que no cal imposar
una jerarquia entre els sistemes, com passa en l'arquidesdéusubsumpcioé, si no que
aquesta jerarquia canvia dinamicament, depenent daicgten que es troba el robot
i les caracteristiques de I'entorn.

Hem obtingut resultats satisfactoris, tant en simulaoi @n experimentacié amb
un robot real, que confirmen que el sistema de navegac#pag ale construir un mapa
d'un entorn desconegut i utlitzar-lo per a moure el robond’yosici6 inicial a un
objectiu donat. L'experimentacié també ha mostrat questéma de coordinaci6 basat
en dites que hem dissenyat produeix el comportament gldba¢cutar les accions
necessaries en cada instant per tal d’arribar a I'objectiu

XVi






Chapter 1

Introduction

robot
From translation of 1920 play “R.U.R.” (“Rossum’s UniverBabots”), by Karel
Capek (1890-1938), from Czechbota “forced labor, drudgery”, fromobotiti
“to work, drudge”, from Old Church Slavonimbota “servitude”, fromrabu
“slave”, from a Slavic stem related to Germarbeit “work”.

1.1 Overview and Motivation

Since the late 1960s, with the development of SRI's Shaklegtrfb4], artificial intel-
ligence (Al) and mobile robotics have been closely relatAdnobile robot must be
autonomous, deal with uncertainty, plan and decide whabtaehct to unpredicted
situations, that is, it has to overcome really hard problégmg want it to act in an in-
telligent and autonomous way. Thus, mobile robots pose btiediggest challenges
for Al.

Although impressive successes have been obtained singe\slitacannot still be
said that the objective of having truly autonomous robosstieen achieved. One of the
fields in which there is still much to do is on mobile robotiosdinknown environments.

Robotic systems for navigating through unknown environtsane a focus of re-
search in many application areas including, among othpesesraft (rovers for Mars
and the Moon) and search and rescue robotics. These systamtchperform very
different tasks, from looking for rocks, picking them up amhlyzing them, to assess-
ing damages or looking for survivors after a natural digasteccident has happened.
However, they all share two key characteristics: first, thaye to achieve their goals
autonomously, and second, they have tavigate in unknown environments.

The first key point in these applicatioresjtonomy, arises from the impossibility
of always having a human operator controlling the robot&tem. Although the ideal
situation would be to have an expert operator controlliggrtibot, the necessary condi-
tions cannot always be met. These conditions are usuadyectto the communication
between the operator and the robot. In many situations g difficult to guarantee
that the communication link will be robust, in terms of spe@d availability. A clear

1



2 Chapter 1. Introduction

example is found on planetary exploration missions. A majoblem in such missions
is the distance between the robot and the control statiara{lydocated on the Earth);
the time of sending an order to the robot and having it execcd® be in the order of
minutes. In the case a fast reaction were needed (changrtgailectory of the robot,
selecting a new scientific target that might be more relet@tite mission, etc.), this
time would not be acceptable at all. Another disadvantagdepending on external
agents (be it a human or any other device — e.g. a GPS devitecflisation) is that

the robot can get blocked if any of these agents providingtafrmation for accom-

plishing the task crashes. This would leave the robot witlmeans to continue with
its mission. Therefore, all the decisions should be takebaard, without having to
exchange commands or information with any external agerat ast, make this ex-
change minimal, such as sending only information aboutitsitiklisation (e.g. target
selection, task description, etc.).

The other important point for such applicationsavigation. The robot must be
able to start in an unknown location and navigate to a detingget. Navigation in un-
known unstructured environments is still a difficult opealgem in the field of robotics.
The first difficulty of such an environmentis that there is mayiari knowledge about it,
and therefore a map can only be built while exploring. Setomahstructured environ-
ments are characterized, precisely, by the lack of straaurong the different objects
of the world. This is usually the case for outdoor environtee®n the other hand, in
structured environments, such as offices, buildings, etmynsuppositions about their
structure can be done. For instance, walls and corridorsteaight, they are usually
orthogonal, most of the doors have the same size, etc. Thhesadateristics are very
helpful when building a map of the environment, as its sticestan be inferred without
the need of sensing the whole environment. Contrarily, istnuctured environments
such suppositions do not hold, so the robot can only rely enrtformation it is able to
gather from its sensors. This makes the task of map buildidghavigating even more
difficult.

This research work is part of a larger robotics project. Aeotpartner (IRY) in
the project is building a six legged robot with on board caasdor outdoor landmark
recognition. The goal of the project is to have a completatlpaomous robot capable
of navigating in outdoor unknown environments. A human apmrwill select a target
using the visual information received from the robot’'s camend the robot will have
to reach it without any intervention of the operator. Theatotould also have an im-
age or description of the target, so the human interventionlgvnot even be needed
for selecting the target. A first milestone for achieving timal goal of the project is
to develop a navigation system for indoor unknown unstmactienvironments for a
wheeled robot. Moreover, the environments of this firststage composed of easily
recognizable landmarks, since the vision system for ouslismot yet available.

We propose a robot architecture to accomplish this firststolee. The approach
used and the results obtained are the subject of this th&kis.robot architecture is
composed of three systems: tRdot system, the/ision system and th&lavigation
system. Each system competes for the two available resaumation control (direc-
tion of movement) and camera control (direction of gaze) iree systems have the

Linstitut de Robdtica i Informatica Industrial, http:itw.iri.csic.es



1.1. Overview and Motivation 3

following responsibilities. The Pilot is responsible fdrmotions of the robot. It se-

lects these motions in order to carry out commands from thagdfion system and,

independently, to avoid obstacles. The Vision system jsamsible for identifying and

tracking landmarks (including the target landmark). Hipahe Navigation system is
responsible for choosing higher-level decisions in ordentve the robot to a specified
target. This requires requesting the Vision system to ifleand track landmarks (in

order to build a map of the environment) and requesting tha £ move the robot in

various directions in order to reach the goal position orsamermediate target.

From the brief description of the robot architecture givbowe, it can be observed
that the three systems mustoperate andcompete. They must cooperate because they
need one another in order to achieve the overall task of negthe target position. But
at the same time they are competing for motion and cameraatont

The Navigation system is implemented as a multiagent systdrare each agent
is competent in a specific task. Depending on its respoit@kiland the information
received from other agents, each agent proposes whichmattoNavigation system
should take. Again, we find that the agents must cooperatee sin isolated agent is
not capable of moving the robot to the target, but they alsop=mie, because different
agents want to perform different actions.

The problem of cooperation and competition between diffeagents is very com-
mon in robotics, andehavior-based Robotid8] addresses exactly this issue. This
approach to robotic systems deals with coordinating, atrating, different behaviors
sending requests for actions, usually incompatible witthezther, to a robot. The role
of the coordination is to select a single action commandulihbe sent to the robot.
When this action is a selection of one of the behaviors’ retgjeve talk aboutom-
petitivecoordination, whereas if the action is a mix of several baravrequests, we
talk aboutcooperativecoordination. In our architecture, each agent plays the abh
behavior, and there is an additional agent playing the rbt®ordinator.

For both the overall robot system and the Navigation systesrpropose the use of
a new competitive coordination system based dridaling mechanismin the overall
robot system, the Navigation and the Pilot systems genkidgdor the services offered
by the Pilot and Vision systems. These services are to maveothot toward a given
direction, and to move the camera and identify the landminlsd on its view-field,
respectively. The service actually executed by each sydegpands on the winning bid
at each pointin time. Similarly, in the Navigation systeiagle agent bids for the action
it wants the robot to perform. These bids are sent to a spagéit that gathers all bids
and determines the winning action. The selected actioreis #ent as the Navigation
system’s bid for the services of the Vision and Pilot systems

The architecture just described above is actually an itistéon of a general co-
ordination architecture we have developed. In this archite there are two types of
systems:executive systenanddeliberative systemsExecutive systems have access
to the sensors and actuators of the robot. These systemsseffgces for using the
actuators to the rest of the systems (either executive dvatative) and also provide
information gathered from the sensors. On the other harithedative systems take
higher-level decisions and require the services offerethbyexecutive systems in or-
der to carry out the task assigned to the robot. Although Werdntiate between these
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two types of systems, the architecture is not hierarchaa, coordination is made at
a single level involving all the systems. This coordinati®ivased on a simple mech-
anism:bidding Deliberative systems always bid for the services offeneexecutive
systems, since this is the only way to have their decisiorswged. Executive systems
that only offer services do not bid. However, those exeeutiystems that require ser-
vices from any executive system (including themselves)trals® bid for them. The
systems bid according to the internal expected utility eisged to the provisioning of
a service. A coordinator receives these biddings and deeitiech service each of the
executive systems has to engage on. In the instantiatioauionavigation problem,
there is a deliberative system, the Navigation system, areuwtive system that bids,
the Pilot system, and one executive system that only offardces, the Vision system.

To navigate in an unknown environment, the robot must buitde@. Existing ap-
proaches assume that an appropriately detailed and aecoeatic map can be obtained
through sensing the environment. However, most of thesmaphes rely on odometry
sensors, which can be very imprecise, due to the wheels srslggping, and lead to
many errors that grow as the robot moves.

Our approach considers using only visual information. THeaatage of using
visual information is that it is independent of any pastatthe robot may have per-
formed, which is not the case for odometry. The robot mustchepped with a robust
vision system capable of recognising landmarks, and use fbemapping and navi-
gation tasks. The specific scenario that we are studyingraesthat there is a target
landmark that the robot is able to recognize visually. Thgdhtis visible from the
robot’s initial location (so that the human operator careselt), but it may subse-
quently be occluded by intervening objects. The challemgéHe robot is to acquire
enough information about the environment (locations oéotandmarks and obstacles)
so that it can move along a path from the starting locatiohéaarget.

But even vision-based navigation approaches assume isticzdly accurate dis-
tance and direction information between the robot and thdrearks. We propose a
fuzzy set based approach that assumes only very rough \esitimation of the dis-
tances and, therefore, does not rely on any localisatioiceev

The main goal of our research is to design a robust visioedaavigation system
for unknown unstructured environments. In particular, wantmo provide the robot
with orientation sense, similar to that found in humans amats. The rationale of the
orientation sense is that the robot does not need to knovxtdw soute from its starting
point to the target’s location, but it uses landmarks asregfees to find its way to the
target. To make a parallel with humans, when giving direifor going somewhere
in our city, no one gives exact distances, turning angles, but gives approximate
distances, and more important, reference points (distemgiaces such as buildings,
squares, etc.) that help us getting to the destination. trapproach, this orientation
sense is realized by the uselahdmark-based navigatigmiopological mappingand
qualitative computatiomf landmark locations. We give a brief definition of each of
these three concepts:

e Landmark-based navigatiom landmark is a visually salient object of the envi-
ronment the robot is able to identify. Other navigation agghes that do not use
vision systems define a landmark as a set of features the cabatetect with its
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sensors (usually sonar or laser readings). As the robobsegthe environment,
it stores the detected landmarks on a map. When the robos nedacate itself

on the map, it can do it by matching the detected landmarks thvé landmarks
already stored on the map. This approach avoids requiriognetty as the main
information source for navigating and building maps.

e Topological mappingthis approach to map building has a close relationship with
landmark-based navigation. A topological map is usuallyaph, where nodes
represent landmarks and arcs represent paths or motiondtishs for going
from one landmark to another. The advantage of this appnsabtiat there is no
need for building accurate geometric maps. Storing theltopcal relationships
among the landmarks in the environment is enough.

¢ Qualitative computationwe use the term “qualitative” in the sense that we do
not need to work with exact distance or angle information;caa deal with
some imprecision about it. More specifically, we deal withyitmeans of fuzzy
numbers and fuzzy arithmetic. Thus, when we talk about tataiely computing
the location of a landmark, it means that we are taking intmant the possible
imprecision about its location.

Our map representation, however, is slightly differentfrthe one given above.
The map is a labeled graph whose nodes, instead of repregéstiated landmarks,
represent triangular shaped regions delimited by groughree non-collinear land-
marks, and whose arcs represent the adjacency betweensetiiat is, if two regions
share two landmarks, the corresponding nodes are connlegtad arc. The arcs of
the graph are labeled with costs that reflect the easinesgegidth between the two
corresponding regions. A blocked path would have an infouts, whereas a flat, hard
paved path would have a cost close to zero. Since the map givaot, but built while
the robot moves, these costs can only be assigned aftertibée mas moved (or tried
to move) along the path connecting the two regions. Althahghadjacency of nodes
in our graph also represents adjacency of topological plabe arcs contain only cost
information, not instructions on how to get from one placatmther. But, actually,
this information is not missing, it is implicit in the adjaw®y of regions. Given that
two nodes are adjacent only if their regions share two lankigyit is clear that to go
from one region to another the robot has to cross the edgestbby the two common
landmarks, unless there is a long obstacle blocking this. pat

Although this topological map would be sufficient for camyiout navigational
tasks, we also provide the robot with the capability of stgrthe spatial relation-
ships among landmarks. To realize this capability, we hateneled Prescott’s beta-
coefficients system [55]. Prescott's model stores theioglahips among the landmarks
in the environment. The location of a landmark is encodeédas the relative loca-
tions (headings and distances) of three other landmarks rélationship is unique and
invariant to viewpoint. Once this relationship has beerestpthe location of each land-
mark can be computed from the locations of the three landsremmkoding it, no matter
where the robot is located, as long as the robot can compeateghading and distance
to each of the three landmarks. As the robot explores the@mwient, it stores the re-
lationships among the landmarks it sees. This creates anebfrelationships among
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the landmarks in the environment. If this network is suffitig-richly connected, then
it provides a computational map of the environment. Giventthadings and distances
to a subset of currently-visible landmarks, the networ&wad us to compute the loca-
tions of all of the remaining landmarks, even if they are ently not visible from the
robot. Prescott assumed that the robot could have the eistahdes and headings to
the landmarks, but as we mentioned previously, we need imdldethe imprecision of
the real world. To deal with it, we have extended the modeigifizzy numbers and
fuzzy arithmetic. With this extension, if the target is el@st during the navigation,
the robot will compute its location with respect to a set cvpously seen landmarks
whose spatial relation with the target is qualitatively guted, both in terms of fuzzy
distance and direction.

We have implemented the overall architecture and the N&wigaystem and first
tested it over a simulator. After obtaining promising résun simulation, we have
implemented the algorithm on a wheeled robot and testedriéalrenvironments.

Although the tuning of our system was carried out throughekperimentation
with the real robot, we also employed simulation to apply hiae learning techniques
in order to improve the performance of the system. In pddicwe have applied
Reinforcement Learning and Genetic Algorithms. We havel iB&nforcement Learn-
ing to have the system learn to use the camera only when afgepThe camera is
a very expensive resource, and it has also a very high dent@dP{lot and several
agents compete for its control). Since manual tuning of trameters controlling the
agents’ behaviors is very difficult, and the problem we ayag to solve is a quanti-
tative trade-off, Reinforcement Learning is found to berniast appropriate technique
to use, as its main goal is to maximize expected reward. \We bltained good results
that show the feasibility of applying Reinforcement Leamto improve our system.
Nonetheless, we still need further experimentation anohtpof the learning algorithm,
in order to integrate the learned policy into the multiaggrgtem. In parallel, we have
used a Genetic Algorithm to tune the different parameteth@figents. The tuning of
these parameters cannot be done manually, neither can drteeusing Reinforcement
Learning. Therefore, we have chosen to use a genetic digodpproach.

1.2 Contributions

The objective of the research carried out during the congieif this PhD thesis has
been to accomplish the first milestone of the above mentipngdct, that is, develop-
ing a navigation system for indoor unknown unstructuredrenvnents for a wheeled
robot. More precisely, we have focused on the Navigatiotesysand on the overall
robot architecture. However, we have also had to implemiemple versions of the
Pilot and Vision systems in order to realize and test the ¢\#ion system.

As it may have already been noticed, this work has two maieareh threads: the
control architecture and themapping and navigation method.

Regarding theontrol architecture, we have proposed a general coordination archi-
tecture that uses a bidding mechanism for coordinating apoé systems (and agents)
that control a robot. This mechanism can be used at difféesets of the control ar-
chitecture. In our case, we have used it to coordinate twhetystems of the robot
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(Navigation and Pilot systems) and also to coordinate tleatsghat compose the Nav-
igation system itself. Moreover, the multiagent view of thavigation system could

also be applied to other systems, having a multiagent Rilatroultiagent Vision sys-

tem. Using this bidding mechanism, the action actually §a&irecuted by the robot
is the most urgent one at each point in time, and thus, if teasgbid rationally, the

dynamics of the biddings would lead the robot to execute treessary actions in or-
der to reach a given target. An advantage of using such meshas that there is no

need to create a hierarchy, such as in the subsumptionectivié, but it is dynamically

changing depending on the specific situation of the robottheaharacteristics of the
environment. A second advantage is that its modular vieWarars an extensible ar-
chitecture. To extend this architecture with a new capighile would just have to plug

in a new system (or agent).

Regarding thenapping and navigation method, we have extended the work pre-
sented by Prescott [55], so that it can be used with fuzzyinétion about the locations
of landmarks in the environment. This is of great importawben working with real
robots, as it is impossible to avoid dealing with the impsexri of real world envi-
ronments. Together with this extension, we have also dpeelanethods that permit
computing diverting targets, needed by the robot when fisere clear path to the goal.

1.3 Publications

The publications related with this research that have bebtighed as journal articles
or in conference proceedings are the following:

e C. Sierra, R. Lopez de Mantaras and D. Busquets. Multiageiding mecha-
nisms for robot qualitative navigatiotecture Notes in Computer Science (Pro-
ceedings ATAL’'00), vol. 198pages 198-212, Springer, Verlag, 2001.

e D. Busquets, R. Lopez de Mantaras and C. Sierra. A robusEMdordination
mechanism for action selectioRroceedings of 2001 AAAI Spring Symposium,
Stanford, CA. Robust Autonomy Sepages 38—40, 2001.

e D. Busquets, R. Lopez de Mantaras, C. Sierra and T.G. d@ielt. Reinforce-
ment Learning for Landmark-based Robot NavigatiBnoceedings of the First
International Joint Conference on Autonomous Agents antlidgent Systems
(AAMAS 2002)pages 841-842. ACM press, 2002.

e T.G. Dietterich, D. Busquets, R. Lo6pez de Mantaras and€2r& Action Refine-
ment in Reinforcement Learning by Probability Smoothifgoceedings of the
19th International Conference on Machine Learning (ICM2)(pages 107-114,
2002.

e D. Busquets, T.G. Dietterich, R. Lopez de Mantaras and€r& A multi-agent
architecture integrating learning and fuzzy techniquesdodmark-based robot
navigation. Topics in Artificial Intelligence. Lecture Notes in Artifatilntelli-
gence (Proceedings of CCIA'02), vol. 25(hges 269-281, Springer, Verlag,
2002.
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e D. Busquets, C. Sierra and R. Lopez de Mantaras. A mulihbgpproach to
fuzzy landmark-based navigationlournal of Multiple-Valued Logic and Soft
Computingvol. 9, pages 195-220, Old City Publishing, 2003.

e D. Busquets, C. Sierra and R. Lépez de Mantaras. A Mulérd@pproach to
qualitative landmark-based navigatigkutonomous Robatsol. 15, pages 129—
153, Kluwer Academic Publishers, 2003.

1.4 Structure of the Thesis

This PhD thesis report is organized as follows:

Chapter 1. Introduction

This chapter gives an overview of this PhD thesis, its mtitves, objectives and
its main contributions. It also gives a list of the publicais originated from the
research carried out during the completion of the thesis.

Chapter 2. Related work and state-of-the-art

This chapter is devoted to relevant related work and stiateesart on the field of

autonomous robots for unknown unstructured environmertts. relevant work

has been divided in two parts, one for each main thread oareksef the thesis:

control architectures, and mapping and navigation methdtie relevant work

concerning control architectures gives an overview of ifferént approaches on
autonomous robots control, focusing on the behavior-bapptbach. Regarding
the mapping methods, we review and compare the two main appes for map

building, the metric one and the topological one. A compmarisetween two dif-

ferent localisation approaches (landmark-based lo¢alisand model matching)
is also given.

Chapter 3. Mapping and Navigation

In this chapter we firstly describe Prescott's model foristpspatial relationships
among the landmarks of the environment. After that, we diesdrow we have
extended this model for dealing with imprecise informatidmout the location of
the landmarks. We also present the algorithm for buildingpmlogical map of
the environment and how it is used to compute diverting targeeeded by the
robot when it is blocked.

Chapter 4. The Robot Architecture

In this chapter a general coordination architecture baredlmdding mechanism
is presented. We also present the particular instantiatitimne general architec-
ture that we have used to solve the navigation problem. Allddtdescription of
the multiagent Navigation system is also given in this caapt
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Chapter 5. Simulation Results

In this chapter the results of the simulated experimentpaesented. These ex-
periments include the testing of our architecture and thpdiegtion of Machine
Learning techniques in order to improve the performanck®system. In partic-
ular, we present the application of Reinforcement Learniigch we have used
to make the system learn how to appropriately use the caruedaan application
of Genetic Algorithms, used to tune some of the parametetfseofgents of the
Navigation system.

Chapter 6. Real Experiments

This chapter is devoted to present the results of the expetsnon real envi-
ronments with a real robot. Firstly, the wheeled robot platf and a simple
vision system used for the real environments experimesetslascribed. Then,
we describe the different scenarios in which the experimbate been carried
out. Finally, the results of the experimentation in suchaei®s are given and
discussed.

Chapter 7. Conclusions and Future Work

In this chapter, we summarize the main contributions of tiesis, and point out
some open problems and future research perspectives thpgamwo tackle in the
near future.






Chapter 2

Related Work and
State-of-the-art

In this chapter we review relevant related work and the stétbe-art on the field of
autonomous robotics. We have divided it in two sections,foneach main thread of
our research: Control Architectures and Mapping and Naiiga

2.1 Control Architectures

A mobile robot working in unknown environments has to be ablgerceive the world,
reason about it, and act consequently in order to achiewwoats. The way in which
this process is done is defined by the robot’s control archite. Many approaches for
control architectures have been developed, and therexgamany definitions of what
a control architecture is:

“Roboatic architecture is the discipline devoted to the desof highly specific and
individual robots from a collection of common software ity blocks.”— Adaptation
of Stone’s [62] definition of computer architecture.

“ [an architecture refers to] the abstract design of a claskagents: the set of
structural components in which perception, reasoning, aotion occur; the specific
functionality and interface of each component, and thergmenection topology be-
tween components:* Hayes-Roth [30].

“An architecture provides a principled way of organizing antrol system. How-
ever, in addition to providing structure, it imposes coasgits on the way the control
problem can be solved=+ Mataric [48].

“An architecture is a description of how a system is congeddrom basic compo-
nents and how these components fit together to form the Whelames Albus, at the
1995 AAAI Spring Symposium.

The main difference between the architectures proposdtkipast years relies on
whether they are more deliberative or more reactive. Figutelepicts the spectrum of
control architectures.

11
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Figure 2.1: Control architectures’ spectrum

In this section we give an overview (characteristics, athges and disadvantages)
of the three main approaches: purely deliberativhierarchical architecturespurely
reactive obehavior-based architectureandhybrid architectureswhich combine both
previous methods.

2.1.1 Hierarchical Architectures

Hierarchical architectures, also named deliberativerobatchitectures, were used for
many years since the first robots began to be built. Examglesich architectures
and robots are SRI's Shakey [54], Stanford’s CART [50], NAdasrem system [42]
and Isik’s ISAM [32], among others. These architecturestmsed on a top-down
philosophy, following esense-plan-aanodel (see Figure 2.2). The control problem is
decomposed into a set of modules, sequentially organizstiitie perception module
gets the sensory information, which is passed to the maglefindule that updates
an internal model of the environment; after that, planngsigldne using this internal
model, and finally the execution module implements the gmuwith the appropriate
commands for the actuators.

Actuators

Sense—| Model Plan Act

Sensors

Figure 2.2: Sense-plan-act model

This model works very well when the environment in which tbbat is working
can be tailored to the task to be performed (e.g. industolbts in factories, with
magnetic beacons, marked paths, etc.). However, whenskestéo be performed in
an unknown, unpredictable, noisy environment, they faiioceed, as the planning is
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Perception—=| Behavior — Response

Figure 2.3: Single behavior diagram

usually out-of-date by the time it is being executed.

Another drawback of such architectures is their lack of stbess. Since the infor-
mation is processed sequentially, a failure in any of thepamments causes a complete
breakdown of the system.

2.1.2 Behavior-based Robotics

Behavior-based robotics [3] appeared in the mid 1980s iparse to the traditional
hierarchical approach. Brooks [8] proposed to tightly deygerception to action, and
thereby, provide a reactive behavior that could deal withwapredicted situation the
robot may encounter. Moreover, Brooks advocated for amgiteeping any model of
the environment in which the robot operates, arguing that World is its own best
model”. Behavior-based robotics is a bottom-up methodglatspired by biological
studies, where a collection of behaviors acts in paralleldioieve independent goals.
Each of these behaviors is a simple module that receivessififmm the robot’s sensors,
and outputs actuator commands (see Figure 2.3). The oeechlitecture consists of
several behaviors reading the sensory information andisgradtuator commands to
a coordinator that combines them in order to send a singlevamd to each actuator
(see Figure 2.4).

—| Behavior n =

—| Behavior n-1 ™

Sensors
Coordinator
Actuators

—=| Behavior 2 —

—| Behavior 1 =

Figure 2.4: Behavior-based architecture

The most representative of such architectures are Braolksumption architecture
[8], Maes’action selectiori43] and Arkin'smotor schemagt]. Since then, many other
architectures have been proposed.

Behavior-based architectures are classified dependingwritte coordination be-
tween behaviors is done:

e Competitive in these architectures the coordinator selects an actionimgy from
one of the behaviors and sends it to the actuators, that is,aitwinner-take-
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all mechanism. Subsumption architecture and action seteare examples of
competitive coordination.

e Cooperative in these architectures the coordinator combines therstoming
from several behaviors to produce a new one that is sent tadfuators. Motor
schemas is an example of cooperative coordination.

In this section we give a brief overview of the three most kndwehavior-based
architectures and point out some others relevant to our.work

Subsumption architecture

The Subsumption architecture, designed by Rodney Brodksa@s the first of the
Behavior-based architectures. In this architecture eablavior is represented as a sep-
arate layer, having direct access to sensory informati@thBayer has an individual
goal, and they all work concurrently and asynchronouslyayel is constructed of a
set of Augmented Finite State Machines (AFSM), connectedipgs through which
signals can be passed from one AFSM to another. These lasees@ganized hierar-
chically, and higher levels are allowed to subsume, hene@méime, lower ones. This
subsumption can take form of inhibition or suppression.itition eliminates the sig-
nal coming out from an AFSM of the lower level, leaving it iti@e. Suppression
substitutes the signal of the AFSM by the signal given by tlghér level. Higher
level AFSMs can also send reset signals to lower ones. Theskanisms provide a
competitive, priority-based coordination.

The hierarchical organization permits an incrementalgtesf the system, as higher
layers are added on top of an already working control sysiéth no need of modifying
the lower levels. An example of such behavior layering isicteg in Figure 2.5.

Back-out-of-tight
situations layer

— MOTORS
> BRAKES

Figure 2.5: Example of a control system using the subsumjatiohitecture. Each box
is an AFSM, and signals are passed through the arrows congeébe AFSMs. An
encircled S is a suppression point, and an empty circle iset point

The main strengths of this architecture are its incremeh¢sign methodology,
which makes it easy and intuitive to build a system, its handwetargetability (each
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of the layers can be implemented directly on logic circyitend the support for paral-
lelism, since each layer can run independently and asynolusdy.

However, this theoretic independence is not absoluteedingher layers can sup-
press, inhibit and also read the signals of lower layers. edeer, these connections
between layers are hard-wired, so they cannot be changédydaxecution, thus, not
allowing on-the-fly adaptability of the system to changethi@ environment. One fi-
nal aspect against this architecture is that it forces tiséggder to prioritize behaviors,
therefore, the case of behaviors with equal priority cateatepresented with the sub-
sumption architecture.

Action selection

Action selection is an architectural approach develope®dtyie Maes [43] that uses
a dynamic mechanism for behavior (or action) selection.sTyinamic mechanism
solves the problem of the predefined priorities used in thesgnption architecture.
Each behavior has an associated activation level, whiclbeaffected by the current
situation of the robot (gathered from the sensors), itsgy@ald the influence of other
behaviors. Each behavior also has some preconditionsdkiatth be met in order to be
active. From all the active behaviors, the one with the hstjaetivation level is chosen
for actual execution.

This coordination mechanism resembles very much our bgddpproach. In our
architecture, each system (or agent within the Navigatimtesn) bids according to
the urgency for having the action executed, which is eqaiviaio the activation level.
However, our bidding agents have no preconditions to bematder to become active,
and they are always ready to bid. Another important diffeeeis that behaviors in
action selection can influence the activation level of otheaviors, whereas in our
approach the agents are totally independent, since an eay@mot influence the bids of
another agent.

Motor schemas

The Motor schemas approach was proposed by Ronald Arkimi] it is a more bio-
logically based approach to control architectures thaiptheious two. As in the previ-
ous approaches, each behavior receives sensory infometimputs and generates an
action as output. This outputis always a vector that defioasdthould the robot move,
and can have as many dimensions as needed (e.g. two dimefsioground-based
navigation, three for flying or underwater navigation, etEach behavior uses the po-
tential field approach (developed by Khatib [34] and Krog#]J3o produce its output
vector. However, instead of computing the entire potefigdd, only the response at
the current location of the robot is computed, allowing aerand fast computation.
Contrarily to the previous two approaches, motor schemas asooperative coordi-
nation mechanism. The way the different behaviors are d¢oateld is through vector
summation. Each behavior contributes to the global readipending on a gain factor
(G;). Each output vectorK;) is multiplied by its behavior gain factor and summed up
with the rest to produce a single output vector that will bat $e the robot’s actuators
(see Figure 2.6). These gain factors are very useful fortabdiy purposes, as they
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can be dynamically changed during execution, thus, as timnaelection architecture,

also overcoming the restricting subsumption architectymaority scheme.

Coordinator

—| Behavior n =
—| Behavior n-1 *\\\

—| Behavior 2 —>/
 — =" R

Behavior 1

Sensors

Actuators

™M

@G R

Figure 2.6: Motor-schemas architecture

However, cooperative mechanisms have some problems. Affastem is that they
can reach local minima in the potential field. Imagine theagibn in which the robot
has an obstacle in front of it, and the task to be performed igdch a target located
right behind the obstacle. In this situation, the behavioravoiding obstacles would
compute a repulsive vector coming from the obstacle, whidego-to-target behavior
would compute a vector going to the target, which would alsifpto the obstacle.
Thus, in a particular location, the sum of both vectors wdwgdnull, and the robot
would not move anymore from that location. This problem isilgasolved by adding
a noise schema, that always produces a small random vectodén to avoid these
blocking situations from happening. Another problem of pe@tive mechanisms is
that the action actually executed is one that no behaviogéasrated. Again, imagine a
robot with an obstacle ahead, and imagine that two diffdsehtwviors generate outputs
for avoiding that obstacle, one trying to avoid it througk tight and the other one
trying to avoid it through the left. The sum of the vector wibille a vector going
straight ahead to the obstacle, which obviously would ndhbéest thing to do.

Other behavior-based systems

Rosenblatt [56], in CMU’s Distributed Architecture for Mibdo Navigation project
(DAMN), proposed an architecture that is similar to our agmh. In this architecture,
a set of modules (behaviors) cooperate to control a robatis py voting for various
possible actions (steering angle and speed), and an adkitétes which is the action
to be performed. The action with more votes is the one agteatcuted. However, the
set of actions is pre-defined, while in our system each agembd for any action it
wants to perform. Moreover, in the experiments carried dath this system (DAMN),
the navigation system used a grid-based map and did not wsklahdmark based
navigation.

Saffioti et al [58, 57] developed the Saphira architectureictv uses fuzzy logic
to implement the behaviors. Each behavior consists of aéfezzy rules that have
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fuzzy variables as antecedents (extracted from sensoryward model information),
and generate as output a control set (i.e. fuzzy controblt®). This control set is
computed from the values of the fuzzy variables, and it regmes the desirability of
executing the control action, being similar to the activatievel of the action selection
architecture. Each behavior also has a fixed priority fastuch is used for coordinat-
ing all the behaviors. This coordination is very similar @ tcooperative mechanism
used in Motor schemas. However, instead of combining vectbcombines control
sets and then defuzzifies the resulting set in order to geigdestontrol value.
Humphrys [31] presents several action selection mecharilsat use a similar co-
ordination mechanism to ours. Each agent suggests thenatticants the robot to
perform with a given strength or weight (equivalent to out)band the action with the
highest weight is the one executed. These weights are caohamd learned through
Reinforcement Learning) using the one-step reward of dkegan action, which each
agent is able to predict for the actions it suggests. Thig isnportant difference with
our problem, since we cannot assign a one-step reward tdianabe only reward the
robot may receive is when the robot reaches the target, &daty difficult to split this
reward into smaller rewards for each action taken duringitheégation to the target.

2.1.3 Hybrid Architectures

Although it has been widely demonstrated that behavioethaschitectures effectively
produce a robust performance in dynamic and complex enviemrts, they are not al-
ways the best choice for some tasks. Sometimes the task terbmmed needs the
robot to make some deliberation and keep a model of the envient. But behavior-
based architectures do avoid this deliberation and mogletiowever, as we have men-
tioned at the beginning of this section, purely delibetvchitectures are also not the
best choice for tasks in complex environments. Thus, a comjze between these two
completely opposite views must be reached. This is \ulghtid architectureschieve.

In these hybrid architectures there is a part of delibenatio order to model the
world, reason about it and create plans, and a reactive ngafipnsible of executing
the plans and quickly reacting to any unpredicted situatiat may arise. Usually
these architectures are structured in three layers (sege=8y7): (1) the deliberative
layer, responsible of doing high-level planning for acimemhe goals, (2) the control
execution layer, which decompose the plan given by the érdiive layer into smaller
subtasks (these subtasks imply activating/deactivataigbiors, or changing priority
factors), and (3) the reactive layer, which is in charge ebeting the subtasks set by the
control execution layer and can be implemented with any Wiehéased architecture.
Examples of such hybrid architectures, among others, atg’8rAuRA [2] and Gat’s
Atlantis system [29] for JPL’s rovers.

Another hybrid architecture, although not following thegé-layer structure, is that
of Liscano et al [25]. In their architecture, they use anwtgtibased blackboard con-
sisting of two hierarchical layers for strategic and reactieasoning. A blackboard
database keeps track of the state of the world and a set iti@stio perform the nav-
igation. Arbitration between competing activities is atgiished by a set of rules that
decide which activity takes control of the robot and ressleenflicts.
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Figure 2.7: Three layers hybrid architecture

Although our approach is presented as a behavior-baseghsyitis not a purely
reactive system, since there is some modeling (one of thetagé the Navigation
system is in charge of building a map of the environment andmgding routes) and
deliberation (the agents reason about the world and conoataivith each other). So
if we had to classify it on the spectrum of control architeefj we would place it in the
hybrid group, having the reactive and deliberative parteaghin one single layer.

2.1.4 Bidding Mechanisms

Regarding the use of bidding mechanisms, we have found gargystems making use
of it. At CMU, the FIRE project [19] uses a market-orientegegach to model the co-
operation of a team of robots. In this approach, insteadiofiube bidding mechanism
to coordinate the agents of a single robot, bidding is useddodinate a team of robots
that have to accomplish several tasks. The rationale isathlatthis mechanism, each
task is performed by the best suited robot for the task, tichgeging a better global
performance.

Sun and Sessions [63] have also proposed an approach foopienea multi-agent
reinforcement learning system that uses a bidding mecmataidearn complex tasks.
The bidding is used to decide which agent gets the contrdiefdarning process. The
agents bid according to the expected reward that wouldvedkihey were given the
control. Thus, although they are competing for the contt@y also cooperate, since
they seek to maximize the overall system reward.

2.2 Mapping and Navigation

The mapping problem is regarded as one of the most importabtgms in the field
of autonomous robotics, and it dates back to SRI's famou&&habot [54]. A robot
operating autonomously needs to answer the three basitiansgeabout mapping and
navigation, as posited by Levitt and Lawton [39]:
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e Where am I?
e How do | get to other places from here?

e Where are other places relative to me?

This would be easy if an a priori map were available, but wedaading with the
scenario of unknown environments. That is, the robot hasnuvledge at all about
what the environment looks like, where the landmarks, thetaattes, etc are. To be
able to answer these questions and, thereby, be able tampeatfotask, the robot must
acquire a model of the environmentin which it has to navitfateugh. Recent research
on modeling unknown environments is based on two main agpesaoccupancy grid-
based(or metric), andopological maps

Another distinctive and very important feature of mappippm@aches iocaliza-
tion. The localization problem can be split in two very differ@atrticular problems:
local localization andglobal localization. Local localization, also known as position
tracking, aims at compensating odometric errors occurdingng robot navigation. On
the other hand, global localization is concerned with thabpam of finding out where a
robot is relative to a map of the whole environment. In thestk we tackle the problem
of global localization. There are two main approaches férisg it: model matching
andlandmark basedbcalization.

In the rest of this section we will go through all these apphms, starting with the
global localization approaches, and then the grid-basddapological mapping ones.

2.2.1 Localization

As just mentioned, global localization is the problem of firgdout where a robot s rel-
ative to a map (i.e. align the robot’s local coordinate systath the global coordinate
system of the map). This problem is as important as beingtabbeiild a good map

of the environment. No matter how good the map is, it will banofuse if we are not

able to localize the robot on it. Conversely, even if we knawho localize the robot

with high precision, that will be useless if there is no gooabnavailable on where to
localize it. Moreover, the accuracy of a metric map depemgisiyron the alignment of

the robot with its map. If we are not able to localize the roltioé resulting maps are
too erroneous to be of practical use. As seen, these twogirabére closely related,
and most of the mapping approaches try to address both pnslaiethe same time, in
what is known asimultaneous localization and mappi(gLAM).

Model matching localization

These algorithms extract geometric features from the seeadings and try to match
them with a map of the environment, in order to correct pdssillometric errors.
This approach is closely related to grid-based mappingcfdesd below), since these
geometric features are the information pieces that grebanapping approaches store
on the map.

The position of the robot is incrementally computed usingrodtry and informa-
tion from sensors, by matching this information with the nasrpady built. The sensor
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information used for matching can be single sonar scansg;hwdnie matched with the
obstacles on the map, such in Moravec and Elfe’s approackb30ther approaches,
such as Chatila and Laumond’s [18] extract geometric feat(line segments and poly-
hedral objects) from the sensor readings and match them tometric map of the

environment.

One problem with this approach is that it requires accurd@metry to disam-
biguate among positions that look similar. Probabilispp@aches (Smith et al [61],
Fox et al [27], Castellanos and Tardos [16]) try to solve ainbiguity problem, and
they are the most frequently used in the field of robot mappiing basic idea of these
algorithms is to employ probabilistic models of the robod &éne environment to cope
with the uncertainty of robot motion and sensor reading.rtieoto localize the robot,
they use consecutive sensor readings to estimate a digiritaver the space of all lo-
cations in the environment. The more readings the robot ¢etsmore precisely its
location can be computed.

In our case we do not have to deal with this ambiguity, sincehaxe developed
a Vision system robust enough to correctly identify the laadks. Thus, there is no
uncertainty about the presence of a landmark. Howeveretllesome imprecision
about its location, which we deal with using fuzzy technigjue

The model matching approach, however, is computationaly expensive, since
the process of matching the current sensor readings witm#erequires many com-
putations.

Landmark-based localization

In these approaches landmarks are used as references toteoting location of the

robot. Landmarks can range from a set of sensor readingsificial landmarks such

as beacons or bar-codes or natural landmarks detectediby gigsstems. Because of
its computational simplicity and also its close relatiapsWith human navigational

abilities, this approach is the most widely used, and it leenlbused with both grid-
based and topological approaches.

This approach also suffers from the problem of ambiguity mgniandmarks that
look similar. Again, the probabilistic approach can helfvem this problem. Thrun
[65] and Dissanayake et al [21], among others, use this agprtogether with grid-
based maps, and Simmons and Koenig [60] and Kaelbling eBatf8nbine it with the
topological approach.

2.2.2 Map Representation

In order to navigate through the environment, the robot rongsite a model of it. There
are two approaches to model the environment, the metricid+#bgrsed approach, and
the topological approach. Depending on the type of enviemrone or the other ap-
proach is most appropriate. Table 2.1 summarizes the aatyastind disadvantages of
these two approaches.
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Grid-based approaches Topological approaches
e easy to build, represent and e permits efficient planning, low
o maintain space complexity
2 e non-ambiguous recognition af e does not require accurate deter-
E places and view-point indepen- mination of robot’s pose
< dent _ _
a e convenient representation for
< o facilitates computation o symbolic planner/problem
shortest paths solver
e difficult to construct and
N e inefficient  and space- maintain in large-scale envi-
‘(-'DJ consuming planning ronments if sensor informa-
= . ) tion is ambiguous
= e requires accurate determinas
<>f tion of the robot’s position e recognition of places often
a _ difficult, sensitive to view-
jj e poor interface for most sym- point
) bolic problem solvers
e may yield suboptimal paths

Table 2.1: Advantages and disadvantages of grid-basedomatbgical mapping ap-
proaches

Grid-based mapping

This approach was originally proposed by Elfes [23] and Meca[51]. Cells in an
occupancy grid contain information about the presence vohan obstacle. Each
of these cells is updated using sensor readings, and ite vapresents the degree of
belief in the presence of an obstacle. The vast number oftgredd algorithms differ
on the way in which sensor readings are translated into @smypevels. Among other
techniques, probability theory [51, 66, 67] and fuzzy setotly [41, 40] have been
used. This mapping approach can be used in conjunction Wwérvto localization
approaches, as has been just described above.

In this approach, navigation is performed using path plagrilgorithms, which
compute precise routes through the environment in ordegdohr a goal avoiding the
obstacles.

Although this approach is widely used and achieves very gesdlts, it is mainly
focused for indoor structured environments. The size ofi ®inwironments permits the
robot to maintain a grid with a high enough resolution (iraa#l cells). In large outdoor
environments, however, this technique cannot be applethecomputational cost of
the grid would be too high.

Moreover, in most of the algorithms following this approgattie robot has a training
period in which it navigates through the environment with ¢timly purpose of building
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a map. After this training period, the robot is able to parfits task and localize itself
using the already built map. In our scenario, however, tleen® such training period,
as the robot does not have the opportunity to inspect theanwient before attempting
to reach the target, but has to reach it while exploring thérenment for the first time.

Topological mapping

In comparison to grid-based representations, topologégaksentations (such as those
proposed by Chatila [17], Kuipers and Byun [38], Matari@][4nd Kortenkamp [36],
among others) are computationally cheaper. They use gtapkgresent the environ-
ment. Each node corresponds to an environment featuredmiark and arcs represent
paths or motion instructions between them. Some approdéhgsers [38], Korten-
camp and Weymouth [35]) also define the nodes as “placestenhtplace” is defined
as a location where a set of features or landmarks fulfill giproperty (e.g. sonar
readings matching, landmark visibility, etc.).

With this graph, the problem of navigation is reduced to thebfem of finding a
route from one node to another — the target one. This can by eamputed with
many graph search algorithms (Dijkstra’s shortest path, dyhamic programming).
However, this simplicity of computing routes has the disadage that the routes are
not always the optimal ones, since there is not an accuratmefeic description of
the environment, and path planning algorithms for metricldgocannot be applied.
Moreover, in topological graphs there is no explicit repreation of the obstacles, as
in a metric map. Therefore, when moving from one node to arpthere is no way of
planning an optimal path, since there may be some obstaclgwavay.

The advantage of topological approaches is that they doeipton odometry in
order to build the map nor localize the robot on it. The onlynp which odometry
is sometimes used is to label the arcs between nodes. Aslalne@ntioned, the arcs
contain information about how to get from one node to anotfibis information can
be, depending on the approach, metric information (heaanthdistance to the next
node). If this were the case, the odometry error would infteethe precision of this
information. However, since neighboring nodes are closeaith other, this error is
bounded and does not accumulate as the robot navigategthttoel environment.

The drawback of not using metric information is that topatadjapproaches have
difficulties in determining if two places that look similareethe same place, since they
compute the position of the robot relative to the known laadm. This problem can be
tackled if a robust enough landmark recognition system gace. Landmark recog-
nition is a very active field of research in vision and verymising results are being
obtained [46]. In this work we assume that the vision systamrecognize landmarks.
However, in the absence of a robust recognition system, zapitistic approach, simi-
lar to the one described for metric maps, could be applied.

Topological approaches can also be combined with gridebapproaches. Thrun
[66] combines both representations in his work on learniag$for navigation in in-
door structured environments. The grid-based map is jwamtitl in coherent regions
to generate a topological map on top of the grid. By combifiath methods, his ap-
proach gains the advantages of both methods, resulting ateurate, consistent and
efficient mapping approach. This is indeed a good idea favanénvironments but for
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large-scale outdoor environments may not be worth the ctettipnal effort of main-
taining a grid representation under a topological one.

In our work we use the approach where nodes represent reggdimed by groups
of three landmarks and that are connected by arcs if thensgie adjacent, that is, if
they have two landmarks in common. The arcs, instead of gongamotion informa-
tion, represent the cost of going from one region to anofft@s graph is incrementally
built while the robot is moving within the environment. Tlieremental map building
approachis based on previous work by Prescott [55] thatgmegha network model that
used barycentric coordinates, also called beta-coeffien Zipser [68], to compute
the spatial relations between landmarks for robot nawgatBy matching a perceived
landmark with the network, the robot can find its way to a tapmgevided it is repre-
sented in the network. Prescott’s approach is quantitathereas our approach uses a
fuzzy extension of the beta-coefficient coding system ireotd work with fuzzy qual-
itative information about distances and directions. Aeoftiifference with Prescott’s
approach is that his topological graph contains only adjegénformation, thus, not
maintaining any information about costs, as in ours. Thi& adformation is very im-
portant when planning routes from one region to anothecesihis the only way to
know whether a path is blocked or free. One final point to neeni that in Prescott’s
experiments, carried out only on simulation, the robot waswv&d a training period,
while this period is not present in our approach.

Levitt and Lawton [39] also proposed a qualitative appraadhe navigation prob-
lem. In this approach, landmark pairs divide the environnreo two regions, one for
each side of the line connecting the two landmarks. The coatioin of all such linear
divisions generates a topological division of the enviremton which navigation can
be performed. Navigation consists of crossing a seriesrafrfaark pairs in order to
reach the region containing the target landmark. Our néeiganethod uses the same
idea for computing and navigating to diverting targets. Tiféerence between this
approach and ours is that we use three landmarks for cretgngegion subdivision,
instead of only two. This gives as result a better and morepeatrdivision of the en-
vironment. Moreover, this third landmark permits the rotsotompute a relationship
among the landmarks that is unique and invariant to viewtpoin

Another qualitative method for robot navigation was pragmblsy Escrig and Toledo
[24], using constraint logic. However, they assume thatrtimt has some a priori
knowledge of the spatial relationship of the landmarks,neas our system builds these
relationships while exploring the environment.

One of the drawbacks of most of the mapping approaches ishtagtare thought
for static environments. That is, landmarks are not supptsehange their location
while the robot is exploring the environment. Thus, researcvision systems capable
of extracting robust (distinguishable, invariant to vieiwg and illumination, static)
landmarks is very important. However, some mapping appremare already able to
cope with dynamic environments. In [1] landmarks have asterice state (using the
principles of neural networks). This mechanism permitsréraoval of landmarks for
which their existence is not certain enough. We have usethiasiidea to devise a
Visual Memory(see chapter 4), a short term memory of detected landmarks.






Chapter 3

Mapping and Navigation

As already mentioned, the task the robot has to perform iswigate through an un-
known unstructured environment and reach a target landsyekified by a human
operator. This task is not easy to solve, since it has to b@edaout in a complex
environment, and the target can be occluded by other objectely reactive robotic
systems would have problems trying to accomplish this tasice they do not build
any model of the environment. If the target were lost, it vaolé difficult to recover
its visibility and continue the navigation towards it. Fbistreason, we thought that the
robot should build a map of the environment in order to naeglarough it. The infor-
mation stored in the map must permit the robot to comput®dation, the location of
the target, and how to get to this target. Although the objeddf this PhD thesis is to
develop a navigation system for indoor environments, wehesed a map representa-
tion that also works outdoors, since this is the next milestof the project in which
we are involved. Thus, instead of using a grid-based apprahe most widely used
approach for indoor environments, we have used a topolbgitg most appropriate
also for outdoors.

Our approach is based on the model proposed by Prescott jn [BEe princi-
ples underlying this model are inspired by studies of aniama human navigation and
wayfinding behavior. This model, callégta-coefficient systemoes not only deal with
how to represent the environment as a map, but also adds amschfor computing
the location of landmarks when they are not visible, basethemelative positions of
the landmarks. This mechanism is what we have used to priwed®bot with orienta-
tion sense, since it captures the relationship among diftglaces of the environment.
The robot makes use of this orientation sense to computeclgidn of the target when
it is occluded by other objects or obstacles.

In this chapter we firstly describe how Prescott’s model waskhen the robot is
able to have exact information about its environment, aad the explain how we have
extended it to work with imprecise information. We also d#ésxthe method used
for dividing the environment into appropriate topologicagiions, and finally how the
topological map is used to navigate through the environment

25
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Figure 3.1: Possible landmark configuration and points efwiLandmarks A, B, C
and T are visible from viewpoint’. Only landmarks A , B and C are visible from
viewpointV’

3.1 Beta-coefficient System

The idea behind Prescott’s model is to encode the locatianlahdmark (which we
refer to as target — not to confuse with the target or goal®Nhvigation system) with
respect to the location of three other landmarks. Having sieee landmarks and a
target from a viewpoint (e.g., landmarks B andC and targefl’ from viewpointV,

in Figure 3.1), the system is able to compute the target’gipnsvhen seeing again the
three landmarks, but not the target, from another viewp@imt.,V’). A vector, called
the 5-vector of landmarks A, B, C and T, is computed as

f=X"'Xp (3.1)

whereX = [XaXpXc] andX; = (z;,,1)T, are the homogeneous Cartesian coor-
dinates of object, : € {A, B,C, T}, from viewpointV. This relation is unique and
invariant for any viewpoint if landmarks are distinct andhneollinear. The target's
location from viewpoint/’ is computed as

X = X'B, (3.2)

whereX’ = [ X/, X5 X[].

It should be noted that, although Prescott’'s system worlts @artesian coordi-
nates, once all the computations have been done, the nggtdtiget’s location is con-
verted to polar coordinates, since, as will be seen in nexgighs, this is the coordinate
system that uses the Navigation system.

This method can be implemented with a two-layered netwodchHayer contains
a collection of units, which can be connected to units of ttieplayer. The lowest
layer units arebject-units and they represent the landmarks the robot has seen. Each
time the robot recognizes a new landmark, a new object-sinigated. The units of the
highest layer arbeta-unitsand there is one for eaghvector computed.

When the robot has four landmarks in its viewframe, it sslecte of them to be the
target, a new beta-unit is created, andheector for the landmarks is calculated. This
beta-unit will be connected to the three object-units assed with the landmarks (as
incoming connections) and to the object-unit associatdll thie target landmark (as
an outgoing connection). Thus, a beta-unit will always hfmwe connections, while
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an object-unit will have as many connections as the numbleett-units it participates
in. An example of the network can be seen in Figure 3.2b. figure there are six
object-units and three beta-units. The notation ABC/D idarastood as the beta-unit
that computes the location of landmark D when the locatidhar@imarks A, B and C
are known.

This network has a propagation system that permits the rimbodvmpute the lo-
cation of non-visible landmarks. It works as follows: whée trobot sees a group of
landmarks, it activates (sets the value) of the associdigdbunits with the egocentric
locations of these landmarks. When an object-unit is atetiljat propagates its loca-
tion to the beta-units connected to it. On the other hand yvehleeta-unit receives the
location of its three incoming object-units, it gets actared computes the location of
the target it encodes using jfisvector, and propagates the result to the object-unit rep-
resenting the target. Thus, an activation of a beta-unitagilivate an object-unit that
can activate another beta-unit, and so on. For examplegingtwork of Figure 3.2b,
if landmarks A, B and C are visible, their object-units wit lctivated and this will
activate the beta-unit ABC/D, computing the location of ijeh will activate BCD/E,
activating E, and causing BDE/F also to be activated. Indhge, knowing the location
of only three landmarks (A, B and C), the network has compthiedocation of three
more landmarks that were not visible (D, E and F). This pragiag system makes the
network compute all possible landmarks’ locations. ObsigLif a beta-unit needs the
location of a landmark that is neither in the current view aotivated through other
beta-units, it will not get active.

This propagation system adds robustness to the computtioan-visible land-
marks, since alandmark can be the target of several betaaitine same time. Because
of imprecision in the perception on landmark locations,gktmates of the location of
a target using different beta-units are not always equalemthis happens, the differ-
ent location estimates must be combined. Prescott use&thefshes-vector as the
criterion to select one among them. A beta-unit with a smatgector is more precise
than those with larges-vectors (see [55] for a detailed discussion on how to comput
the estimate error from the size of thevector). The propagation system does not only
propagate location estimates, but also the size of thedafigeector that has been used
to compute each estimate. When a new location estimatesartavan object-unit, its
location is substituted with the new one if the size of thgéats-vector used is smaller
than that used for the last location estimate received.

The network created by object and beta units can be convietted graph where
the nodes represent triangular shaped regions delimitedgogup of three landmarks,
and the arcs represent paths. These arcs can have an a&sb00gtt representing how
difficult it is to move from one region to another. Althougtetarcs are created imme-
diately when adding a new node to the graph, the costs canbenhssigned after the
robot has moved (or tried to move) along the path connectisgwo regions. In the
case the path is blocked by an obstacle, the arc is assigriefiraie cost, representing
that it is not possible to go from one region to the other. §héph is a topological map,
and we call its nodetopological units An example of how the topology is encoded in
a graph is shown in Figure 3.2c.

This topological map is used when planning routes to thestaigometimes, when
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(@ (b) (©)

Figure 3.2: (a) Set of landmarks (b) associated networkigd&rew) and (c) associated
topological map

the position of the target is known, the easiest thing to do imove in a straight line
towards it, but sometimes it is not (the route can be blocttelcost too high...). With
the topological map, a route to the target can be compute&ettion 3.4 a detailed
explanation on how to compute routes to the target is given.

3.2 Extending Prescott’'s System: Moving to Fuzzy

The beta-coefficient system, as described by Prescottn@sstinat the robot can com-
pute the position of the landmarks with small errors, in oitdecreate the beta-units
and use the network. But this is never the case: the Visiotesyprovides the robot
with inexact information about the location of landmarke.Work with this imprecise
information we use fuzzy numbers.

3.2.1 Fuzzy Numbers and Fuzzy Operations

A fuzzy number can be thought of as a weighted interval of neahbers, where each
point of the interval has a degree of membership, ranging @©do 1 [7]. The higher

this degree, the higher the confidence that the point beltmtige fuzzy number. The
function F4 (x), calledmembership functigrgives us the degree of membership for
in the fuzzy numbe#.

Before defining the arithmetic with fuzzy numbers, we havietiwduce the concept
of a-cut. Thea-cut (@ € [0, 1]) of a fuzzy numberd, is the interva A}, = [a1, ag)
such thatFs(z) >= «a,Vx € [a1, az].

Let A and B be fuzzy numbers, anfld},, and{ B}, a-cuts. The fuzzy arithmetic
operations are defined as follows,

A+ B=0C,5t.{C}a = {A}a ®{B}a Va

A—B=C,st.{C}a = {A}a ©{B}a Va

Ax B=0C,5t.{C}a = {A}a @ {B}a Va

A+B=C,st.{C}a = {A}a @ {B}a Va
where the operations, ©, ® and® are performed on intervals and are defined as

[a1, a2] ® [b1,b2] = [a1 + b1, a2 + 2]

[a1, a2] © [b1,b2] = [a1 — b2, a2 — b1]
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[0117 az] ® [bl, b2] = [min(albl, albz, azbl, azbz), mam(mbl, 61,11727 agb1, azbg)]
a1, a2] @ [b1, b2] = a1, a2] ® [57, 57, O & [b1, 2]

3.2.2 Fuzzy Beta-coefficient System

To use the beta-coefficient system with fuzzy numbers, welsimperform the cal-
culations described in the previous section using the fugmrators defined above.
However, because of the nature of fuzzy operators, someraridconfigurations may
not be feasible (the matrix inversion used for computinghesctor — Equation 3.1—
may produce a division by 0), so not all configurations cantbesd in the network.

When using the network to compute the position of a landmaekobtain a fuzzy
polar coordinatér, ¢), wherer and¢ are fuzzy numbers, giving us qualitative informa-
tion about its location. An advantage of working with fuzpoedinates is that it gives
us information about how precise the location estimateingesit represents the loca-
tion not as a crisp coordinate, but as a spatial region wiertahdmark is supposed to
be.

Another difference with Prescott's model is the critericred to select among dif-
ferent estimated locations for the same landmark. In oweredéd system, instead of
looking at the size of th@-vectors, we use the imprecision of the estimated location
itself. The imprecision of a landmark locatiof(}), is computed by combining the im-
precision in the heading and in the distance as folldw§.) is the imprecision in head-
ing, and it is defined by taking the interval correspondintih®70%«-cut of the fuzzy
number representing the heading to the landmark (see F&g8yeThis imprecision is
normalized dividing it by its maximum value afr. Similarly, I;(1) is the imprecision
in distance, and it is defined as the 7@«cut of the fuzzy number representing the
distance. It is normalized by applying the hyperbolic taxtganction, which maps it
into the[0, 1] interval. Finally, the two imprecisions are combined adaog to:

I(l) = X -tanh(B - (1)) + (1 = A) - I;—Erl) (3.3)
where\ weighs the relative importance of the two imprecisions, gmbntrols how
quickly the transformedl; approaches 1. In our experiments, weset 1 and\ = 0.2.
When an object-unit receives a new location estimate, itpudes the imprecision of
this estimate, compares it with the imprecision of the aurfecation estimate, and
keeps the least imprecise location.

3.3 Building the Map

In Section 3.1 we mentioned that when the robot has four lamksnn its viewframe,
it creates a new beta-unit for them. However, with four laadks, there are four can-
didates to be the target of the beta-unit. Moreover, if tHeotdhas more than four
landmarks in the viewframe, there are many possible beits-tmbe created. More
precisely, if there are visible landmarks, there ar(éi) - 4 candidates for being new
beta-units. However, it is not feasible to store them abtlfirbecause of the huge num-
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Figure 3.3: Computation of the imprecision of the headingsta landmark as a fuzzy
number

ber of combinations, and secondly, and more important, usscaome configurations
are better than others. Thus, some selection criterion beugsed.

Before describing the criterion we have used, we explain th@wbstacles are rep-
resented in the map. We differentiate two types of obstapl@ist obstacles antinear
obstaclesPoint obstacles are those the robot can easily avoid by slightljifyiag its
trajectory, since they do not completely block the path.unindoor environment such
obstacles are boxes and bricks. In outdoor environmenysabeld be small rocks,
trees, etc. These obstacles do not affect the global némigats the Pilot can tackle
them alone, so the Navigation system does not take them é¢atmuat and they are not
stored in the map. On the other hatidear obstacles are long obstacles that completely
block the path of the robot. They can also be avoided by that,Rilit the trajectory
has to be drastically modified. In our indoor environment v8e geveral bricks to
form these obstacles. In an outdoor environment theseabsteould be fences, walls,
groups of rocks, etc. Since these obstacles do highly atffiechavigation task, they
have to be represented in the map, so that they are takencicdoiiat when computing
routes to the target. The information about these obstéletsred on the arcs of the
topological map. An arc is labelled with an infinite cost tdicate that there is an obsta-
cle between the two regions connected by the arc. Noticentitlathis representation
we can only represent those obstacles placed along thedmeecting two landmarks.
Although in our experiments we have designed the envirotssErthat they satisfy this
condition, the system would also work if it were not satisfigtbwever, in this latter
case, the Navigation system could not take all the obstaaiesccount, and thus, its
performance would be worse. The arcs’ labels are updatedaviee the Pilot system
informs about the presence of an obstacle between two latkdma

Going back to the selection criterion, given a set of land®mafor which their
location is known, we seek to obtain a set of triangular negiwith the following
constraints:

e Low collinearity the collinearity of a region is computed as

Col(R) =1~ 207 (3.4)
(3)
whereq, (3 and~ are the three angles of the triangular region. The besttguali

is associated to equilater triangles, where= 3 = v = %, and hence their
collinearity is 0. When one of the angles is 0, landmarks wdad maximally
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collinear andCol(R) = 1. The higher the collinearity, the higher the error on
the computation of thg-vector and landmark locations (see [55] for a detailed
explanation). Therefore, the regions with lower collingaare preferred. For
example, in Figure 3.4 the two regions on the right are preteover the two on
the left, since the region ABD is too collinear.

B B
C C
A A
D D

Figure 3.4:Left bad set of regions; region ABD is too collinedRight good set of
regions

e Connectivity the set of regions must be converted into a graph with aeicmn-
ponent, so that there is a path between any two nodes of tpb.graFigure 3.5,
the set of regions on the left is not acceptable, since theréna disconnected
components, whereas in the set on the right all the regiensa@rnected.

B8 c 8 c
D D
A A
E E
G G
F F

Figure 3.5:Left bad set of regions; there are two disconnected compon&ight
good set of regions

e Convex hull coveringthe regions must cover the convex hull of the set of land-
marks, so that the environment is represented completélyne unrepresented
regions. In Figure 3.6, the set on the left is not acceptaitee the region DFG
is not represented.

Figure 3.6:Left bad set of regions; region DFG is missirRjght good set of regions
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e Non overlappingthe regions should not overlap with each other. If this vikee
case, the robot could be in more than one region at the saneewhich could
cause some problems when computing routes to the targetingtance, if the
robot were in the overlapping area of the two regions, it Waubke no sense to
order the robot to move from one region to the other, sinceoitld already be
inside both regions, and the order would not have any efféateover, if one of
the overlapping edges is an obstacle, the path from one &itle adjacent region
to the other side would be blocked, which is obviously a bpdesentation of the
environment, since the robot must be able to move around tidevgpace of a
region. In Figure 3.7, the set of regions on the left is a badsaece part of the
obstacle between landmarks B and D lies inside the region Ab¢his case,
the associated graph would have two nodes, ABD and ACD, wwizhid be
connected, so the robot would think that it can move fromaediBD to region
ADC, but it would find the path blocked because of the obstacle

B B

obstacl
D D

Figure 3.7:Left bad set of regions; the obstacle between landmarks B andrDide
the region ACD Right good set of regions

o Keep obstaclesif an edge of a region is marked as an obstacle, this edge must
be kept in the map, even if it causes the robot to keep higinealt regions. The
obstacle edges are the only ones that cannot be removedtfeomap. If we did
so, the information about the location of obstacles wouldblseand would not
be taken into account when computing routes to the target.

To compute the optimal set of regions for a given set of lanétsjave have de-
veloped an incremental algorithm that treats landmarksbynene to update the map.
However, the algorithm only starts working when the locasiof at least four land-
marks are known, since this is the number of landmarks needegtate a beta-unit.
With these four landmarks, the mapping algorithm computeshiest set of regions
according to the constraints given above. Then, the restsdfle landmarks, if any,
are added one by one to the already built map. When adding damelnark to the
map, two situations can happen: (1) the landmark is insid@r@ady existing region,
or (2) the landmark is outside any region. In the first case,région containing the
new landmark is replaced by three new regions (see Figude B18he second case,
all the possible new regions are created (see Figure 3.9atter the situation of the
landmark, once the new regions have been created, thethlgachecks if the result-
ing map is still optimal. This optimization consists of aymhg each pair of adjacent
regions and checking if their configuration is optimal acitog to the constraints. If it
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finds that some regions could be changed so that a better aoatfin is obtained, it
does so. An example of this step by step updating is showrginr€&i3.10.

B B
A A
Figure 3.8: Adding a new landmark (D) located inside an égstegion (ABC) result-
ing in the substitution of the original region for three neagions (ABD,ACD,BCD)

Figure 3.9: Adding a new landmark (D) located outside angtéxg region resulting in
the addition of two new regions (ACD,BCD)

Once the set of regions is computed, new beta and topolagiial can be created.
For each new region a beta-unit is created for each regi@teani to it, taking the three
landmarks of the first region as the encoding landmarks,tethhdmark of the second
region that is not in the first one as the target. In other wdatseach pair of adjacent
regions, two “twin” beta-units are created. An example ckamify this explanation:
with the regions ABC and ACD shown on the right in Figure 3% Ibeta-units ABC/D
and ACD/B would be created. One topological unit is alsote@&or each new region,
and the graph is updated according to the adjacency of regimitially, the arcs are
labelled with a default cost of 1, and they are changesctavhenever an obstacle is
detected. The topological units corresponding to regibas @re not used any more
are removed from the graph. However, beta-units are neweoved, since they add
robustness to the system, as in Section 3.1.

This triangulation algorithm needs the location of the laadks to be known (either
recognized by the Vision system or computed by the betaficaaft system). However,
not all landmark locations can always be known. The algoritimly takes into account
those landmarks whose locations are known. This ensurethéhfive constraints ex-
plained above are satisfied only for the located landmarkseMéne of the unlocated
landmarks is seen or computed, some constraints might keeaosatisfied. Whenever
any constraint is broken, the map is rebuilt in order to fatigain all the constraints.
This constraint break can also be caused by the fuzzinese dbtations. Because of
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Figure 3.10: Adding a new landmark (E) into a map with two oegi(ABD and BCD):

first, region ABD is substituted for three new regions (ABBERBDE); after that,

optimization for regions BCD and BDE is performed and they substituted for the
new regions BCE and CDE

the imprecision of the locations, the map can suddenly bakimg some of the con-
straints. To avoid having an inconsistent map, every oneevithile the satisfaction of
the constraints is checked, and, if needed, the map is tebuil

3.4 Navigating Through the Environment

The beta-coefficient system described above provides tlamsfer computing the lo-
cation of a target even if it is not visible. This is very udefthe robot is navigating in
an environment with a high density of landmarks and obstatlat occlude the target.
In this case, the robot is able to go towards the target bygasther landmarks. How-
ever, in some cases the obstacles might be blocking thet gia¢it to the target. In this
case, knowing the location of the target is not enough andtamative route to reach
it must be computed using the topological map.

Although a route consists of a sequence of regions the rbloodd navigate through
in order to reach the target, only the first region is takea attcount. The reason for
doing so is that since the environment is never fully knovae, tobot cannot commit
to a given route because it might encounter new landmarksbsticles that would
change the shape of the map, and possibly, the route to thet tdiherefore, hereafter,
instead of talking about routes, we will talk about divegtiargets. A diverting target
can be: (1) amdgebetween two landmarks, which the robot has to cross in oodgo t
from one region to another, or (2sagle landmarko which the robot has to approach.

When the system is asked for a diverting target in order tolremother target,
it first finds out in which region the robot is currently locateising the information
about the landmarks whose location is known. This regiohbeilthe starting node on
the topological map. The shortest path from this node to dgeonodes containing
the target landmark (a landmark can be component of sevaaldgical regions) is
computed. The edge connecting the current region with tixé oree on the shortest
path will be the diverting target. The edge is given as a pdairmdmarks, one that has
to be kept on the left hand side of the robot and another to pede the right hand
side, so the robot knows which way the edge has to be crossedx@mple is shown
in Figure 3.11. In this case, the robot is in region ABC, thgehis G, and the shortest
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BDE\ -+ shortest path
/ - BEF
ABD -~
starting \ . N EFG
- >
K node ~ ABC /X/ BCF\ / .
c : “target
robot . v G CEG =----- hodes
obstacle target
Real environment Topological map

Figure 3.11: Diverting target computation

path to the target would bfABC,ABD,BDE,BEF,EFG. Thus, the diverting target
would be the edge AB.

However, it could happen that there is no such shortest peltle. cases in which
such path does not exist are the following:

e The robotis not in any topological region.

e The cost of the shortest path is infinite. This means that &tie ig blocked by an
obstacle, so it is not a valid path.

e The targetis not found in any topological region.

To solve the first two cases, the map has to be enlarged withaVnegions through
which the robot can navigate. The idea is to let the robot niowan unknown area
outside the map. The virtual regions are built by placingseirtual landmarks around
the existing map, and creating the appropriate regionsgusia same algorithm as
described in the previous section. An example of thesealiregions is depicted in
Figure 3.12. To force the robot to use regions of the orignap, the arcs connecting
virtual regions are labelled with a high cost (though notin), so that they are used
only if it is absolutely necessary. With this enlarged map,ghortest path is computed
again. However, it can be that the edge to be crossed comtaegirtual landmark. In
this case, the edge cannot be given as the diverting tangeg, the virtual landmarks do
not exist on the real environment and cannot be tracked.idrsttuation, the direction
to the middle point of the edge is computed and given as thetitig target. We assume
that there is always some free space around the exploredsartieat the regions created
with the virtual landmarks can be traversed.

In the case the target is not in any topological region, tliere way to compute
which should be the next region to visit, since there is ndidason node. When this
happens, the diverting target is set to any of the visiblenaarks, hoping that on the
way to this diverting target, the map is updated and the tdagewhich a diverting
target has been computed is incorporated into it.
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original map

7777777777777777777777777777777777777777

enlarged map

Figure 3.12: Enlarging the map with virtual regions (dotieds)

3.5 Future Work

Although the extension of Prescott's method, together tithalgorithms to compute
diverting targets, is enough for permitting a robot build ammand navigate through an
unknown environment, we would like to explore other mappimgthods, so that the
combination of the different methods adds robustness tdNthagation system. With
the current mapping method, the robot needs to see at leastldndmarks in order to
be able to use the information stored in the map. We wouldttkdevelop some other
mapping methods to cope with the situations in which the rbbse very little informa-
tion (i.e. less than three landmarks). These methods waikevbn more qualitative
than our fuzzy extension of Prescott's method. We couldetample, look at the field
of Spatial Cognition, which works with spatial relationsbisuch as “landmark X is at
the left hand side of the line connecting landmark Y and lazudz .



Chapter 4

The Robot Architecture

Navigation, as the general task of leading a robot to a talggination, is naturally in-
termingled with other low-level tasks such as obstacledamde, and high-level tasks
such as landmark identification. We can see each of the fasksan engineering point
of view, as a system, that is, systems require and offerses\wine another. These sys-
tems need t@ooperate since they need one another in order to achieve the overall
task of reaching the target. However, they ateonpetefor controlling the available
actuators of the robot. To exemplify this cooperation anthjgetition, imagine a robot
controlled by three systems, the Pilot system, the Visicsiesy and the Navigation
system. Actually, these three systems compose the arthitege have used to control
our robot, which will be described in detail in the rest ofstichapter. Regarding the
cooperation, the Navigation system needs the Vision systeracognize the known
landmarks in a particular area of the environment or to find ares, and it also needs
the Pilot system to move the robot towards the target lopatiBegarding the com-
petition, the Navigation system may need the robot to mowatds the target, while
the Pilot system may need to change the robot’s trajectosafely avoid an obstacle.
Moreover, the Pilot may need the camera to check whethes themy obstacle ahead
and, at the same time, the Navigation system may need to lelid to localize the
robot by recognizing known landmarks. Thus, some cooriinaechanism is needed
in order to handle this interaction among the differenteyst. The mechanism has to
let the systems use the available resources in such a waththabmbination of these
interactions results in the robot reaching its destination

We propose a general architecture for managing this cotiperand competition.
We differentiate two types of systemexecutive systenaddeliberative systemdx-
ecutive systemisave access to the sensors and actuators of the robot. Tystems
offer services for using the actuators to the rest of theesystand also provide infor-
mation gathered from the sensors. On the other hagliherative systemsake higher-
level decisions and require the services offered by thegixecsystems in order to
carry out the task assigned to the robot. Despite this distin, the architecture is not
hierarchical, and the coordination is made at a single lewgllving all the systems.
The services offered by the executive systems are not omlijadne to the delibera-
tive systems; they are also available to the executive systhemselves. Actually, an
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Deliberative
Systems

Systems

Sensors

Actuators / Executive

Figure 4.1: General bidding coordination architecture

executive system must compete with the rest of the systemisfev the services it is
offering. The systems (no matter their type) can exchanfpermation between them
(be it sensory information or any other information they Idduave — e.g. map of the
environment). The architecture is depicted in Figure 4.1.

The coordination is based on a simple mechanibidding Deliberative systems
always bid for the services offered by executive systemms;esthis is the only way
to have their decisions executed. Executive systems tHgtadfer services do not
bid. However, those executive systems that require sex¥ioen any executive system
(including themselves) must also bid for them. The systethadrording to the internal
expected utility associated to the provisioning of the ey, A coordinator receives
these bids and decides which service each of the execustersg has to engage in.

Although we use the term “bidding”, there is no economic aation as in an
auction. That is, systems do not have any amount of moneydndspn the bids,
nor there is any reward or good given to the winning system. ugéeit as a way to
represent the urgency of a system for having a service edgafjee bids are in the
range|0, 1], with high bids meaning that the system really thinks thatg@rvice is the
most appropriate to be engaged at that moment, and with Idgvrheaning that it has
no urgency in having the service engaged.

This bidding mechanism is a competitive coordination me@ra, since the action
executed by each system is the consequence of a request of threesystems, not a
combination of several requests for actions made by diffesgstems, as it would be in
a cooperative mechanism.
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Figure 4.2: Specific robot architecture
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This modular view forms an extensible architecture. To mdtthis architecture
with a new capability we would just have to plug in one or moea/rsystems, even-
tually adding new sensors or actuators, and eventuallygihgrihe bidding functions
of the existing systems. Not only that, it also permits useursively have a modular
view of each one of the systems, as will be soon seen in thgmlegiour Navigation
system. Moreover, this architecture is not thought onlyrfavigation purposes since
its generality can be used for any task that could be assignadobotic system.

For our specific robot navigation problem, we have instéadithe general architec-
ture described above (see Figure 4.2). It has two execuytsterss, théilot andVision
systems, and one deliberative system,Na@igationsystem. Each system has the fol-
lowing responsibilities. The Pilot is responsible for albtions of the robot, avoiding
obstacles if necessary. The Vision system is responsiblaémtifying and tracking
landmarks (including the target landmark). Finally, thevigation system is respon-
sible for taking higher-level decisions in order to move tbkot to a specified target.
The robot has two actuators: tivieels’ motorsused by the Pilot system, and tbem-
era motor used by the Vision system. The available sensors are thelveheoders
and bumpers, which providedometricandbumpinginformation to the Pilot, and the
imagesobtained by the camera, used by the Vision system to idelatifgmarks. The
Pilot system offers the service of moving the robot in a gigégaction, and the Vision
system offers the service of moving the camera and identftfie landmarks found
within a given area. The bidding systems are the Pilot antiitheégation system, while
the Vision system does not bid for any service.

In the next sections we describe each of the three systerhs obbot architecture,
focusing on the Navigation system, the main subject of thesis.
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Figure 4.3: Growing obstacles. Points and solid lines ageothstacles; dotted lines
show grown obstacles

4.1 Pilot System

The Pilot is able to safely command the motors that contettibot to move in a given
direction. It bids for motion control to avoid obstaclesdaiso for the control of the
camera to look forward in order to detect possible obstadMdthiough this system is
not the focus of this thesis, we have had to develop a sim/i¢ iRiorder to test our
Navigation system.

For obstacle avoidance, it uses the information coming fiteerivision system and
the information stored in the Visual Memory (described ie ttext section), applying
an obstacle growing technique. The obstacles are growrea gize to define forbidden
areas occupied by the obstacles. The obstacles are refg@ssrpoints (for landmarks
and simple obstacles) and lines (for linear obstacles tandmarks), which, after
growing them, become circles and rounded rectangles, ctégply. In our case, the
growing size is the diameter of the robot. An example of hovdhstacles are grown
is shown in Figure 4.3. The Pilot uses a simple obstacle avaiel algorithm. It checks
whether the robot is about to enter any of the forbidden aasssciated to the obstacles.
If the robot is in such a situation, the Pilot bids to modife thajectory in order to avoid
the obstacle. The modified trajectory is tangential to tlevgrobstacle to be avoided.
Since obstacle avoidance is of maximal importance, the lmdilsl be higher than the
other systems. However, it should not be set to the highesilple value, 1, so that there
is the possibility of adding a new system that overrides titat Re.g. a teleoperation
system). If the robot is in a safe area, the Pilot does nottuad.a

Regarding the bids for camera control, it is based on a fandtiat increases the
bid depending on the distance traveled since the last timeadthot looked forward:

(4.1)

dist_since_last_look "\ “*P
bid(ZOOk(ahead))_( 15t_since_last_loo )

max_dist_not_looking

wheremazx_dist_not_looking is the maximum distance allowed to travel without look-
ing ahead, andxp defines the increasing shape of the bidding function.
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The Pilot also informs the Navigation system and the Visuahiry about any ob-
stacle it detects. Whenever it detects a single obstaelet(bumps into it), it stores the
obstacle’s location in the Visual Memory, and checks wheithean be part of a larger
linear obstacle. Such linear obstacles are detected wlesiea sf single obstacles have
been detected along the line connecting two landmarks andigtance between these
obstacles is below a given threshold. If this is the caseRilo¢ informs the Navigation
system about the presence of a blocking obstacle betweelahdmarks.

4.2 Vision System

The Vision system is able to identify new landmarks in theovidield of the camera
and is also able to recognize previously identified landmarfkis system does not bid
for any of the available services. Again, although thiseysis not on the focus of the
thesis, we have had to develop a simple Vision system foyiceyout the experiments.
A detailed description of the vision system developed togaize indoor landmarks is
given in Chapter 6.

The Vision system is simple but robust enough to correctpiidy the landmarks.
Thus, there is no uncertainty about the presence of a givetmark. However, there
is some imprecision about its location, since the Visiorieysonly gives approximate
distance and angular information. To deal with this imps®ei we use the fuzzy tech-
niques described in Section 3.2.

The goal of this thesis is to develop a vision-based navagatystem that does not
use any specialized localization device (e.g. GPS) nor adideninformation. How-
ever, we found that it was very restricting for the Navigatgystem to use only the
visual information available after processing each viewfe. Firstly, because it is very
difficult to have more than three landmarks on the view field¢es it is very narrow,
and the beta-coefficient system needs to have at least feibteviandmarks in order
to create a nevB-unit. But even if four landmarks were in the view field, thegwid
probably be highly collinear, which is not a good configwatfor creatings-units.
Secondly, it was a very unrealistic behavior to completelgét the landmarks that
were not in the view field, even though they had been recertip.sWe thought that
adding the ability of remembering what has been previousgnsvould improve the
behavior of the robot. Moreover, as it has already been mead, we want the robot to
imitate the navigational behavior of humans and other alsinaad we certainly have
the ability of remembering what has been recently seen. At $don memory, called
Visual Memoryimplements this ability, and it is part of the Vision system

4.2.1 Visual Memory

The Visual Memory stores landmarks and detected obstagltstheir location con-
stantly updated using odometric information. To deal whi imprecision in odometry
we use, again, a fuzzy approach. The odometric informatiomiieg from the robot is
indeed fuzzy information about its motion, used to recorapls location of the objects
stored in the Visual Memory. The imprecision of this motisrhigher when the robot
turns, and lower if it moves straight.
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As the robot moves, the imprecision on these locations grovess the landmarks
are recognized again by the Vision system (which obvioustjuces their location’s
imprecision). When the imprecision about the location cdiredimark reaches a given
upper threshold, the landmark is removed from the Visual ligmThe idea behind
this being that the Visual Memory only remembers those laaritswhose location is
precise enough.

The information stored in the Visual Memory is treated byNawigation system in
the same way as the information coming from the Vision systéhe only difference
is that the Visual Memory will be more imprecise than the &fissystem. The Pilot
system also uses this information to avoid colliding witinegnbered obstacles and
landmarks.

4.3 Navigation System

This thesis has been mainly motivated by this system. We tised the modular view
inspiring the overall robot architecture in the design af tlavigation system. The
overall activity of leading the robot to the target destioiais decomposed into a set of
simple tasks. Working with simple tasks instead of usingnglsilarge module carrying
out the whole navigation process is the basiBeftiavior-based robotic§ he idea is to
divide the overall behavior of the robot into simpler beloasj each one with its own
goal, acting in parallel. These simpler tasks are much essieuild and debug than
a larger module, since we only have to focus on separatelyngpsmaller problems.
Moreover, it permits us to incrementally increase the caxip} of the robotic system,
that is, adding new capabilities, by simply adding new béray without having to
modify already existing code. A detailed description of Bebr-based architectures
was given in Chapter 2.

The Navigation system is defined to be a multiagent systenrevbach agent is
competent in one of these tasks (see Figure 4.4). Thesesapest cooperate, since an
isolated agent is not capable of moving the robot to the talys they also compete,
because different agents may want to perform conflictingpast Again, we use the
bidding mechanism to coordinate the agents. Each agentdyidsrvices provided by
other robot systems (Pilot and Vision systems), and an iadditagent, the communi-
cation agent, gathers the different bids and determineshndrie to select at any given
time. This agent is also responsible of all the communicabetween the Navigation
system and the other systems of the robot. The coordinagbmden the agents is
also made through a common representation of the map. Agensslt the map and
the Pilot and Vision systems provide information about theirenment —position of
landmarks, obstacles — which is used to update it.

The local decisions of the agents take the form of bids forises and are combined
into a group decision: which set of compatible services tpire, and hence, gives us
a handle on the difficult combinatorial problem of decidwilgat to do nextin the next
section we describe in detail the society of agents that fedle navigation process.
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Figure 4.4: Multiagent view of the navigation system

4.4 The Group of Bidding Agents

In the model reported in this thesis we present a group oftagkat take care of dif-
ferent tasks that, when coordinated through the biddingvagism, provide the overall
desired behavior of leading the robot to a target landmalnle. tsks are:

¢ to keep the information on the mapnsistent and up-to-date,

o tokeep the target locatedith minimum imprecision andhove towards jt
o tokeep the rislof losing the target low,

e to recoverfrom blocked situations.

Four agents have been designed to fulfill each one of theds (/dap Manager,
Target Tracker, Risk Managemd Rescuerrespectively), plus aommunicatoagent
that is the responsible for communicating the Navigatiostesy with the other robot
systems (Pilot and Vision).

The actions that agents can bid for are:

e Move(direction), instructs the Pilot system to move the robot in a particular
direction,

e Stop, instructs the Pilot system to stop the robot,

e Look(angle), instructs the Vision system to identify all the possibledemarks
that can be found in the areaatgle radians from the current body orientation.

Finally, agents may ask one another with respect to therdifteknowledge they
have. For instance, any agent in the society may request thherivlap Managerto
compute the location of the target or of a diverting targegeAts may also broadcast
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messages to the rest of the agents in the society. For exathplRescuerinforms
about the target to be reached, andTheyet Trackelinforms about the imprecision on
the target'’s location.

In the next sections we describe each of the agents, andcthdérschemas can be
found in Section 4.4.6.

4.4.1 Map Manager

This agent is responsible for maintaining the informatibthe explored environment
in the topological map. The activity of this agent considtsrocessing the information
associated with the incoming viewframes — expanding thelgrareatings-vectors,
and asynchronously changing arcs’ cost labels when infdfoyeother robot systems.
This agent uses the fuzzy beta-coefficient system deschib€thapter 3 to build the
map and answer questions about landmark positions.

The Map Managertis also responsible for computing the quality of the set oélla
marks in the current viewframe, when required by Rigk Manager This quality is a
function of the collinearity of the landmarks. Having a Seif landmarks, their quality
is computed asg;, = max{1 — Col(5")|S’ C S,|S’| = 3} whereCol(S’) is computed
using the equation 3.4.

This agent also computes diverting targets when asked firdfyescuerTo do so,
it uses the topological map, where all path costs are redptdeompute which should
be the next region to visit in order to reach the target. A dpson of the computation
of diverting targets was already given in Chapter 3.

4.4.2 Target Tracker

The goal of this agent is to keep the target located at allgiar move towards it.
Ideally, the target should be always within the view fieldted tamera. If it is not, the
imprecision associated to its location is computed by tgen& using the information
of the map. Actions of other systems are required to keepntipedcision as low as
possible.

We model the imprecision as a function on the size of the aagig:y, from the
robot’s current position, where the targetis thought tadoated. When the robot is sure
of the position of the target (becauseitis in the curreninfield of the camera) we have
a crisp direction and, hence, = 0 and the imprecision is 0. If the target’s location is
obtained from the Visual Memory or computed by Map Managerey is computed as
the size of the interval corresponding to the 7@%ut of the fuzzy number representing
the heading to the landmark. When the robot is completely &%/ direction can be
correctey = 27, and the imprecision levelis 1. Thus, the imprecision l&webmputed

as.
I, = (;—i)ﬁ (4.2)

whereg gives a particular increasing shape to the imprecisiontfonc If 3 is much
smaller than 1, the imprecision increases quickly as theeégipion in angle grows. For
5 values well over 1, imprecision will grow very slowly untiié error angle gets very
big.
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The actions required by this agent are to move towards tgettand to look towards
the place where the target is assumed to be. The bids for igtivards the target start
at a valuekr; (< 1) and decrease polynomially to 0, depending on a parameter
The rationale for this is that when the imprecision about#nget location is low, this
agent is confident about the target’s position and therdjwie high to move towards
it. As the imprecision increases, this confidence decreamséso does the bid. Bids
for looking at the target increase from 0 to a maximum:ef(< 1) and then decrease
again to 0. The rationale being that when the imprecisioovsthere is no urgency
in looking to the target, since its location is known with igrecision. This urgency
starts to increase as the imprecision increases. When giredision reaches a level in
which the agent has no confidence on the target locatiorarisaiecreasing the bid so
as to give the opportunity to other agents to win the bid. Tdweations involved are :

bid(move()) = k1 (1 — I}) 4.3)
bid(look(0)) = ko sin(ml,) (4.4)

wherea controls how rapidly the moving bids decrease, amslthe crisp angle where
the target is thought to be. The bidding functions are shawkigure 4.5.

This agent is constantly asking tihdap Managerfor the location of the target.
When it receives an answer (obtainid@ndey), it computes the imprecision and in-
forms the rest of the agents about it. If tharget Trackers not informed about the
target's location within a given time limit, it sets the inggision level to 1.

The behavior described above is applied when the goal isthra single landmark.
However, as mentioned in Section 3.4, the goal can also he$s the edge connecting
two landmarks (if theRescuerhas set it as the diverting target). In this latter case,
this agent is constantly asking for the location of the twadiaarks (thus, obtaining
0 andey for each landmark) and computing their associated impatisThe highest
imprecision is used a§, for computing the bidding values for moving and looking
actions. Itis also used to decide where the camera shoulglitdooks in the direction
of the landmark with highest imprecision. Regarding theioroaction, the agent bids
to move in the direction of the angle between the two landsark

TheTarget Trackeis also the responsible for deciding whether the robat target
If the target is a single landmark, it considers that the ttlas reached the target if the
upper bound of the-cut of level¢ of the fuzzy number modeling the distance to the
target is less than times the body size of the robot. The parameteendd can be
tuned to modify the accuracy of the agent. In the case of tlgetdeing an edge
(between landmarksg,; and L,.), it checks whether the robot is on the desired side of
line connecting the two landmarks. If the robot is on thedéthe directed line through
L; andL,, itis on the correct side, that is, the edge has been croEsed.on the right
of the line, it means that the robot has not still crossed tlgee

4.4.3 Risk Manager

The goal of this agent is to keep the risk of losing the targdbw as possible. While
the Target Trackes goal is to locate the target by maintaining it in the carsevaew
field, this agent tries to keep a reasonable amount of knomdntarks, as non collinear
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Bid have
Bid Look

Imprecision 1 Imprecision 1

Figure 4.5:Target Trackes bidding functions

as possible, in the surroundings of the robot. The ratioisaie have as many visible
landmarks as possible so that tlap Manageris able to compute the location of the
target using the beta-coefficient system when it is not lgsilor in the Visual Memory.
The fewer surrounding landmarks whose locations are knolnnmore risky is the
current situation and the higher the probability of losihg target and getting lost.
Also, the more collinear the landmarks, the higher the érrtre location of the target,
and thus, the higher the imprecision on its location.

We model the risk as a function that combines: 1) the numb&mafmarks ahead
(elements in set), 2) the number of landmarks around (elements inlgetand 3) their
“collinearity quality” (¢4 andgg). As we have described, these qualities are computed
by the Map Manager A minimum risk of O is assessed when there are at least six
visible landmarks in the direction of the movement and madiyncollinear. Although
the locations of only three landmarks are needed in ordest¢otiie beta-coefficient
system, we want to have additional landmarks around thet whose locations are
known, so that there are more chances to compute the talgegson. A maximum
risk of 1 is assessed when there are no landmarks ahead nmdaro

re i (1 () (1)) s

The valuesy4 and~p determine the relative importance of the situation of laadm
(ahead or around).

Given that the robot cannot decrease the collinearity ofvthible landmarks, the
only way to decrease the risk level is by increasing the nuroblandmarks ahead and
around. Having more landmarks, besides increasii@r | B|, also helps by possibly
increasing the qualitiegy andgp.

We encourage having landmarks ahead by bidding

bid (look (mndom ([—%, +ﬂ ))) — v, -R (4.6)

for the action of looking at a random direction in front of tiedot and trying to identify
the landmarks in that area,|ifi| < 6, and

bid (look (Tandom ({—i—%, +%}>)) =, - R? (4.7)
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Figure 4.6:Risk Manages look bidding functions (look ahead -solid line- and look
behind -dashed line-)

(which is obviously smaller thaf. - R) for the action of looking at a random direction
around the robot and trying to identify landmarks,if| < 6, wherev, is a parameter
to control the maximum value of the bidding function. Thedirdy functions are shown
in Figure 4.6.

The behavior of this agent also helps thap Managerbuild the map when the
robot is in an unexplored area. Since it bids for looking Boxdmarks when there are
not many visible, its bids will be high, and thus new landnsdikthere are landmarks,
obviously) will be identified and the map will be updated.

4.4.4 Rescuer

The goal of theRescuemlgent is to rescue the robot from problematic situationgséh
situations may happen due to two reasons. First, the Pitdeeal the robot to a position
with a long obstacle ahead that cannot be easily avoidedon@ethe imprecision of
the location of the target may be too high (over a threskig)d

If the robot gets blocked, this agent asks t@p Managerto compute a diverting
target, and informs the rest of the agents about the newttalfgiie diverting target
computed by theMap Manageris just a direction (this means that the robot should
cross an edge containing a virtual landmark, as explain&gation 3.4), th&kescuer
bids for turning the robot in the given direction. In ordethiave the robot moving in
this direction for a short period of time, it sets the targebé a landmark that does not
exist. However, the rest of the agents do not know that it d¢exist, therefore, they
behave as if it was an existing landmark. Thus, Mep Managerwill not be able to
compute its location when asked by tharget Tracker This latter agent, after asking
several times for the location of the target and not recgiany answer, will set the
imprecision level to 1, which will cause thRescueto get active again. The rationale
of this “trick” is that during the time the robot has been mmayiit will have probably
(and hopefully) recognized more landmarks so that\tag Managercan compute a
better diverting target. Finally, if th®lap Managerfails to compute a diverting target,
the Rescuerbids for making the robot turn around (a random angle4n%), hoping
again that with the new direction it detects landmarks tledpp komputing the location
of the target or a diverting target. In case the current tiivgtarget cannot be reached,
this agent will ask for a new diverting target for the initiatget.

On the other hand, if the imprecision of the target’s logai®too high, the agent
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bids for stopping the motion and starting a visual scan atdlie robot, trying to detect
as many landmarks as possible. The scan will stop when thegision of the location
of the target has decreased to an acceptable level, eitbeubeit has been recognized
by the Vision system or because its location has been combyt¢heMap Manager
using other landmarks’ locations. Since in this situatiorobstacle has been detected,
the Rescuemssumes that the path to the target is not blocked, so théneotvbe any
target change. However, if at the end of the scanning theanigion level is still too
high, it will ask for a diverting target.

This agent also performs a visual scan at the very beginnihgn the initial target
is given, in order to detect some landmarks and start byjlthe map before the robot
begins moving to the target. Only after the scan is compjeiesiagent will inform the
other agents what is the target to be reached.

The bidding values for the actions required by this agentcarestant (parameter
w) and should be higher than those of the other agents (nax(x1, k2, 7.)), since it
is absolutely necessary to execute the actions in ordenttineee the navigation to the
target.

445 Communicator

The multiagent system implementing the navigation algparicommunicates with the
remaining robot systems through tBemmunicatoragent. This agent receives the in-
formation about the visible landmarks and obstacles deteaethich is passed to the
appropriate agentdap ManagerandRescue). This agent also receives bids for ac-
tions from the other agents and is responsible for detemginihich one to select and
send as the Navigation system’s bid. The actions requirgdbaaconflicting or not.
For instance, an agent requiring the camera to look behiddhanther requiring it to
identify a new landmark on the right, bid for conflicting acts, that is, actions that
cannot be fulfilled at the same time. On the contrary, an agentiring the robot to
move forward, and an agent requiring the camera to look ldetmight be perfectly
non-conflicting. It can be easily seen that the conflicts oecwen the actions require
the use of the same resource (robot motion or camera canfrbl)s, the request for
actions will be separately treated depending on the resaeguired:Move andStop
actions on one side, afichok actions on the other. THBgommunicatolagent receives
the bids for the two different types of actions, and seldwtsrmoving action with the
highest bid and the looking action with the highest bid. Tésuiting two action-bid
pairs are sent to the Pilot and Vision system, respectividlys agent waits some time
before processing the received bids, so that all the agaméstime to send their bids. If,
during this time window, an agent sends more than one bich®same type of action,
it replaces the previously sent bid. When the time windowiresp theCommunicator
processes all the received bids and determines the winners.

As already mentioned, the bidding mechanism implementsgetitive coordina-
tion mechanism. This mechanism has problems with selfishtag&he problem arises
when there is one (or more) agents that always bids very fagha it wins all the
bids, thus, not letting the other agents having their astmtecuted. In this case, there
is no coordination at all between the agents, and it is veficdit, if not impossible,
to achieve the goal of reaching the target destination. fsiance, if we set th&arget
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Trackerto bid always higher than the Pilot system, the robot wouldyeaable to avoid
any obstacle, and would get stuck if any was encounteredvdid auch problem, the
agents and systems should bid rationally, that is, biddigh bnly when the action
is found to be the most appropriate for the current situatéon bidding low when it
is not clear that the action will help, giving the opportyrtid other agents to win the
bid. Thus, special attention must be payed when designmgglents and their bidding
functions.

To solve this problem we could use a more economic view of ttidibbg mecha-
nism, assigning a limited credit to each agent, and allowtiegn to bid only if they had
enough credit. With this new system there should also habe t® way to reward the
agents. If not, they would run out of credit after some timd aa agent would be able
to bid. However, we face the credit assignment problem,ishakeciding when to give
a reward and which agent or set of agents deserve to receiV@ig problem is very
common in multiagent learning systems, especially in Reagédment Learning, and
there is not a general solution for it. Each system uses amaddlution for the task
being learned. Other possible solutions would be to havecharésm to evaluate the
bidding of each agent, assigning them succeeding or fdiidg, or some measure of
trust, in order to take or not take into account their opisiddowever, we would have
again the credit assignment problem. Thus, in the multiaggstem reported in this
thesis we have designed the agents so that they bid ratiptesl/ing the exploration
of these evaluation mechanisms as a line of future research.

4.4.6 Agents code schemas

In this section we present the code schemas for the adéaps Managey Target
Tracker, Risk ManagemandRescuerand also for the Pilot system. The schemas have
some parameters, such as the target that has to be reastiritist heading, and some
other particular parameters for each agent (bidding fongiarameters, thresholds...).
These particular parameters define the behavior of the sigamd thereby, the overall
behavior of the robot. Varying the values of the parameteesmay obtain better or
worst navigation performances, and we may also adjust theetrwativeness or riski-
ness of the robot. Thus, appropriately tuning these paemnist very important. In the
next chapter we explore the use of learning techniques iardoddo such parameter
tuning.

When describing the algorithm schemas, the speech actappi#ar as expressions
in a KQML-style language [26]. Agents refer to themselvesthyy special symbol
“self”. When referring to all the agents of the society, thisg the symbol “all”.

Agents have a hybrid architecture. We will use the followdogstruct to model the
reactive component of agents:

On conditiondo action

Whenever the condition holds (typically an illocution arriving to the
agent), the action is executed immediately. The illocutions used by the
agents are the following: ask(asking_agent,asked_agent,question) and
inform(informing-agent,informed_agent,in formation).
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SystemPilot(v,maxdist.notlooking,exp) =

Begin deliberative
Repeat
inform(self, Vision System,odometriaformation)
(avoidf) := avoid obstaclesof_VisualMemory()
If avoidthen inform(self,Coord{ (Move(8),v)})

inform (self,Coord { (Look(o), ( dist_since_last_look )Ewp) })

mazx_dist_not_looking
Until

End deliberative

Begin reactive
On bumpersactivedo
backupsafedistance()
(obstacledetected];, L-) := updateVisuaLMemory()
If obstacledetectedhen inform(self,NavigationSystem,obstaclg( L-))

On inform(VisionSystem,self,curreniew(CV) do
(avoidp) := avoid.obstacles(CV)
If avoidthen inform(self,Coord{ (Move(8),v)})
End reactive

End system
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SyStemNaVigationSyStern:(a 67 K1, k2, (ba 61 YA VB> Vrs Tun LU) =

AgentMM() =

Begin reactive
On inform(CO,self,currenview(CV)) do
updatemapgCV)

On inform(CO,self,obstacld(;, L)) do
updateobstacléL, Lo)

On ask(X,self,position-landmark2j) do
(0, €y, d, eq) := computelandmarkposition(L)
inform(self,X,position-landmarl(, 6, ¢y, d, €4))

On ask(X,self,position-landmarks?(, Ls)) do
(01, €9,,d1, €q,) := computelandmarkposition(;)
(02, €0, ,d2, €4, ) := computelandmarkposition(,)
inform(self,X,position-landmarké(, 61, €g,, d1, €a, , L2, 02, €g,, d2, €4,))

On ask(X,self,landmarks-quality®p
(|Al,|B|, qa,q5) := computelandmarksquality()
inform(self,X,landmarks-qualityd|, | B|, g4, ¢B))

On ask(X,self,diverting-target?(Lj)o

(T, Ly, L, 0, type) := computediverting target(L)

If type=landmarkhen
inform(self,X,diverting-target(T))

else iftype=edgehen
inform(self,X,diverting-edgdy;, L))

else iftype=directiorthen
inform(self,X,diverting-directiort))

else iftype=failedthen
inform(self,X,diverting-target-failed)

End reactive
End agent
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AgentTT(«, 8, k1, k2, @,0) =
Begin deliberative
targetset := false
initial _targetreached := false
Repeat
If targetsetthen
If targettype = landmarkhen
ask(self,MM,position-landmark?(target))
else
ask(self,MM,position-landmarksBE({€;,F L,))
endif
endif
Until initial targetreached
End deliberative

Begin reactive
On inform(RE,self,initial-target(T)do
targetset ;= true
targettype := landmark
initial target :=T
target ;= initialtarget

On inform(RE,self ,target(TYlo
targettype := landmark
target:=T

On inform(RE,self target(;,L,.)) do
targettype ;= edge
(FL,,EL,) =(L;, L)

On inform(MM,self,position-landmark(targét,eq,disteg;5:)) do
Io = (E_z)ﬁ
inform(éelf,all,imprecision(a))
inform(self,CO {(Move(6), 1 (1 — (Li/o‘))), (Look(0), ko sin (71,))})
[min,max] :={dist}4
attarget := max< §*bodyshape
If attargetthen inform(self,all,at-target(target))
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On inform(MM,self,position-landmark#{L;, 6;, eg,, d;, €4, ,
ELT, 97«, €9, dr, Edr)) do

1= (5)°
17 = ()7
I, = maxz (I}, IT)

anglemove :=(6; + 0,.)/2

If I > IT then anglelook := 6,

elseanglelook : =0,

inform(self,all,imprecision{,))

inform(self,CO { (Move(angle_move), k1 (1 — (Ia/*)))
(Look(angle_look), ko sin (w1,))})

edgecrossed := checkdgecrossed|, 6..)

If edgecrossedhen inform(self,all,edge-crosseB(;,EL,))

On inform(self,self,at-target(initialarget))do
initial _targetreached :=true
End reactive
End agent
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Agent RM(7A7 VB, 77‘) =

Begin deliberative
targetset := false
initial _targetreached := false
Repeat
If targetsetthen
ask(self,MM,landmarks-quality?)
endif
Until initial targetreached
End deliberative

Begin reactive
On inform(RE,self,initial-target(T)jo
targetset := true
initial _target :=T

On inform(MM,self,landmarks-quality@|,| B|,g4.g5)) do
R:=1—min (1, (]A(%)w +4gB (%)VB)
If |A| < 6then
inform(self,CO{(Look(random_angle ([-%,+%]) ,%R)})
else if|B| < 6 then
inform(self, CO{(Look(random_angle ([+Z,+Z%]) v, R?)})
endif

On inform(TT,self,at-target(initiatarget))do
initial _targetreached :=true

End reactive

End agent
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AgentRE(l,,w) =
Begin reactive
On inform(CO,self,new-target(THo
initial _scan()
inform(self,all,initial-target(T))

On inform(CO,self,Blockedylo
ask(self,MM,diverting-target?(initighrget))

On (inform(TT, self, imprecision{,)) and (1, > 1,)) do
angle := compute_scan_angle()
If scan_finished(angle) then
ask(self, MM, diverting-target?(initidhrget))
else
inform(self,CO{(Stop, w), (Look(angle),w)})

On inform(TT,self,at-target(T)r inform(TT,self,edge-crossef(, L,.)) do
target ;= initialtarget
inform(self, all, target(target))

On inform(MM,self,diverting-target(T)dlo
inform(self, all, target(T))
target:=T

On inform(MM,self,diverting-edgel;, L,.)) do
inform(self, all, targetl;, L..))

On inform(MM,self,diverting-directior{)) do
inform(self, all, target(fakearget))
inform(self,CO{(Move(),w)})

End reactive

End agent

End system



56 Chapter 4. The Robot Architecture

45 Future Work

We should explore the feasibility of using an economic viéthe bidding mechanism,
as mentioned in Section 4.4.5, and analyze how to solve ffieutti problem of credit
assignment.

The design of each one of the agents of the Navigation sysheuld be revised
according to the results obtained through the experimientathis revision could range
from simple tuning of some of the agents’ behavior to theusidn of new agents. Some
of this changes will be discussed in Chapter 6, devoted t@xtperimentation with a
real robot.



Chapter 5

Simulation Results

In this chapter we describe the experiments we have carrethoough simulation.
We have used simulation for three different tasks: firstycheck that the multiagent
Navigation system we have designed works properly; segongl have applied Rein-
forcement Learning techniques in order to learn a policyhenuse of the camera; and
finally, we have used a Genetic Algorithm approach to tungtrameters of the agents
in the Navigation system.

For these differenttasks, we have used two simulators. &veestusing the Webots
simulator. On this simulator we implemented the Navigatgstem and we also used
it for the Reinforcement Learning task. However, we founthegroblems with the
Webots simulator, mainly related to batch execution, wingde the experimentation
very slow. Although we were able to get results when used &nfercement Learning,
we decided to develop our own simulator, to do extensive ksitimn with no problems.
We used this new simulator to run again the multiagent Ndivigasystem, and for the
Genetic Algorithm approach to tune the parameters.

5.1 The Simulated System

It has to be pointed out that the overall system (that is, theigdtion, Pilot and Vision
systems) used in the simulations is not exactly the sameeasrth described in the
previous chapter (also described in [13]). Since the beg@of this research, four
years ago, the Navigation, Pilot and Vision systems hava beelving (agents of the
Navigation system have been added, modified and removedharmépabilities of the
Pilot and Vision systems have also changed) until we havehezhwhat, by now, is
the definitive version, which has just been described. TVadu¢ion has been guided
by the experimentation, both on simulation and with the relbt. The simulation
experiments described in this chapter show the performaheeprevious version of
our system [59, 12].
One of the main differences between the simulated systenttendefinitive one

is that in the simulated one the Vision system did not prowidermation about the

1From Cyberbotics, http://www.cyberbotics.com
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distance to the visible landmarks; it provided the Navigasystem only with angular
information. Moreover, the simulated Vision system hadaruge limitation, that is, it
could identify any landmark, no matter how far it was, as laggt was in the view field
of the camera. Obviously, this does not hold on the real Yiisistem.

Due to this lack of distance information, tidap Manageragent had to compute
the distance to the landmarks using the change in angle bflaadmark on successive
viewframes. Since the change in angle can vary very litttetfe landmark the robot is
going towards (i.e. the target), it was very difficult to aately compute the distance
to the target. In the simulated system, there was an addltagent, thdistance Esti-
mator, that helped on computing the distance to the target. Tleeofdhis agent was to
move the robot orthogonally with respect to the line coningdhe robot and the target
landmark while pointing the camera in the direction of thegésd, so that the change in
angle was maximal, permitting thdap Managerto compute the distance accurately.
The Distance Estimatoagent computed the imprecision associated to the distance t
the target. This imprecision is computedlas= 1 — 1/e", wherex is a parameter to
control the shape of the function, aadis the error in distance, and, similarly to what
the Target Trackeroes, it is computed as the size of the interval correspgrtdithe
70% «-cut of the fuzzy number representing the distance to trgetarTheDistance
Estimatoragent bids were a function on this imprecision. If the imsien was high,
it bid high to move the robot orthogonally, so the distancéhtotarget could be com-
puted with a lower error.. On the other hand, if the imprexgisivas low, so were the
bids. This agent played a very important role at the begmpirthe navigation, since
the distance to the target was unknown, and therefore, theeicision maximal. Thus,
the Distance Estimatowould bid very high in order to let thielap Managemet a first
estimate of the distance. This agent was also responsibiefiding if the robot had
reached the target, since it had the distance informationth® definitive system, this
is responsibility of th&arget Tracker

Another important difference is that the simulated systé@maot use Visual Mem-
ory. That is, the Navigation system was only informed abbatlandmarks currently
visible within the view field of the camera. This restrictiorade it difficult to create
“good” beta-units, since all the visible landmarks werehivita narrow view field, and
thus, very collinear.

The Rescuemlgent also had some differences: apart from getting acthenwhe
robot was blocked and when the imprecision in the targetation was too high, it also
got active when the risk (computed and broadcasted bRible Manageywas over a
threshold. Furthermore, its behavior was to always vigusthn the surroundings of
the robot and, after that, ask for a diverting target, noiigiknto account the reason of
its activation.

There were also differences on the Pilot system. Anothénpaon the project we
are involved in was responsible of building the Pilot syst@tmerefore, initially, we did
not focus on this system, and did not worry about how it wasgiesl. As long as it
was able to avoid the obstacles encountered in its way, $igdelid not affect at all our
coordination mechanism nor the design of the agents. Foréhson, we started using a
built-in pilot system of the Webots simulator that used dated sonar sensors in order
to avoid obstacles. In the real robot, however, such someoss are not available, and,
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as explained in the previous chapter, the Pilot system wélyfimaplemented is only
able to detect obstacles by bumping into them.

A final difference is that the mapping and navigation methselduwas not as ex-
plained in Chapter 3. Firstly, the criterion used to selepbtogical regions was based
only on the collinearity of the region and its size, thus npiging overlapping regions,
and not assuring a complete representation of the envirohriad secondly, the com-
puted diverting targets were always single landmarks; tmeputation of edges as di-
verting targets was introduced after experimenting withrésal robot.

Despite all these differences, the basic elements of ouoaphp have not been dras-
tically modified during the evolution of the system: the bidglcoordination mecha-
nism has not been changed at all, and the mapping method pasenced only slight
modifications.

5.2 Multiagent Navigation System Simulation

The goal of simulation was to check whether our approach,ishdahe architecture,
the bidding coordination mechanism and the mapping metbmald lead to a robust
navigation system.

We implemented the agents of the Navigation system anddtéiséealgorithm on
the Webots simulator and in our own developed one. Each agenexecuted as an
independent thread, and they used shared memory for mgsasgjag. We also simu-
lated the Pilot and Vision systems on both simulators. Weéhesparameters of each of
the agents by hand. We first set their values intuitively, sligghtly modified them after
some simulation trials.

As a first step, we checked whether the bidding mechanism blas@adequately
coordinate the agents of the Navigation system and the, Biahat the task of reach-
ing the target was accomplished. The Pilot system used washt® to inform about
the presence of long obstacles between landmarks, althibugiuld avoid them. For
this reason, we were not still checking the mapping and rédidig capabilities of the
system.

Figure 5.1 shows a navigation run in the Webots simulatoshéiws the path fol-
lowed by the robot from a starting point to a target landmarke environment was
composed by a set of landmarks (shown as circles), a rivertftick blue traversing
line) with a couple of bridges, and some fences and othemolest. These obstacles
did not occlude the target landmark, so it was visible from Ercation of the envi-
ronment. The task to be performed was to reach the targdiddeft-hand side of the
world) avoiding any obstacle encountered on the way.

At the very beginning, the distance to the target is unknsertheDistance Esti-
matoragent (DE) bids very high to move the robot orthogonally ®lthe connecting
it to the target and looking to the target, so that Map Managercan estimate the
distance to the target. Tharget Trackeragent (TT) bids for moving and looking to-
wards the target, but the bids of DE are higher and the robeemorthogonally. As
the robot moves, th®lap Managercomputes the distance to the target, and the impre-
cision computed by the DE decreases, causing its bids aldecay. At a given point,
the bids of TT are higher than those of DE, and the robot stnitsg towards the tar-
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Figure 5.1: Robot’s path from starting point to the target

get. Since there are no obstacles around, the Pilot doeddat bll. However, after
some advance, the robot encounters an obstacle, and thdidsovery high to avoid
it, surpassing the bids of TT and DE. When the obstacle has toally avoided, the
Pilot stops bidding, the bids of TT win again, and the robot/estowards the target.
This situation is repeated a couple of times until the robmatlly reaches the target.

Although the environment used in this first step was simplainfg because of
the constant visibility of the target, simulations showkdttthe bidding coordination
mechanism worked properly, since it was able to coordimeg@ifferent agents and the
Pilot.

The next step was to test the mapping and navigation capeditif the Navigation
system. In this step we used our own developed simulatadn, avlietter Pilot system,
capable of informing about the linear obstacles betweedntarks, and with more
realistic environments including occluding obstaclesthesd the target was not visible
all the time.

In Figure 5.2 we see how the Navigation system computes tdigetargets for
reaching the initial target when this is lost. In this enwineent, filled polygons are
occluding obstacles, and empty ones are non-occluding &mes permitting the visi-
bility of the target from the starting point. At point A, itee the target and starts going
towards it. However, at point B, it detects an obstacle, soRlMot forces the robot
to turn. When it reaches point C, it cannot see the target angnas it is behind an
occluding obstacle. At this point, a diverting target is guted (in this case, landmark
30 is selected). The robot starts going to this divertinggarOnce reached (point D),
a new diverting target is computed (landmark 38 is selected) the robot goes toward
it. At point E, after reaching the current diverting targetjew one is computed (land-
mark 12), which is reached at point F. From this point, it sbesinitial target again,



5.2. Multiagent Navigation System Simulation

Figure 5.2: Computing diverting targets
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Figure 5.3: Associated map
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goes straight towards it, and finally reaches the target.

Someone may ask why the Navigation system computed so meergidg targets,
instead of trying to go towards the initial target more freqtly. The reason was that
the risk was too high very often. This was because of the naview field of the
camera and the fact that the system was not using Visual Mgrttars, having too
few landmarks in sight very often. Although the performanes good enough — the
robot reached the target — this behavior of constantly caimgualiverting targets was
not what we really wanted. Moreover, in the situation of thleat being in an area with
very few landmarks, possibly seeing only the target, tHewisuld be very high, but it
would not be a wise decision to stop going towards the tanget imstead, compute a
diverting target. That is why thRescueragent was modified so that it did not take into
account the risk, as presented in the previous chapter.

In Figure 5.3 the map generated while reaching the targéoies. Although inter-
nally theMap Manageragent stores the map as a graph, here, for clarity, we show the
triangular regions corresponding to the nodes of this graghcan be seen, the map
has many overlapping regions, unconnected regions andn®giith obstacles inside.
Obviously, it is not a very good representation of the enwinent. In order to obtain a
better map of the environment, we modified the mapping dlgorso that it included
the constraints presented in Chapter 3. As will be seen iexperimentation with the
real robot (Chapter 6), the modified mapping algorithm otstanuch better maps.

Although in the simulation we simplified the task in comparniso navigating
through a real environment (the Vision system worked pdgfaegithout any limitation
on its view range, the Pilot used sonars for obstacle avoilarthe results obtained,
showing that the coordination and mapping worked well, wery promising and en-
couraged us to keep working on the refinement of the systerrdier ¢o test it on the
real robot. However, even though the main experimentatias i@ be done with the
real robot, we still employed simulation to apply Machinetm@ng techniques in order
to automatically tune the parameters and obtain betteoprénce. In the following
sections we describe how we have applied these techniques.

5.3 Reinforcement Learning

As mentioned, each of the agents within the Navigation systas a bidding function
that is controlled by a set of internal parameters. Thesampeters need to be tuned in
order to achieve the best performance of the Navigatioresysind of the overall sys-
tem. Although, as shown in the previous section, we achigesdl results with hand-
tuned parameters, we wanted to explore if there were othanpeter configurations
that led to better performance of the system. Adjustingafpegsameters manually can
be very difficult, particularly because of the tradeoffsftonting the top-level agents.
An alternative to manual tuning is to employ Machine Leagrtechniques, specifically
Reinforcement Learning methods [64]. In this section, wecdbe some experiments
to test the feasibility of applying Reinforcement Learnimighin this multiagent sys-
tem.

Reinforcement Learning is one of the most commonly usecdhiegrtechniques in
Robotics. In Behavior-based architectures learning canppdied at two levels: at
the coordination level, where the goal is to apply learnmghie coordination system
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Agent Acronyms

MM: Map Manager
LA: Learning Agent
; H ) RE: Rescuer
Navigation bids and CO: Communicator
System information

Figure 5.4: Modified navigation system, with the new agent

[44, 28], or at the behavior level, where the goal is to appirihing to the individual
behaviors of the system [45, 14]. In our case, we have takelatter approach[10, 11].

Ideally, we would like to apply Reinforcement Learning toéall of the parameters
of all of the agents in the system. However, this is a verydiiffiproblem, and it is
not clear that Reinforcement Learning is the best solutioalldevels of the system.
Instead, we have chosen to focus on a particular learnifggmowithin the Navigation
system. Reinforcement Learning is most needed and mosbpiatie in cases where
there is a complex, quantitative tradeoff between behavidn such cases, manual
tuning is difficult, and the quantitative criterion of maxiimg expected reward, which
is the goal of Reinforcement Learning, permits us to reprete tradeoff nicely.

Within the Navigation system, such a tradeoff exists betwe Target Tracker
agent, theRisk Managerand theDistance Estimator— recall that we use the initial
version of the system, as described in Section 5.1.TEnget Trackemwants to know the
exact heading and distance to the target at all times. Thideaachieved by pointing
the camera at the target and moving towards it. Rigk Managemwants to ensure
that the robot is surrounded by a rich network of landmarkthabthe robot does not
get lost. This can be achieved by pointing the camera in uaritirections around the
robot to identify and track landmarks. Finally, tBéstance Estimatoseeks to know
accurate distances to the target landmark. This can bevachiy pointing the camera
in the direction of the target while moving the robot orthoglly to the direction of
the target. In addition to this conflict, the Navigation gystmust not monopolize the
camera, because the Pilot needs to use it for obstacle a@da

Instead of trying to learn the appropriate values for eadh@parameters of these
agents, we propose to replace ffaget Trackerthe Risk Managerand theDistance
Estimatorby a newlLearning Agentthat learns its behavior through Reinforcement
Learning. We formulate the reward function for this agenttsat it is rewarded for
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reaching the current target location while minimizing trse wf the camera. The two
remaining agents have very different roles. TMap Managermaintains the beta-
coefficient map, but does not bid on actions. The only remgihidding agent is the
Rescuer which is responsible for the higher-level choice of diiregttargets when-
ever the robot becomes blocked. This activity is betterlémgnted by path planning
algorithms than by Reinforcement Learning, so we have rabiited theRescu€s re-
sponsibilities within thd_earning Agent The modified architecture for the Navigation
system is shown in Figure 5.4.

5.3.1 The Task to be Learned

The task confronting théearning Agentis to choose actions (for both motion and
vision) in order to reach the current target location whilmimizing the use of the
camera. TheMap Managerinforms theLearning Agentabout the target location. If
the robot becomes blocked, tRescuemwill ask theMap Managerfor a new target (a
diverting target), and then tHeearning Agenwill take control and choose actions to
reach that new target. Once the diverting target is reache@®escuemay be able to
set the current target to be the original goal, and therL&aaning Agentvill attempt

to move to that target (and hence, solve the original task).

5.3.2 The Reinforcement Learning Algorithm

There are two general types of Reinforcement Learning dlgos: Model-based and
Model-free. Model-based algorithms learn a transition eld®{s’|s, a) for the envi-
ronment, where is the state of the environment at time: is an action to be executed,
ands’ is the resulting state of the environment at time 1. Model-based algorithms
also learn a reward modét(s, a, s’), which gives the expected one-step reward of
performing actioru in states and making a transition to staté Once these models
have been learned, dynamic programming algorithms [6] ezapiplied to compute the
optimal value functiori/* and the optimal policyr* for choosing actions.

In contrast, model-free methods (such as Q learning and 2AR¥directly learn a
value functionV* by repeatedly interacting with the environment withoutfiesirning
transition or reward models. They rely on the environmefittodel itself”. For robot
learning, however, model-free methods are impracticatabse they require many
more interactions with the environment to obtain good itssuThey make sense in
simulated worlds where the cost of performing an action eambch less than the cost
of storing the transition and reward models, particuldriyhé environment is evolving
over time. But the cost of performing an experimental actigth a real robot is very
high.

Hence, for our experiments, we have chosen the model-bégedtlam known as
Prioritized Sweeping [49]. Prioritized Sweeping works aloivs. At each time step,
the learner observes the statef the environment, chooses an actigrperforms the
action, receives a one-step rewardnd observes the resulting stateThe learner then
updates its estimate d?(s'|s,a) and of R(s, a, s’) using the observed result state
and the observed reward Finally, the learner performs thlemost important Bellman
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backups to update its estimate of the value functiorA Bellman backup in state is
computed as follows:

V(s) = mgxz P(s'|s,a)[R(s,a,s") + V(s')]

This is essentially a one-step lookahead that considepgsadible actions and all pos-
sible resulting states, computes the expected backed-up value of eaetmd assigns
the maximum such value to be the new estimat¥ @it states.

Prioritized Sweeping maintains a maximizing priority qaeaf states in which it
believes a Bellman backup should be performed. First, fiopers a Bellman backup
for the most recent state In each Bellman backup, it computes the change in the value
V (s) resulting from the backup:

A(s) = |V(s) —max )y P(s']|s,a)[R(s,a,s") + V(s)]

After performing the Bellman backup, Prioritized Sweeptogsiders all states™ that
are known predecessors gf and computes the potential impactof the change in
V (s) on the change in the value of according to

C(s7)=>_ P(s|s™,a)A(s)

It then places the state” on the priority queue with priorit¢’(s~). Finally, Prioritized
Sweeping performg — 1 iterations in which it pops off the state with the maximum
potential impact, performs a Bellman backup in that state, then computes the po-
tential impact of that backup on all predecessor statesutrexperimentsi = 5. (In
our implementation, we actually use the state-actior) orepresentation of the value
function rather than the state value functionWe have described the method using
in order to simplify the presentation.)

Prioritized Sweeping is essentially an incremental formadfie iteration, in which
the most important updates are performed first. Becauseg @vieraction with the
environment is applied to update the model, Prioritized &yirgg makes maximum
use of all of its experience with the environment. PriogtizSweeping is an “off-
policy” learning algorithm. During the learning processy &xploration policy can be
employed to choose actions to execute. If the exploratidicypguarantees to choose
every action in every state several times, then Prioriti@aeeping will converge to
the optimal action-selection policy. We emplexgreedy exploration. In this form of
exploration, when the robot reaches statié executes a random action with probability
€. With probabilityl — ¢, it executes the action that is believed to be optimal (atiogr
to the current value functiol). Ties are broken randomly.

We represent both the transition mod#ls’|s, a) and the reward modét(s, a, s’)
by three-dimensional matrices with one cell for each cormatom of s, s, anda. This
technique will only work if the state and action spaces aralsmhere are two reasons
for this. First, the tables must fit into memory. Second, theetrequired for learning
is proportional to the number of cells in these tables, bsedluel earning Agentmust
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Figure 5.5: Division of environment in sectors. The arrowsh the direction in which
the robot is facing (direction of motion, not direction ofzga

experience multiple visits to each stateso that it can perform each actianseveral
times and gather enough data to estim@te’|s,a) and R(s, a, s’). Hence, the most
challenging aspect of applying Reinforcement Learningésroper design of the state
representation.

State Representation

We want theL_earning Agento learn a general policy that works for any environment,
independently of the locations of the landmarks and tardgittace, our state represen-
tation must not directly employ the locations of the landksarMoreover, the robot
cannot directly observe the complete state of the envirowmdich would include the
location of the robot, all obstacles, and all landmarkstdad, the task of the robot is
to learn, under conditions of incomplete knowledge, abbatlbcations of obstacles,
landmarks, and targets.

State spaces that encode incomplete knowledge are knovrebsf'state spaces”
[15]. The purpose of a belief state representation is tourapthe currenstate of
knowledgeof the agent, rather than the current state of the externdtlwim our case,
the Learning Agentis trying to move from a starting belief state in which it krew
nothing to a goal belief state in which it is confident thatsitlocated at the target
location. Along the way, it seeks to avoid getting lost (wWhis a belief state in which
it does not know its location relative to the target position

To explain our state representation, we begin by defining afdeelief state vari-
ables. Then we explain how these are discretized to provatesdi set of features each
taking on a small set of values, so thats’|s,a) and R(s, a, s’) can be represented
with small tables.

At any given point in time, the headings to all objects (laadks and the target
position) are divided into six sectors. The field of view o tfobot is 60 degrees, so
at any point in time, the robot can observe one sector, sagd-5. For each sector,
we represent information about the number of landmarkebedi to be in that sector
and the precision of our beliefs about their headings an@mies. This information
is gathered from an initial version of the Visual Memory tleahstantly updates the
location of the seen landmarks, and to whichltlearning Agenhas access.

Given these sectors, the following state variables can fieatk

o Distance to target, and its imprecisidn(t), ()
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Heading to target, and its imprecisiafi{t), I, (¢)

The landmarks in each sectdr(s) = {l1, ..., ..}

Number of landmarks in each sectd¥(s) = min(4, | L(s)|)

Average imprecision of landmarks in each sector/(s) =
ﬁ ZleBest(4,L(s)) I(l)

We now explain each of these. The distafiz€) to a landmark (oD (t) to the target)
is a fuzzy number in the rand@, co]. The heading to a landma#k(l) (or H (t) to the
target) is a fuzzy number with ran{g 27]. For each of these, its imprecisiafy(!) for
distance,I;, (1) for heading) is defined by taking the size of the interval esponding
to the 70%x-cut of the fuzzy number.

The imprecision of a landmark is computed using the equ&i8ralready given in
Section 3.2.2:

In(1)

I(1) = - tanh(§ - Ia(1) + (1= A) - =~

For an explanation of the equation see the mentioned section

We summarize the agent’s knowledge of the landmarks in eaxtbrsby averaging
the imprecision of the four most-precisely-known landnsarkhe functionBest : N x
2l — 2L selects a subseB = Best(n, L), of a group of landmarkd, = {l1, ..., ;. },
such thalB| < n AVepVier—pI(l) < I(I'). Having 4 landmarks in one sector is
already very good, since only 3 landmarks are needed to admeth-coefficient system
network. Furthermore, we do not want these measures to béetedf by bad landmarks
when we have some that are good enough. That is why weBdsg4, L(s)) when
computingl (s).

Features

After computing these state variables, we combine andetigerthem to define a small
number of features each of which takes on a small number aksalThese features
define the state space, and they are used to access theRgllesa), R(s, a, s’) and
V' (s) in the learning phase, and also to acce&s for policy exploitation.

We employ the following features:

e Target DistanceD(t), discretized to 5 intervals.

e TargetLocation Imprecision: measure of imprecision oridlation of the target,
1(t), discretized to 7 intervals.

e Landmark Count: average number of landmarks over the stoisec
C = $>._o N(s), discretized to 4 intervals.

e Landmark Imprecision: average imprecision of landmargsations in each sec-
tor, ] = & ZZ’ZO I(s), discretized to 7 intervals.

This gives a total of 980 belief states.
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Actions

Just as Reinforcement Learning requires careful desigmeodtiate space to ensure that
it is compact, it also requires careful design of the actieinte ensure that it is small
but also sufficient for the robot to achieve its goals.

Physically, the robot is able to simultaneously perform tyymes of actionsmoving
actions andookingactions. Moving actions make the robot move in a given dioact
Looking actions employ the camera to identify or track laiadks in the environmentin
specified sectors. The Vision system can either search fotar@lmarks or re-acquire
already-detected landmarks, but it is not able to do bottgthat the same time, because
different image processing routines are required for escleither case, however, the
Vision system returns the heading and distance to the laridnitadetects.

An additional constraint on the design of actions is that\fséon system is most
effective when the robot is moving in certain directionstigk to the landmarks being
observed.

Given these constraints, we have designed the followingfsettions for the_earn-
ing Agent

e Move Blind (MB): move toward the target (i.e., in the directiin which the
target isbelievedo be). Do not use the Vision system.

e Move and Look for Landmarks (MLL): move toward the targetirfthe camera
in the sector that contains the fewest number of known lamkspand look for
new landmarks in this sector.

e Move Orthogonally to Target (MOT): move orthogonally to ttiesction of the
target. Point the camera at the target and attempt to impghavprecision of the
heading and distance to the target.

e Move and Verify Landmarks (MVL): move toward the target. ftdhe camera
to the sector with the maximum imprecisiah,and attempt to re-acquire known
landmarks and measure their heading and distance moreaeigur

e Move and Verify Target (MVT): move toward the target. Poinétcamera at
the target and attempt to re-acquire it and measure its hgadid distance more
accurately.

These actions should affect the state variables as foll&lsctions except MOT
make the distance to the target decrease. MB makes all imsfmes grow. MLL should
increase the number of detected landmarks. MOT should ecith@cmprecision about
the target’s location, while MVL should reduce the overalprecision. MVT also
reduces the imprecision of the target’s location, but nahash as MOT. All actions
require that the heading to the target is known (at leastaqipiately). The heading
is chosen as the center of the fuzzy interval (t). If the heading is completely
unknown, the center of this interval i& This causes the robot to “pace” back and
forth, turning 180 degrees (radians) each time an action is executed.

We have assigned an immediate reward to each action to réfledbad on the
Vision system and the motion system. The rewards are negaticause they are costs.
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MB is the cheapest action, since it does not use the camefasla reward of-1.
MVL and MVT produce a reward of-5, since they make moderate demands on the
Vision system. MOT gives a reward ef6, because it requires more motion in addition
to the same image processing as MVL and MVT. Finally, MLL is thost expensive,
with a reward of-10, because it must do extensive image processing to searobvior
landmarks and verify that they are robust to changes in voawp

The system receives a reward of 0 when it reaches the targetida. The Re-
inforcement Learning objective is to maximize the total aedv In this case, this is
equivalent to minimizing the total cost of the actions tal@rneach the target.

5.3.3 Experimentation

We have employed the Webots simulator to perform our experis The environment
contains a set of landmarks, one of which is designated daitipet. There is also a wall
that surrounds the region in which the robot is navigatinige Tandmarks are the only
objects in the environment. There are no obstacles, asadbsteoidance is handled by
the Pilot system. However, the robot can be blocked by thdnfearks or by the wall. In
each trial, the robot starts at a random location in thisremvent, and it has to reach
the target. The trial terminates under three conditior)sf {ae robot reaches the target
(and is confident that it has reached the target), (b) if thetrtakes 500 steps without
reaching the target, or (c) if the robot is blocked. When tl& is finished, the next one
begins with another random initial location for the robot.

In order to see if the performance of the system improves kftening, we com-
pared it with a hand-coded policy. The hand-coded policydube same discretized
features as the learning algorithm (Target Distance, Lankr@ount, Landmark Im-
precision and Target Location Imprecision). The followbagle shows the policy for
choosing an action depending on the values of these features

high | —low | —high high || MOT
high | —low | —high | —high MB

—high * high high || MVL
—high * —high high || MVT
very low * * —high || MVT
low * * —high MB

wherehigh, low andvery low are defined as follows:
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Variable very low | low | high
Target Distance <1 <2 >2
Target Location Imprecision - <5 | >5
Landmark Count - <2 >2
Landmark Imprecision - <5 | >5

The reader should note that this hand-coded policy is nostime as the policy
produced by the hand-coded bidding functions describedap@r 4. We have chosen
this policy because it allows us to debug and testltbarning Agenseparately from
the rest of the multi-agent system.

TheLearning Agentvas trained for 2000 simulated trials. At regular interytie
learned value function was tested by placing the robot inrh@@omly-chosen starting
locations, running one trial from each location, and meastthe total reward, the total
number of actions, and whether the robot succeeded in regtie target position. The
same set of 100 starting locations was employed in each¢gséiriod. The hand-coded
policy was also evaluated on these 100 starting locations.

First, let us consider the fraction of successful trialgufé 5.6 shows that even after
only 100 trials, thd_earning Agenis already out-performing the hand-coded policy.
After 2000 trials, thd_earning Agensucceeds in reaching the target in 84 of the trials,
compared to only 24 for the hand-coded policy. From thesdtsewe also see that our
hand-coded policy was pretty bad. Although we could haweslttd rewrite the policy
to improve its performance, the results show that Reinforr® Learning can greatly
help on solving complex tradeoffs, very difficult to handlamually.
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Figure 5.6: Number of successful test trials as a functiathh@famount of training

A second way of analyzing the performance of thearning Agenis to compute
the average reward per trial, the number of actions per ara the number of actions
of each type. Table 5.1 displays this information after 26@ming trials. Each value
is averaged over five test runs. The only difference betweshrtins is the random
number seed for the Webots simulator. We see that while thé-baded policy receives
an average of-858 units of reward, the learned policy only receive336 units, which
is a huge improvement. In addition, thearning Agenbn the average only requires
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Table 5.1: Comparison of theearning Ageni{LA) and the hand-coded policy (HC)
after 2000 training trials.
Reward per trial ~ Actions per trial MB MOT MVT MVL  MLL
HC -858 153.33 494 18.59 0.52 121.96 7.32
LA -336 49.95 11.41 6.52 5.61 497 21.43

50 steps to terminate a trial (reach the goal, become bloakedxecute 500 steps)
compared to 153 steps for the hand-coded policy. Actudllylearning Agenhever
terminates because of reaching the 500-step limit.

Table 5.1 contains other interesting information. In mantr, we see that tHeearn-
ing Agenthas learned to perform fewer MOT and MVL actions and more MB/TV
and MLL actions. Note particularly that tHeearning Agentis executing an average
of 11.4 MB (Move Blind) actions per trial, compared to onl@4or the hand-coded
policy. One of the goals of applying Reinforcement Learnivags to find a policy that
freed the camera for use by the low-level obstacle avoidemg@es, and this is exactly
what has happened: the hand-coded policy uses the cameraf36estime, while the
Learning Agentses it only 77% of the time. On the other hand, we were suagris
to see that thé.earning Agentthooses to execute the most expensive action, MLL,
so often (21.4 times per trial, compared to only 7.3 timestpak for the hand-coded
policy). Certainly, it has found that a mix of MLL and MB givéetter reward than
the combination of MVL and MOT that is produced by the handexbpolicy. The
Learning Agenspends much more time looking for new landmarks and muchilass
verifying the direction and distance to known landmarks.

5.3.4 Future Work

Although the obtained results show that ttearning Agenhas learned to select actions
to resolve the complex camera tradeoff, we need to integrat® the overall multi-
agent system (as depicted in Figure 5.4), to see if the padoce of the whole system
is also improved. Even though thearning Agenknows which actions it has to bid
for (following the learn policy), it is not clear how its biddy function should be (e.g.
constant, depending on the valued()).

Some more further work will be focused on the design of theestad feature rep-
resentation and the set of available actions. Asada et &lprffposed a solution for
coping with the “state-action deviation problem”, in whiahtions operate at a finer
grain than the features can represent, having the effeotrtbst actions appear to leave
the state unchanged, and learning becomes impossible.avéqévaluate the suitabil-
ity of this approach in our experiments. Regarding the actit design, we found that
the set of available actions was maybe too small and someatioms may be needed.
We are working on an “action refinement” method [20] that ekplprior knowledge
information about the similarity of actions to speed up #erhing process. In this ap-
proach, the set of available actions is larger, but in ordeiot slow down the learning,
the actions are grouped into subsets of similar actionsly Hathe learning process,
the Reinforcement Learning algorithm treats each subsgtufar actions as a single
“abstract” action, estimating(s’|s, a) not only from the execution of actian) but also
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from the execution of its similar actions. This action alstion is later on stopped, and
then each action is treated on its own, thus, refining theegabf P(s'|s, a) learned
with abstraction.

5.4 Evolving the Multiagent Navigation System

As we have already mentioned previously, our Navigationesyss decomposed into
a set of different agents that are responsible for diffetasits. Each of these agents
has certain parameters that affect its bidding behavigingirto manually find the best
values for the parameters of the bidding functions is areexdly difficult task. In this
section we describe the application of an evolutionary @agin to do this optimization.

5.4.1 Navigation Tasks

For a given environment we consider two different navigatasks. Each one of them
with a different level of complexity. The best parameterraaly change depending on
the complexity of the task. We conjecture that the pararadtemd depend mainly on
the complexity of the navigation task and not so much on thecstre of the overall
environment. This complexity is dependent, though not Edaithe cartographic com-
plexity of the world in which the agent moves, and is basecherfallowing factors:

1. Number of visible landmarks at any time
2. Density of obstacles in the region of navigation

3. Visibility of the target at any time

Using this notion of navigational complexity, the total spaf all navigation tasks
can be split into two representative classes: going towdwelsarget free of obstacles,
and reaching targets located behind obstacles. In our iexpets we use clusters;
(encircled targets in Figure 5.7) a4 (encircled targets in Figure 5.8) as representa-
tives of the two task complexity classes. The best pararsetas determined for both
these classes. The aim of the experiments is to endow theyatam system of the
robot with the capability to switch between these two partamsets according to the
actual task complexity it is facing.

5.4.2 The Agents

Although a detailed description of the agents was alreadgrgin Chapter 4, as well
as the description of the differences between the simutatstgém and the final system,
(given at the beginning of this chapter), we review the patans of each of the agents:

e Target Tracker (a, 3, k1, K2)

— «a: controls how rapidly the bids for moving towards the tardetrease,

bid(move(0)) = r1(1 — Li/‘“); high values ofx make bids increase fast,
while low values make bids increase slowly
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Figure 5.7: Cluster C1

Figure 5.8: Cluster C2
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— (: controls the shape of the imprecision functiép = (g—fr)ﬁ; high values
make it increase slowly, while low values make it increase fa

— k1: maximum value for moving actions bids

— k2: maximum value for looking actions bids
e Distance Estimator (s, ¢, 9)

— k: controls the shape of the distance imprecision functign; 1 —1/e";
high values ofx make the imprecision grow fast, while low values make it
increase slowly

— ¢,d: controls theat target computation; it considers that the robot has
reached the target if the upper bound of theut of level ¢ of the fuzzy
number modeling the distance to the target is less étiames the body size
of the robot

¢ Risk Manager (y4,vB, V)

— v4,7B: control the relative importance of the position of landksaiahead
and around, respectively, used in the risk computation,

A YA B B
R=1—min (l,qA<|GT|> +q3<%> )

— ~,: maximum value for looking actions bids
¢ Rescuer (,, R)

— I,: imprecision threshold, above which this agent gets active

— R: risk threshold, above which this agent gets active

5.4.3 The GA algorithm
Representation

We seek to optimize the Navigation system with respect tdOtparametersTarget
Tracker (o, 3, k1, k2), Distance Estimato(x), Risk Managev4, vz, 7), andRes-
cuer (I,, R). The Distance Estimatds parameters) and é are fixed to 0.7 and 2
respectively since they do not affect the efficiency of thetey. We use a real valued
chromosome, each chromosome being a vector of 10 dimenseads-igure 5.9). The
initial population is generated randomly.
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Evaluation

Each individual in the population specifies a particulappagter set for the system, and
is evaluated by running a simulation with the specified patans in a given environ-
ment. Consider that the agent navigates from an initialtjposp, to the target cluster
C containing then target positionst(, t, ..., t,) and that it takesl; steps to reach
the target; from py with a success valug. A threshold is defined for the number of
steps that are taken to reach the target, above which thé sgsaid to have failed in
its attempt to navigate to the target (i.e. its success valOgotherwise it is 1).

This formalization gives the clues to define the fithess fiencthat permits the
selection of the best parameter sets. It is clear that theageecost of reaching a target
from the initial positionp is defined as the summation of the steps required to reach
each target divided by the number of targets. That is,

Z?:l di

n

E =
Similarly, we can naturally define the average success \adue

D i1 Si

n

The best behavior for a navigation system is the one that haghauccess rate with
a low average cost and with a low standard deviation for tesage costy.. Thus, we
define the fitness function as follows:

S =

|

f=

Cc+ o,

Evolution

We follow an elitist approach. That is, from a populationrdividuals, the fittest indi-
vidual is passed to the next generation. The remaining iddals form the pool from
which the new generation offspring are created. We randaellgct two individuals
from the mating pool whose fitness is over a randomly detezthivalue. Then we
apply crossover and mutation on them to generate new ingisd

begin
counter :=0;
repeat
r := generate a random number;
i :=find the first individual whose fitness r;
r' := generate a random number;
i" ;= find the first individual whose fitness r’;
apply crossover operator oniand i’;
apply mutation operator on i and i’;
counter := counter+1;
until counter = populatiorsize / 2
end
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Figure 5.9: Chromosome with the set of parameters

Crossover

A simple two point crossover is used with the two parents arging their genetic

material between two randomly generated breakpoints irgéme string. A point to

note is that the chromosomes are broken only at agent baesdaee Figure 5.9). The
idea is that one of the parents may have good genes for aydartagent while the other
parent may have good genes for another agent. This way tksawer could result in

an offspring having a higher fitness value than both its garen

Mutation

The mutation operator for the genetic algorithm has beemptadofrom the Breeder
Genetic Algorithm [53]. Given any set of parameters as amlogome, we can view
it as a pointx within a 10 dimensional space. Using our mutation operaterseek
to search for optimality within a “small” hypercube centtrat x. How small this
hypercube is, depends on the ranges in each parametric glimnerithin which we
allow the chromosome to mutate. The parametric dimensionsiet homogeneous,
hence mutation ranges differ for each dimension, beingctljr@roportional to the
variance allowed in that parameter. Another feature of tigation operator is that
while it searches within the hypercube centerex dttests more often in the very close
neighborhood ok, the idea being that, while we want to conduct a global sefoch
optimum using our recombination, mutation is used for a mesgricted local search.
Having understood the broad features which the mutatioredpeshould demonstrate,
we formally define the mutation as follows:

Given a chromosomg, each parameter; is mutated with probability 0.1. The
number of parameters being 10 implies that at least one peamill be probably mu-
tated. Further, given the mutation range for the parametasrange;, the parameter
x; is mutated to the value;* given by

;" = x; £ range; - p

As previously discusseg, should be such that it lies between 0 and 1 (to generate the
hypercube centered a) and also it should probabilistically take on small valuess
to test more often in the close neighborhood of his is realized by computingfrom

the distribution
p=2 o2
J

where eacl; is probabilistically either O or 1.
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«@ 8 K1 Ko K YA YB YR T, R
Cl| 1.731 2.03 0.314 0.493 0.355| 0.240 0.521 0.054 0.386 0.215
C2 | 1.231 212 1.0 0.564 0.178 | 1.377 4.39 0.707 0.871 0.906

Table 5.2: Optimal parameter values for each of the clustegrene execution of the
GA over 100 generations

Diversity

The convergence of the genetic algorithm is estimated tiirdts population diversity.
Initially, the population has a high diversity since all tinelividuals are randomly se-
lected. As the algorithm converges, the individuals in tbpydation converge towards
the best solution, thus decreasing the diversity. In oue,cte individuals are points
in a heterogeneous dimension space, wittB, v4 andyg € R+ while the other pa-
rameters ranging between 0 and 1. Hence we use the Mahadatistsince measure to
determine the diversity of a population [22].

The Mahalanobis distance takes into account the heterdgéma&imensions and
correspondingly scales each dimension while estimatiegdistance between two
points. Given a set of data poin{s;} with each data point; being an n-tuple
(2511 < j < n), the Mahalanobis distanek, between two points;, andz; is given
as

dm(zk, Zl) = (Zk — Zl)TE_l(Zk — Zl)

HereX is then x n variance-covariance matrix for the given data points. Tojare the
diversity of populations across generations, the covadanatrix is computed taking
into account all the chromosomes over all generations. Tergity of a population
is then calculated as the average Mahalanobis distancecbfasomosome from the
mean chromosome.

5.4.4 Results

The genetic algorithm was run on the two task complexitysgagepresented by the
target clusterg’; andCy in our simulator. The population size was of 20 individuals,
and we ran the genetic algorithm for 100 generations. Thialpiosition was the same
for both tasks, with the crossover and the mutation ratesg@i8 and 0.1 respectively.
In the algorithm, four of the parameters s 3, v4 and~p lie on the positive real
axis and hence we have to choose an upper limit on the real Tiimés upper limit
is important since a low upper limit value implies that we lioifly restrict our real
valued parameters to that limit, while a high upper limitueamay increase the number
of generations for which the genetic algorithm may have tauresince the initial
random generation will be very dispergeandg are exponents of numbers less than 1
and hence their large values will not be useful. Keepingehastors in consideration,
the upper limit value has been fixed to 5 in our simulations.

The genetic algorithm converges to an optimal solution fmhecluster as can be
seen in Figures 5.10-5.15. By optimal solution we refer kst solution the algo-
rithm has found, which may not necessarily be the optimaltsmi to the navigation
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Going toC} Going toCs
5 C f 5 C f
Ciset| 1 |50.5]|0.017| 0.5| 127.5| 0.003
Coset|| 0.5 425] 0.011 1 122 | 0.007
HT set|| 0.5 69 | 0.005|| O - 0

Table 5.3: Results obtained by the different parameter sets

task. The optimal values for some of the parameters diffgniicantly for the two
clusters as shown in Table 5.2. The parameters associateel bidding function of the
Risk Managetagent differ the most between the two clusters. This is saumzthe
Risk Manageiis very sensitive to the complexity of the task. The more atist, the
higher the risk of losing sight of landmarks.

In order to check the results obtained for each of the clastee have tested the
two parameter sets found by the genetic algorithm on the tff@reint navigation tasks
(going to clustelC; and going to cluste€’;). We have also tested our original param-
eter set, which we set by hand, on the same two navigatios.tdsie results obtained
by each set on each of the tasks are shown in Table 5.3. Fotasiglthe mean average
success values], average costf and the fitness valuef] is computed. As expected,
the parameter set found for clustér performs perfectly when going to clust€s and
it only reaches the targets of clustés 50% of the time. On the other hand, the param-
eter set found for cluster; reaches the targets of clustgs all the times, while it only
reaches the targets of clust@; 50% of the time. Finally, the hand-tuned parameter
set reaches 50% of the time for targets in cluster and never reaches the targets of
clusterCs. Therefore, the evolutionary approach has improved thbagloavigation
behavior.

In Figures 5.16 and 5.17 we can see some paths followed bybw using each
of the parameter set on each of the tasks. Successful pattmbrshown for those
parameter set with a success value of 1. Otherwise, an erarh@Failing path (marked
with a cross at its end) is shown.

5.4.5 Future Work

We will analyze the generality, in terms of different envineents and starting points,
of the parameters obtained by the genetic algorithm. Fuvibek should also focus on
designing an agent capable of identifying the complexittheftask being performed,
so that the parameters can be switched from one set to andhevill explore the use

of Case Base Reasoning techniques on this “situation fikatitagent.
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Figure 5.16: Going to cluster

Figure 5.17: Going to clusteT;
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Chapter 6

Real Experiments

In this chapter we describe the experiments carried out thighreal robot on real en-
vironments. We firstly describe the real robotic platformhewe used for this experi-
mentation, and the vision system we have developed in avdecbgnize the bar-coded
landmarks used in the experimentation environment. A loiéstription of a graphical
control interface is also given. Finally, we describe inailehe different scenarios on
which the experiments have been carried out and the reseltsawe obtained.

6.1 The Robot

The robot used in the experimentation is an ActivMedRioneer 2 AT. It is a 4-wheel
drive all-terrain robot, equipped with a pan and tilt unitiwtwo B&W cameras. It
is also equipped with front and rear bumpers for collisiotedgon. The dimensions
of the robot are 5&50x 26 (in cm, lengtkwidthx height). The field of view of the
cameras is of 45 degrees, and the panttilt unit can pan fras0 fl&ft) to -150 (right)
degrees and tilt from -90 (down) to +90 (up) degrees. ThetrgbealledMarkFinder,
since its navigational skills are based on finding landmarkke environment. Some
pictures of the robot are shown in Figure 6.1.

Although the final objective of the project we are involvedsmo have a completely
autonomous robot, we are currently working with off-boasdtrol and vision process-
ing, as it is easier for programming and debugging our allgors. We use a wireless
Ethernet to communicate with the robot (to send commandsgtavheels’ and pan/tilt
unit’s motors, and to receive information about odometrg bamper activation), and
the images are sent through a video transmitter (see FigRiye® make the robot fully
autonomous, we would only need to put the control and visiaegssing algorithms
into its on-board computer, although it should still neede¢ad some information back
to an off-board computer for manually selecting the target.

The experimentation has been carried out in an indoor wtsired (not office-like)
environment, with easily recognizable and controlled taacks and obstacles. The
environment is an area of about/s8, containing ten landmarks plus the target and a

1ActivMedia Robotics, http://www.activmedia.com
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Figure 6.1: Left MarkFinder robot. Right Detail of the pan and tilt unit with two
B&W cameras

few non visible obstacles. A difficulty in real environmeistshe vision system, as it is
highly sensitive to changes in the illumination, which makevery hard to detect ob-
jects. Therefore, we have developed a simple and robustnvigistem that recognizes
barcoded landmarks. Moreover, the simplicity of the landemgermits us to easily
configure scenarios with different complexity levels by mhiag their location, as well
as the location of the obstacles. The vision system and tithriarks are described in
the following section.

6.2 Vision

Since we do not focus our research on the Vision system obthatywe did not intend
to develop a Vision system capable of recognizing complgeaib, but just a very
simple type of landmark. The simplest type we thought of warstdes.

Landmark labels have a common part of five vertical black b@arsndicate that
it is a landmark, and at the right side of the bars, a vertiagahdy codification with
black and white squares. The binary code is composed of fivareg (black meaning
1, white meaning 0), so we have 32 different codes. Howewgles 0 and 31 are not
used, as they give many problems when trying to identify theonwe have a total of
30 different codes, which is enough for our environment. \&eehused boxes with
the same landmark label on their four sides so the Visioresyss able to detect the
landmarks from any perspective. The labels are printed dov A papers, and the
dimensions of the boxes are 880x40 (length<widthxheight), having the labels at
the top of each side. Examples of such landmarks are showigume=6.3.

The algorithm for recognizing these landmarks is based effidtt that the pattern
of a series of alternated black and white bars of equal wiltrery unusual. First of
all, the image is binarized, since it is in gray scale, andalgerithm needs to have
pure black and white images. doseoperation is also applied. This operation is useful
for removing noise from the image. Once the binarization thedclose operations are
done, the algorithm starts scanning the image line by lioekihg for the pattern of
black and white bars. When it finds such a pattern, it scarigatly the binary code to
identify which landmark has been detected. Depending olighBng, a landmark can
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Figure 6.2: Communication with the robot

be detected using a binarization threshold, but not detdoreother thresholds. Thus,
this scanning process is done several times with diffeteesholds. Once the whole
image has been processed with all the thresholds valuesftiimation of all detected

landmarks is sent to the Navigation system. A flowchart ofghacess is shown in

Figure 6.4.

Although the robot is equipped with two cameras, we are nawgssing only the
images of one of them, as we have not yet finished the impleatientof the stereo
vision algorithm. This algorithm would use the images froothbcameras to compute
the distance to the detected landmarks. However, we sigthlat we already have this
stereo vision algorithm. To do so, we have designed the lankisrso that all of them
have the same size. This way, knowing the height of the bargiels of the image)
of a landmark, the distance from the robot to that landmarklwa computed. The
heading is taken as the angle to the central point of the.ldb@lvever, even with the
robot stopped, and due to illumination conditions, the immpgpcessing algorithm does
not always detect the landmarks in the same place (it cansaane pixels). Thus, the
computed distances and angles have some imprecision.

Since the quality of the cameras is not very good, the Visj@tesn has some prob-
lems with recognizing landmarks that are far from the rofi@t.have a robust recog-
nition system, we have set that it only informs about the maarks that are within a
distance of 3 meters around the robot. However, even if anteankd is in this “visible
area”, the Vision system sometimes misidentifies it. Toadis problem, we require
that a landmark has to be recognized in several subseqaeme$rwith the same code
before informing about its detection.

But even this last requirement is not always enough to giveecblandmark iden-
tification. To add more robustness to the Vision system, #teaded landmarks are
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Figure 6.3:Left Landmark label 21 (code = 10101 = 2Rjight One of the boxes with
multiple landmark labels

checked against the Visual Memory (see Chapter 4 for a ddtdiéscription of the Vi-
sual Memory). For each landmark in the list of detected laaths, two checks are
done. First, we check that the detected landmark is not ircatilon close to another
landmark stored in the Visual Memory (i.e. the distance leetwthe two locations —
one given by the Vision system and the other one stored in thgal/Memory — is
below a threshold). If this is the case, and the code of théneamk differs from the one
given by the Vision system, we replace the code of the detdatelmark by the one
stored in the Visual Memory on that location. If the code is $ame, then the location
given by the Vision system is assumed to be correct, andlicep the location stored
in the Visual Memory. Secondly, we check that the detectedrizark is not stored in
the Visual Memory at a very different location than that giey the Vision system. If
this is the case, and the location stored in the Visual Merfiesyin the view field of the
camera, this location is given as the location of the detkletedmark. If the location
does not lie in the view field, the landmark is ignored. Finaflthe detected landmark
is neither stored in the Visual Memory nor located close totlh@r landmark, it means
that it is a new landmark, and it is added to the Visual Memdable 6.1 summarizes
the actions taken in each situation. We indicate the inftionaabout the landmark
(code and location) that is finally sent to the Navigatiorteys and how the informa-
tion of the Visual Memory is modified. The subscript VS stafmisthe information
given by the Vision system, while the subscript VM refershe information stored in
the Visual Memory.

Although this check adds robustness to the Vision systemait have undesired
effects in some situations, since it gives more importancthé¢ information stored
in the Visual Memory than to that coming from the Vision systd-or instance, if the
location of a correctly detected landmark differs too muoinfits location stored in the
Visual Memory, not because of an error of the Vision systamdie to the imprecision
of the stored location, it will not be updated, although ibghl be. Another problematic
situation would arise if the robot were moved to another tioca without it noticing
it (what is known as the “kidnapping problem”). From the newdtion, the Vision
system would detect some landmarks, but their locationddweot match at all with
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Table 6.1: Check against Visual Memory

Close location Different location
—Right recognition— —Wrong recognition—
return(idv s, locv s) if locy as in viewfield then

Same ID | ypdate location in VM | return(idy.s, locy ar)

else ignore landmark

—Wrong recognition— | —Right identification—
Different ID return(idv a, locv s) return(idv s, locy s)
Update location in VM | Add to VM

the locations stored in the Visual Memory, and, therefdreytwould not be updated
either. The first problem can be solved by changing the imgigtthreshold above
which the landmarks are removed from the Visual Memory, stittonly keeps those
landmarks whose location is very precisely known. Howetvere is no way to solve
the “kidnapping problem”. The only way to handle it would loetave a better Vision
system, so that it would not need to check the locations \mghMisual Memory. Since
we still do not have such a Vision system, and in our experimtre robot is never
“kidnapped”, we rely on the Visual Memory.

With all these provisions, landmarks are always corredntified, therefore there
is no uncertainty about the presence of landmarks, alththegke is imprecision about
their exact location.

The fact of the Vision system being only capable of recogmjzandmarks not
further than 3 meters from the robot, together with the aggiem of the initial visibility
of the target, restricts the possible environments on wiveltan experiment. In order
to be able to test the Navigation system on more intereskamger) environments, we
have a special landmark label that is considered as thet tangecan be seen from 7-8
meters. This landmark label is of the same type as the reshasua larger size (DIN
Al), and when computing the distance from the robot to it thitaken into account.
In Figure 6.5 this larger target landmark is shown (therd@ue“standard” landmarks,
plus the larger target, placed higher than the others).

(HI1]

Figure 6.5: Larger target landmark label
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6.3 Graphical Interface

In order to carry out the experimentation, we have devel@gthphical interface so
that a human operator can give orders to the robot. The auershown in Figure 6.6,
permits the operator to manually control the robot motioan($lational and rotational
speeds) and the pan and tilt unit movements. The interfaseahhree-dimensional
representation of the environment, showing the robot aadi#ected landmarks and
obstacles (including those stored in the Visual Memory)al#o shows the images
gathered from the cameras and a list of detected landmarks.

The operator can select the type of landmarks to be recaginireour case, we
were only able to use the bar-coded landmarks describe@ iprétvious section. Once
the landmarks’ type has been selected, the Vision systens stacessing the images
coming from the cameras, and the detected landmarks arkaykspin the interface.
The operator can then select one of the detected landmadkseait as the target land-
mark to be reached. Once the target is selected, the opesatdnstruct the robot to
go to the target. From this point on, the robot will autonosiguavigate towards the
target until either it reaches the target or it is instrudtestop navigating.

The interface also gives information about the Navigatigstem, such as the cur-
rent target or how many object, beta and topological unédthp Managethas stored,
and a graphical representation of the topological map. Wheiarget is reached, the
relevant information about the trial is given: trial dugatj total length of the path, dis-
tribution of winning bids among the agents and number ofrdivg targets computed.
This information can also be stored for later statisticallgsis.

Although the interface has been used only with our robot, axeldeveloped it so
that it can be used with any robotic system, so there is no tuelegve a specific control
interface for each different robot we may have in the lab. itlea is to let the operator
configure a specific system by choosing a robot platform (b éeled, legged, or any
other kind of autonomous robot), the type of landmarks to smdy(which may imply
having more than one Vision system running in parallel), gnedPilot and Navigation
systems that will control the robot. Once the robotic syst@smbeen configured, it can
be controlled as described above.

6.4 Goals of the Experimentation

The first goal of the real experimentation is to check whetheigood results obtained
through simulation are also obtained with the real robatally this would be the case,
so the only modifications needed would be to make the existaggation system use
the real robot instead of a simulated one. However, moviogfsimulation to the
real world is not that easy, as many problems arise when wgnkith physical robots
which were not present on the simulated world (unless thalsitmr used has very high
realism). These problems are mainly related to the motiahvésion systems of the
real robot.

Regarding the motion system, we have to take into accounthiearobot needs
some time in order to execute motion commands. On simulatiencould run the
system as fast as we liked, since the commands were exeouteediately, however,
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we cannot do so with the real robot. The frequency of sendliage motion commands
to the robot should be set according to the response timeeabthot, so a command is
only sent when the robot is really prepared to execute it.

Another problem of using a real robot is the vision systemthélgh the vision
system and the landmarks we have designed are very simplesy#tem is not able
to identify the landmarks all the time, due to changes imilluation, interference on
video transmission, blurring caused by motion of the carera Therefore, as already
mentioned, the vision system needs to process some frarfags liteis able to inform
about the detected landmarks. Thus, the actions for molimgamera and identifying
landmarks must also be sent with the proper frequency satiratision system has
time to process enough frames.

To overcome these problems, we have tuned the agents sé¢hatttot is able to
execute all the commands generated by the system.

Through the real experiments we also check whether the lHtwigsystem we have
designed is able to perform well in different types of enmireents, and if the design of
each individual agent is the most appropriate for obtaigmgd overall performance of
the Navigation system. To check this, we have experimentdddifferent scenarios,
starting with simpler ones and increasing their complegigp by step. The two main
variables that describe the complexity of a scenario are:

e Density of landmarksthe fewer landmarks in the scenario, the more risky it is,
since the map contains very little information about thatieé location of the
target and other landmarks. On the other hand, if the dep$itgndmarks is
high, there will very probably be always some landmarkslésiand the Navi-
gation system will be able to compute the location of thegtfigom the visible
landmarks.

o Density of obstacledf the density of obstacles is low, the path from the startin
point to the target may not be blocked, or only blocked bylgasiidable obsta-
cles, so the robot may not need to compute diverting targetsach the original
one. Contrarily, in a scenario with many obstacles, the tr@abforced to change
direction very often, which may cause it to lose sight of drgét, and therefore,
to increase the imprecision about its location. Moreovehe obstacles block
the way to the target, the Navigation system may need to ctergudiverting
target to reach the original one.

6.5 The Real Scenarios

The different classes of scenarios on which the experinienthas been carried out
are the following:

1. Single landmarkin this class of scenario there is only one landmark, whéch i
the target, and no obstacles. This class of scenarios igaisbéck that the robot
is able to reach a target when there are no references to tharelexists a clear
path to the target.
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2. Single landmark and obstaclethese scenarios are composed of a single land-
mark which is the target, and several small obstacles thatadmcclude the
target, but force the robot to avoid them in order to get tadnget.

3. Several landmarksin these scenarios there are several landmarks, one of them

being the target, but no obstacles (apart from the landnthgmselves, which
are obviously seen as obstacles). In these scenarios thgdtlan system is able
to build a map of the environment, and we will check how goasl. it

4. Several landmarks and obstacles these scenarios we add obstacles between

the landmarks of the previous scenarios so that they bloekdbot and it is
forced to compute diverting targets to reach the origina.dn these scenarios
the Navigation system is also able to build a map of the enwirent, including
the detected blocking obstacles.

Some pictures of the different scenarios can be seen iné&gyic

The first two classes of scenarios are very simple, and thergmpnts on such
scenarios just check the very basic behavior of reachinggattéhrough a quite clear
path. In these scenarios the target is visible all the tira¢h@ only obstacles are small
ones, therefore not occluding the view field of the camera Bl tests are in classes
3 and 4, as the target may be occluded by other landmarkshanghth to the target
might be blocked by landmarks and obstacles. Thus, in thes®asios, the robot must
make use of its navigational skills.

We impose the restriction of the objects on the environntbiat (s, landmarks and
obstacles) be static, so their location cannot change glartrial. If that were allowed,
the computed relation among landmarks would be incongisae thus the3-vector
computation would not be valid at all.

6.6 Experimentation Results

We describe the experimentation carried out in each oneedbtlr scenarios described
above. We have used the parameters obtained through théi&algerithm approach
described in Chapter 5 (discarding those that are not us#tkifinal version of the
Navigation system). For each scenario, there is a briefudi&on of the results. In
each of these scenarios we have defined different startimgspwo starting points
in scenarios 1 and 2, and three in scenarios 3 and 4). We hav0rtrials for each
starting point and stored the following statistics:

e Success/failure rate
e Number of diverting targets
o Distribution of winning bids among the agents

The relevant statistics of the experiments are shown ineTaid.
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Figure 6.7:Top left: one of the obstacles used in the environmemtp. right: scenario
1. Middle left: scenario 2Middle right: scenario 3Bottom left and rightscenario 4.
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Table 6.2: Results of experimentation (TTarget Tracker RM: Risk Manager RE:
RescuerPS:Pilot systen

Scenario|| Success| #d.t. || Winning moving bids|| Winning looking bids
class rate TT | RE PS TT | RM | RE| PS
1 100% 0 100% | 0% | 0% 0% | 54% | 0% | 46%
2 100% 0 79% | 0% | 21% || 0% | 66% | 0% | 34%
3 85% 0 78% | 0% | 22% || 0% | 56% | 0% | 44%
0:24%
4 84% 1:58% || 67% | 2% | 31% || 3% | 41% | 0% | 56%
2:18%

Scenario 1. Single landmark

Description: Scenario with just one landmark and no obstacles.

Task: Reach the landmark.

Results: In this scenario the robot behavior was, as expected, torgetti to the
target in a straight line. Th&arget Trackerwon 100% of the moving actions it bid
for, since its bids were high because the imprecision ablmutdcation of the target
was very low. TheRescuedid not bid because it never reached its activation levhaks: t
imprecision was never high enough, and there were no blgakinations. Similarly, as
there were no obstacles, tRdot did not have to bid for changing the robot’s trajectory.
Regarding the looking actions, tResk Manageand thePilot won a similar number of
bids. Since there was only one landmark, the risk was vety, lsigd theRisk Manager
always bid to look ahead. The target was precisely locateti@time, so the looking
bids of theTarget Trackemwere very low, and never won.

Scenario 2. Single landmark and small obstacles

Description: Scenario with just one landmark and some small obstaclegcleet
the robot and the landmark. The small obstacles are noteiaiid can only be detected
by bumping into them.

Task: Reach the landmark, avoiding the obstacles detected byutheérs.

Results: The robot did always reach the target. The winning bids fakiog
actions were distributed, again, among Risk Managerand thePilot. The Target
Trackerdid not win any of the bids because the imprecision of thestggdpcation was
not high enough. As in the previous scenario, Rescuedid not have to intervene at
any point. Regarding the moving actions, only Bikt andTarget Trackemwon bids:
thePilot when an obstacle was detected and avoided, an@ldiget Trackemwhen the
path to the target was free.

Scenario 3. Several landmarks

Description: Scenario with many landmarks and with no obstacles apart the
landmarks themselves. In order to have an interesting soemnee placed the target
landmark label higher, so that it was visible from the staytpoint, even if there were
other landmarks in the view line from the robot to the targétve had not done so,
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Figure 6.8: Maps of 2 different scenarios of scenario class 3

the path from the starting point to the target would alwaysehaeen clear, since the
target has to be initially visible, which actually corresgs to the first scenario. This
change required the robot to move the camera up and down tad&oehave the target
landmark in its view field (in the previous scenarios, it wafyaoing a pan movement,
with no tilt at all). Thus, we had to change the looking acsianorder to incorporate the
tilt angle. The agents bidding for looking actions addedtiti@ngle in the following
way: theTarget Trackerselects a random tilt angle, ranging from O degrees (so that
the target landmark can be in the view field when it is 7-8 nsetevay) to 35 degrees
(so that the target can be in the view field when it is less tharefer away); th&isk
Managerdoes a similar thing, but it only selects a random tilt angi@oe third of the
actions it bids for, while it sets a null tilt angle on the athgo thirds, since most of the
landmarks (actually, all but the target) are at the samehheigthe cameras (i.e. in the
null tilt angle plane); finally, thé&kescuerwhen bidding because the imprecision is too
high, does two visual scans around the robot, one with aittudhigle, and another one
with a random positive tilt angle.

Task: Reach the target landmark, eventually avoiding othersgatbe way and
build a map of the environment.

Results: The behavior of the robot in this scenario was similar to the exhibited
in the previous one. However, it reached the target in 85%®trials; in 15% of the
trials it failed because the error on the location of thedgairgade it suppose it was at
the target location when it was really not there yet. This eassed by the target being
occluded by other landmarks, and the constant change ectoay needed to avoid
these landmarks. These two factors caused the locatioe tdithet stored in the Visual
Memory to increase its imprecision. However, the imprecisivas not high enough for
the Rescuetto become active. A difference with the previous scenartbas theRisk
Managerbid for looking both ahead and around, since there were nargnharks, and
at some point, it had enough landmarks ahead, but not arsorithid to look around.
Some examples of maps built in scenarios of this class duhi@grials are shown in
Figure 6.8. In these maps, numbers represent landmarksltioe has seen, and the
triangular regions correspond topological unitsof the Map Manageils topological
map (see Chapter 3 for details on how this map is built).
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Scenario 4. Several landmarks and obstacles

Description: In this scenario there are also a few non visible long obstambtween
some landmarks that completely block the shortest path franstarting point to the
target landmark.

Task: Reach the target landmark avoiding obstacles and buildintpp of the
environment, and using it to compute diverting targets.

Results: the robot did successfully encode the obstacles on thedgjwall map and
used it to compute diverting targets. In 58% of the trialsyanie diverting target was
computed in order to avoid a long obstacle blocking the pirest of the obstacles
were avoided by the Pilot system, with no need to compute miverting targets. In
18% of the trials, however, it was necessary to compute analikierting target, since
the Pilot found the path blocked again by a long obstacle. Herother hand, in 24%
of the trials, the Pilot was able to avoid the long obstackes, did not realize that
they were such long obstacles. This situation happened theecrash points with the
long obstacle were not close enough to each other or to tleknlarks, so they were
considered as independent obstacles. Thus, when the flbttd avoid these “point
obstacles”, it was actually avoiding the long obstaclehwiitt realizing it. In such
situations, the robot reached the target without havingptopute any diverting target.
Bids for moving actions were distributed very similarly ashe two previous scenarios.
The only difference is that thRescuemlso won some bids (actually, it only wins one
bid for stopping the robot each time it asks for a divertingéd). Regarding bids for
looking actions, now th&arget Trackeralso won a few bids to look towards the target
to decrease its location’s imprecision. Be it for theseamdior because the scenario
was not complex enough, the imprecision was never high dneaghat theRescuer
had to bid for looking actions. Again, some of the trialsddibecause of the error on
the target’s location. In Section 6.7 we describe in detad tial in this scenario.

6.7 A Trial Example

In this section we describe in detail one of the trials run stanario of class 4. The
environment and the path followed by the robot are shown guifé 6.9. The target
landmark in this trial is landmark number 10. In Figures Gahd 6.11 the incremental
building of the map is depicted. They show both a 2D repredimt and the topological
map actually stored by thdap Manager In the topological maps, although not shown,
the arcs have a fixed cost of 1, unless otherwise specifiedrddg.12 and 6.13 show
the evolution of the bids of each agent and the Pilot for mgand looking actions,
respectively. In these graphics, the filled areas indideeagent that made the highest
bid at that point in time. The corresponding points in Figbi@are also shown. Next,
we comment on the relevant points of the path:

e A: Starting point of the trial. Initially, landmarks 10, 29cf9 are visible. With
these three landmarks, no map is created, since at leasafalmarks are needed
in order to start building the map. Landmark 10 is selectethagarget by the
user and th&kescueiis informed about it. Then, thRescuembids for doing an
initial sweep, as described in Section 4.4.4. During thieegy landmarks 4, 21
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Figure 6.9: Path followed during the trial. See explanatibrelevant points on the text

and 17 are also identified. With these new landmarksMhp Manageris able
to start building the map. The step by step update of the mgipasn in Figure
6.10. The corresponding updates after seeing each of thes=eelandmarks are
maps (1) to (3). When the sweep is finished, Bescuerinforms theTarget
Tracker about the target being landmark 10, which immediately sthidding
for going towards it, and the robot starts moving. Actuathg point A in the
graphics of the bids corresponds to this moment, wheménget Trackerstarts
bidding. As can be seen in the graphic of moving action blus Rilot won most
of the bids. This was so because landmark 4 was close to tlog, soid the Pilot
wanted to avoid it. The trajectory, however, was minimallgdified. Before
reaching point B, landmark 13 is identified, and the map isatgdi accordingly,
resulting in map (4) in Figure 6.10.

e B: The robot bumps into the obstacle between landmarks 29 ai4mme-
diately backs up. However, it is not yet considered as beitang blocking
obstacle, since there is still enough space between thie prast and landmark
29, through which the robot could pass. This back up is a-buéiction of the
Pilot, and it does not bid for executing it. That is why in thraghic theTarget
Trackerwins the bids. However, while the back up action is being etext, these
bids are not taken into account.
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Figure 6.10: Map created during the trial
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Figure 6.11: Map created during the trial (cont.)
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Figure 6.12: Moving bidsTarget Trackeiin red, and Pilot in green
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Figure 6.13: Looking bidsTarget Tracketrin red, Pilot in green an&isk Manageiin
blue
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C: After backing up, th@arget Tracketbids again for moving towards the target,
but these bids are surpassed by the Pilot’s bids to avoidigielgtected obstacle
(as can be seen in the moving bids graphic), and the trajeistslightly modified.

D: The robot bumps again into the obstacle and backs up. Aliesécond crash,

the obstacle is considered to be blocking the path. The Rifotms the Navi-
gation system about the blocking situation. This inforimais internally sent to

the Map Managerwhich updates the map (the corresponding arc is assigned an
infinite cost, see map (4b) in Figure 6.11), and to Rescuerwhich asks the
Map Managerfor a diverting target. Again, although in the graphics Taeget
Trackeris winning the bidding, the back up action is really beingeaxed.

E: TheMap Managercomputes the diverting target as being: “to cross the edge
between landmarks 17 and 29” and informs Bescuerwhich will inform the
Target Trackerabout the new target. This agent starts bidding to move thetro
so that it crosses the given edge.

F: At this point, theTarget Trackerconsiders that the edge 17/29 has been crossed
and informs about it. This causes tRescueto set the target to be the original
one (landmark 10). Th@&arget Trackes bids are again to move towards this
landmark. Before reaching point G, landmarks 1 and 20 aectid and the map

is updated (maps (5) and (6)). Landmark 20 is not visible guFé 6.9; it is
behind landmark 1.

G: The proximity of landmark 13 makes the Pilot bid high to alitj surpassing
the Target Trackes bids, and the robot’s trajectory is modified. While avaigli
this landmark, landmark 7 is detected, and the map is updegedlting in the
final map (7).

H: At this point the Pilot considers that landmark 13 has beenad and stops
bidding. TheTarget Trackermwins again, and it makes the robot go towards the
target.

I: The targetis finally reached.

Analyzing the graphic of looking action bids, we can see thatwinning bid is
periodically changing between the Pilot and tisk Manager The bids of theTarget
Trackerare very low, since the target is precisely located duriegihole trial. Around
point H, the bids of th&isk Managerlso decay. This is so because at that point, there
are more than six landmarks behind the robot, which makesighé®. The winning
bids of theTarget Tracker at point I, are due to the fact that this agent bids very high
to look towards the target when this has been reached. Theitoee of this action has
no intention of decreasing the imprecision of the targetstion, but it is just a way to
show that it “knows” that the target has been reached.
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Table 6.3: Sources of computation of the target’s location

Vision System | 12.7%
Visual Memory | 76.1%
Map Manager | 11.2%

6.8 Discussion and Future Work

The results obtained confirmed that, as already seen thrsinghlation, the bidding
coordination mechanism and the mapping and navigationadstivork appropriately.
The bidding mechanism achieves the desired effect of cantpthe simple behaviors
of the agents into an overall behavior that executes the appsbpriate action at each
moment, and leads the robot to the target destination. ARéomapping and navigation
method, we have seen that it is able to build a map of the emviemt and is used for
two different purposes: on one hand, to compute divertingetas when the robot finds
the path to the target blocked, and on the other hand, to ctaripa location of the
target when this is not visible. Regarding this latter us¢hefmap, Table 6.3 shows
the statistics of how the target’s location is computed. 3twerces of this computation
can be the following: (1) the real Vision system, that is, theget is recognized and
its location computed from the images, (2) the Visual Mem@sscribed in Chapter
4), and, (3) thevlap Managey that is, the location of the target is computed using the
beta-coefficient system and the locations of other landmakk can be seen from the
statistics, most of the time (76.1%) the location is comguising the Visual Memory,
however, sometimes (11.2%) the Navigation system must ms&ef its “orientation
sense” in order to figure out where the target is. Figure 6hbtvs the evolution of
the imprecision on the target's location and the differentrses (the colored band at
the bottom of the graphic). Although, usually, the robotiees that it has reached the
target by obtaining its location from the Visual Memory, éinsetimes realizes it using
the orientation sense. However, since the computationeofatget location using the
orientation sense is more imprecise than the Visual Memioegduse it accumulates
the imprecision of several landmarks’ locations), the tammetimes informs about
having reached the target when it has not really done it, fdilisg in its mission.

The scenarios used in the real experiments were not veryleamfherefore, some
more experimentation on more complex scenarios should Herped. These new
scenarios should include more blocking obstacles, pgshiing some cul-de-sacs,
so that the robot would need to undo the path already done.

Although the good results obtained indicate that the agamtsvell designed, we
could still improve them and, hopefully, improve the penfiance of the overall robotic
system. Actually, during the experimentation with the meddot, we already did some
refinement. However, this refinement can be a never-endsikgaad for this reason we
decided to stop it and do the real experiments with the versfdhe agents described
in Chapter 4. The possible further refinement of some of trenesgcould go in the
following directions:

e Target Tracker this agent could do a more intelligent tilt angle selectismch
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Figure 6.14: Evolution of the target’s location imprecisind sources of computation

as being a function of the distance to the target, thus, &sing the chances of
having it in the view field of the camera.

e Risk Manager this agent could also bid, not only for looking ahead or achu
but also to other areas with fewer landmarks, or even sapatrandom direction
to look to. Right now, if there are very few landmarks ahehis, 4gent sticks to
bidding for looking ahead, and never bids for looking arquihdis, ignoring a
large part of the environment. An alternative to modifyihg Risk Manager
would be to add a new agent with this behavior.

Some improvements could also be done on the Pilot and Vigistems. Regarding
the Pilot, we could use a better obstacle avoidance algoritWith the current algo-
rithm, only the closest obstacle is considered for comutire avoidance path. We
could improve the robot’s performance if the Pilot took iatocount all the obstacles
and landmarks stored in the Visual Memory, thus, producietteb avoidance paths.
We are also planning to equip the robot with a laser scanrtgs l&ser would be con-
tinuously scanning a 180 degree area in front of the robattarately detect obstacles
that are several meters away. With this new sensor, the ¢aldd avoid the obstacles
before bumping into them, thus, generating better pathgaRiéng the Vision system,
we plan several improvements. The first one is to finish threestelgorithm, so we can
use the two available cameras for computing the distanceetéahdmarks. Another
very important improvement is to make the Vision system miokist, so that it does
not need to check the recognized landmarks against the \iseraory. Actually, we
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should use the robust Vision system to adjust the impratssid the Visual Memory.
We also plan to convert the Vision system into a Multiagerdidfi system. In this
system, several agents would process the camera imagediffétient algorithms, and
the agents should agree on what could be a good landmarkdzdedsalient enough,
robust, static, etc.). A final improvement of the Vision gystwould be to let it bid for
services by other systems (either the Pilot system or)tsalith the bidding capability,
it could request the Pilot to approach a landmark to bettargeize it, or even “request
itself” to slightly move the camera so that a partially visitandmark enters completely
the view field.






Chapter 7

Conclusions and Future Work

7.1 Revisiting the Objectives

The need for autonomous robots has been rapidly increasititeilast years. There
are many areas in which these robots are used, ranging fremi¢s robots”, such as
museum guides or transportation robots in factories, totbsed for tasks to be per-
formed in inaccessible environments, such as planetalpetjpn, hazardous material
handling and rescue missions.

Usually, service robots operate in indoor structured emrirents. The problem of
navigating through indoor environments has been the fotrsbotics research during
many years, and many successful results have been achiésdlly, the map of
the environment is given a priori (either a detailed metrigpnor a topological one,
showing the spatial relationship among different placeb@®nvironment), or, when it
is not given, there is an initial phase for learning the mapcéit is learned, the robot
repeatedly performs the task in this environment. Exampiesich robots are those
performing delivery tasks in office environments or guidiagrs in museums [67, 9].

On the other hand, inaccessible environments are usuadtyawn and unstructured
(as is the case in most outdoor environments), which poseradifficult problem. The
lack of structure of such environments makes the map bgjidémy difficult. Moreover,
the large scale of these environments also adds to the diffictimapping and navi-
gation tasks. These characteristics make it impossibl@pdyahe approaches used
in indoor structured environments. Although there has ta#en a lot of research on
navigation in unstructured environments, it is still an opeoblem.

This PhD thesis has focused on this latter problem, thatris)avigating in un-
known unstructured environments. The research was part of a robotics project whose
goal is to have a completely autonomous robot capable ofyatiag in outdoor un-
known environments. A human operator selects a target ukangisual information
received from the robot’'s camera, and the robot has to réadthiout any further inter-
vention of the operator. Navigating to a target is a fundaaleéask of any mobile robot,
whatever its mission is (be it grasping objects, analyzegrt, looking for something,
etc.) The task to be performed once the target has been kacbetside the scope of
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the project and this thesis.

A first milestone of the project was to develop a navigatiostem for indoor un-
known unstructured environments. The reason for startiitly iwdoor environments
was that the development of robust vision systems for outdpeironments is still an
open and very difficult problem in the field of computer visiohherefore, since the
vision system was not the focus of our research, we decidsthtbexperimenting in-
doors, for which vision systems are much easier to develapebler, we designed the
landmarks so that we could easily change their locatiors, thermitting us to configure
scenarios of different complexity.

This thesis has reported the research carried out in ordacdaomplish this first
milestone. For achieving it, we have combirdaddmark-based navigatiofuzzydis-
tance and angle representations andtiagent coordinatiotbased on &idding mech-
anism The objective of our research was to haveohust navigation system with
orientation sense for unknown unstructured environments using visual information.

7.2 Contributions

The research has been focused on two main threadsottieol architecture and the
mapping and navigation method. The contributions of the thesis on these two areas
are presented next.

Regarding thecontrol architecture, we have proposed a general coordination ar-
chitecture based on lsidding mechanism. In this architecture there are two types of
systems:executive systenanddeliberative systemsExecutive systems have access
to the sensors and actuators of the robot. These systenrsseffaces for using the
actuators to the rest of the systems (either executive dvatative) and also provide
information gathered from the sensors. On the other harihedative systems take
higher-level decisions and require the services offerethbyexecutive systems in or-
der to carry out the task assigned to the robot. Although Werdintiate between these
two types of systems, the architecture is not hierarchaa, coordination is made at
a single level involving all the systems. This coordinati®ibased on a simple mech-
anism:bidding Deliberative systems always bid for the services offeneexecutive
systems, since this is the only way to have their decisiorswged. Executive systems
that only offer services do not bid. However, those exeeutiystems that require ser-
vices from any executive system (including themselves)trals® bid for them. The
systems bid according to the internal expected utility eiséed to the provisioning of
the services. A coordinator receives these bids and dewgilie$h service each of the
executive systems has to perform.

The bidding mechanism assures that the action actuallgleiacuted by the robot
is the most valued one at each point in time, and thus, if tiséesys bid rationally,
the dynamics of the bids lead the robot to execute the negeastons in order to
reach a given target. An advantage of using such mechaniimtishere is no need
to create a hierarchy, such as in the subsumption archigedbut it is dynamically
changing depending on the specific situation of the robottaedcharacteristics of
the environment. A second advantage is that its modular g@mvorms an extensible
architecture. To extend this architecture with a new cdipabve would just have to
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plug in a new system. Moreover, the coordination mechanambe applied at different
levels of the architecture, be it at the overall architextavel, or within each one of the
systems.

For our specific navigation problem, we have instantiates #inchitecture with
three systems: the Pilot, Vision and Navigation systemse fifist two being execu-
tive systems, and the latter one being deliberative. Thdaddden system has been
designed as a multiagent system using the same biddinginatich mechanism used
in the overall architecture. The high-level task of navilggito a given target has been
decomposed into a set of simpler tasks, and we have desigreggent competent in
each of these tasks. These agents compete, since they niggirite execution of con-
flicting actions. As in the overall architecture, each adeds for the services offered
by the executive systems, and there is a coordinator agatrdéiesides which is the most
urgent request. This request is then sent as the request Nfathigation system, which
will have to compete with the requests of the Pilot system.

Regarding thenapping and navigation method, we have addressed two problems:
the problem of providing the robot with orientation sense &me problem of build-
ing a map of the environment and using it for navigationappges. Concerning the
orientation sense, we have built upon previous work preskloy Prescott [55], which
describes a model for storing spatial relationships amandrharks in the environment.
We have extended Prescott’s model so that it can be useduwitly fnformation about
the locations of landmarks. This is of great importance wherking with real robots,
as itis impossible to avoid dealing with the imprecisionedirworld environments. As
far as we know, this is the first application of Prescott’s glaih a real robotic system.
As part of this extension, we have also developed methodsufitding a topological
map of the environment, which is used for computing divertargets, needed by the
robot when it finds that the path to the target is blocked.

Although the robotic system proposed in this thesis has pegsented as a whole
system, including both the control architecture and the pivap method, they are
two solutions for two completely independent problems. §hue could substitute
Prescott's mapping method by any other mapping method é@yether topological ap-
proach, a metric approach, etc.). Obviously, the partitida of each system depend
on the mapping method (e.g. it would make no sense havingiarvgystem if the
map uses sonar readings), but the overall architecturetsugsdardination mechanism
would not be affected at all by the choice of this mapping roéttSimilarly, our map-
ping method could be used in a robotic system controlled lypyo#imer architecture (be
it hybrid, centralized, etc.).

We have obtained successful results, both on simulatioroarmgal experimenta-
tion, showing that the mapping method is capable of buildingap of an unknown
environment and using this information to move the robotrfre starting point to a
given target. The experimentation also showed that theifgdohechanism we de-
signed for controlling the robot produces the overall bébraef executing the proper
action at each moment in order to reach the target. Thus, wsider that we have
satisfactorily achieved the objective of developing a gation system with orientation
sense for unknown unstructured environments.

In parallel with the experimentation with the real robot, have also used simula-
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tion to apply Machine Learning techniques. More concreteyhave used Reinforce-
ment Learning for having the system learn how to use the camere appropriately,
that is, to use it only when needed. We have also used a Gexlgticithm approach,
in order to tune some of the parameters that define the behafvibe agents in the
Navigation system. Successful results have been obtaiitledbath techniques, though
there is still much work to do. Actually, they could easilythe subject of several PhD
theses, especially the work on Reinforcement Learning.

7.3 Future Work

Although, as we have just said, we consider that the goaleofttesis has been accom-
plished, there are plenty of improvements that could be dooeder to achieve better
results. In the following sections we present, for each efdbpects of the research
carried out in this thesis, some of the open issues thatwefather research (some of
which we are already working on). Note that it is basicallypapilation of the Future
Work sections of each of the previous chapters.

7.3.1 Mapping and Navigation

The extension of Prescott's method, together with the é@lyos to compute diverting
targets, has been shown to successfully encode the enwrdrinto a map that permits
navigating from a starting point to the target. However, weild like to explore other
mapping methods, so that the combination of the differerthods adds robustness to
the Navigation system. With the current mapping methodrdbet needs to see at least
three landmarks in order to be able to use the informatiaredtim the map. We would
like to develop some other mapping methods to cope with tisatsons in which the
robot has very little information (i.e. less than three laradks). These methods would
be even more qualitative than our fuzzy extension of Préseoethod. We could, for
example, look at the field of Spatial Cognition, which workishwspatial relationships
such as “landmark X is at the left hand side of the line coringdandmark Y and
landmark Z".

7.3.2 Robot Architecture and Multiagent Navigation System

One of the first things to explore in our coordination arattiiee is the use of a more
economic view of the bidding mechanism. With this approaelth system (or agent)
would be assigned a limited credit, and they would only bevedd to bid if they had
enough credit. There should also be a way to reward the sgg@gents). If not, they
would run out of credit after some time and no one would be &bl#d. The difficulty
of the reward mechanism is how to decide when to give a rewaddwdno deserves to
receive it. This problem, known as the credit assignmenblpro, is very common in
multiagent learning systems, especially in Reinforceneatrning, and there is not a
general solution for it; each system uses an ad hoc solutiothé task being learned.
An alternative to the economic view would be to have a medmaridb evaluate
the bidding of each system (agent), assigning them suawgedifailing bids, or some
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measure of trust, in order to take or not take into accourit tnions. However, we
would face again the credit assignment problem.

Regarding the specific set of agents we have designed foingdlve navigation
problem, we could introduce some improvements on some aif,thed even add new
agents to the Navigation system. Some of these improveroeals go in the following
lines:

e Target Tracker this agent could do some more intelligent tilt angle sébect
being a function of the distance to the target, thus, iningathe chances of
having it in the view field of the camera.

¢ Risk Managerthis agent could also bid not only for looking ahead or achuout
also to specific areas with fewer landmarks, or even sebpeatimndom direction
to look to. Right now, if there are very few landmarks ahead; agent sticks
bidding for looking ahead, and never bids for looking arguihdis, ignoring a
large part of the environment. An alternative to modifyiihg Risk Manager
would be to add a new agent with this behavior.

Some improvements could also be done on the Pilot and Vigistems. Regarding
the Pilot, we could use a better obstacle avoidance algoritWith the current algo-
rithm, only the closest obstacle is considered for comgutite avoidance path. We
could improve the robot’s performance if the Pilot took iatocount all the obstacles
and landmarks stored in the Visual Memory, thus, producetteb avoidance paths We
are also planning to equip the robot with a laser scanners laser would be contin-
uously scanning a 180 degree area in front of the robot torataly detect obstacles
that are several meters away. With this new sensor, the dildd avoid the obstacles
before bumping into them, thus, generating better pathgaRiéng the Vision system,
we plan several improvements. The first one is to finish theestalgorithm, so we
can use the two available cameras. Another very importamtasement is to make the
Vision system more robust, so that it does not need to chexkettognized landmarks
against the Visual Memory. Actually, we should use the robision system to adjust
the imprecisions of the Visual Memory. We also plan to cohiher Vision system into
a Multiagent Vision system. In this system, several agemtslevprocess the camera
images with different algorithms, and the agents shouldegn what could be a good
landmark (salient enough, robust, static, etc.). A finalrompment of the Vision sys-
tem would be to let it bid for services by other systems (eithe Pilot system or itself).
With the bidding capability, it could request the Pilot toqpapach a landmark to better
recognize it, or even “request itself” to slightly move tlaera so that a partially seen
landmark enters completely the view field.

7.3.3 Reinforcement Learning

Although the results obtained through Reinforcement Lisgrahowed that the system
learned to select actions in order to solve the complex catnadeoff, we still need to
integrate it into the overall multi-agent system, to sed&é performance of the whole
system is also improved. Even though thearning Agenknows which actions it has
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to bid for (following the learned policy), it is not clear wtigs bidding function should
be; it could be a constant bidding value, or a bidding dependn the values of (s).

Some more further work will be focused on the design of thiestad feature repre-
sentation and the set of available actions. Asada et alrffglgsed a solution for coping
with the “state-action deviation problem”, in which actswoperate at a finer grain than
the features can represent, having the effect that mostresctippear to leave the state
unchanged, and learning becomes impossible. We plan toateghe suitability of this
approach in our experiments. Regarding the action set nlesig found that the set of
available actions was maybe too small and some more actiagbmneeded. We are
working on an “action refinement” method [20] that exploitepknowledge informa-
tion about the similarity of actions to speed up the learqnagess. In this approach,
the set of available actions is larger, but in order to novglown the learning process,
the actions are grouped into subsets of similar actionsly Hathe learning process,
the Reinforcement Learning algorithm treats each subsandfar actions as a single
“abstract” action, estimating(s’|s, a) not only from the execution of actian) but also
from the execution of its similar actions. This action abstion is later on stopped, and
then each action is treated on its own, thus, refining theegabf P(s'|s, a) learned
with abstraction.

7.3.4 Genetic Algorithm

We should analyze the generality, in terms of different emvinents and starting points,
of the parameters obtained by the genetic algorithm. Fuwtbek should also focus on
designing an agent capable of identifying the complexittheftask being performed,
so that the parameters can be switched from one set to andaerill explore the use

of Case Base Reasoning techniques on this “situation fititagent.

7.3.5 Real experimentation

The results obtained through real experimentation confirtiat, as already seen
through simulation, the bidding coordination mechanisrd e mapping and navi-
gation methods work appropriately. Nonetheless, the smmased in the real ex-
periments were not very complex, and some more experimentah more complex

scenarios should be performed. These new scenarios simolldé some more obsta-
cles, eventually having some cul-de-sacs, so that the wdaid need to undo the path
already done.

However, the big next step on our research is to move the empstation to out-
door environments. The main difficulty of doing so is the &aility of a vision system
for outdoors, which we do not have at this moment. Howevethivek that the success-
ful results obtained on indoor unstructured environmeaotsdtbe quite easily obtained
outdoors, since neither the navigation method nor the obatchitecture are dramati-
cally affected by the differences of indoor/outdoor enmir@nts.



7.3. Future Work 113

7.3.6 Case Based Reasoning

Besides the use of CBR described in the Genetic Algorithmaamh, we also plan to
add a CBR agent that would bid for actions. This agent wouddtbe information of
past experiences in different trials (stored in form{situation,action,resuttuples) to
recognize similar situations, and would then bid for exiguthe actions (or similar
actions) that best suited those situations. The difficultthis approach is to find the
proper way to characterize the situations and how to comparesituations in order
to find out how similar they are. In this approach we also faeedredit assignment
problem, since we cannot evaluate a situation-action épeg until the robot either
successfully reaches the target or fails in its mission.
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