Chapter 6

Real Experiments

In this chapterwe describethe experimentscarriedout with the realroboton real en-
vironments.We firstly describetherealrobotic platformwe have usedfor this experi-
mentationandthevision systemwe have developedn orderto recognize¢hebarcoded
landmarksusedin the experimentatiorervironment.A brief descriptionof agraphical
controlinterfaceis alsogiven. Finally, we describein detailthe differentscenario®on
which the experimentshave beencarriedout andthe resultswe have obtained.

6.1 The Robot

Therobotusedin the experimentatioris an ActivMedia® Pioneer2 AT. It is a4-wheel
drive all-terrainrobot, equippedwith a panandtilt unit with two B&W cameras.lt
is alsoequippedwith front andrearbumpersfor collision detection. The dimensions
of the robotare 50x50x 26 (in cm, lengthxwidthx height). The field of view of the
camerass of 45 degreesandthe pan/tilt unit canpanfrom +150 (left) to -150 (right)
degreesandtilt from -90 (down) to +90 (up) degrees.Therobotis calledMarkFinder,
sinceits navigationalskills are basedon finding landmarksin the environment. Some
picturesof therobotareshown in Figure6.1.

Althoughthefinal objective of the projectwe areinvolvedin is to have acompletely
autonomousobot,we arecurrentlyworking with off-boardcontrolandvision process-
ing, asit is easierfor programminganddetuggingour algorithms. We usea wireless
Etherneto communicatevith the robot(to sendcommandso thewheels’andpan/tilt
unit's motors,andto receve informationaboutodometryand bumperactivation),and
theimagesaresentthroughavideotransmitteseeFigure6.2). To make therobotfully
autonomouswe would only needto put the control andvision processinglgorithms
into its on-boardcomputeyalthoughit shouldstill needto sendsomeinformationback
to anoff-boardcomputerfor manuallyselectingthetarget.

Theexperimentatiorhasbeencarriedoutin anindoorunstructurednot office-like)
environment,with easily recognizableand controlledlandmarksand obstacles. The
environmentis anareaof about50m?, containingtenlandmarksplus the targetanda

1ActivMediaRobotics http://iwwwactvmedia.com
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Figure6.1: Left MarkFinder robot. Right Detail of the panandtilt unit with two
B&W cameras

few nonvisible obstaclesA difficulty in realervironmentds thevision systemasit is
highly sensitve to changesn theillumination, which makesit very hardto detectob-
jects. Therefore we have developeda simpleandrobustvision systemthatrecognizes
barcodedandmarks. Moreover, the simplicity of the landmarkspermitsus to easily
configurescenariowith differentcompleity levelsby changingtheir location,aswell
asthelocationof the obstaclesThe vision systemandthe landmarksaredescribedn
thefollowing section.

6.2 Vision

Sincewe do notfocusour researcton the Vision systemof therobot,we did notintend
to develop a Vision systemcapableof recognizingcomplex objects,but just a very
simpletypeof landmark.The simplesttype we thoughtof wasbarcodes.
Landmarklabelshave a commonpart of five vertical black bars,to indicatethat
it is a landmark,and at the right side of the bars,a vertical binary codificationwith
blackandwhite squaresThe binary codeis composedf five squaregblack meaning
1, white meaning0), sowe have 32 differentcodes.However, codesO and31 arenot
used,asthey give mary problemswhentrying to identify them,sowe have a total of
30 differentcodes,which is enoughfor our ervironment. We have usedboxes with
the samelandmarklabel on their four sidesso the Vision systemis ableto detectthe
landmarksfrom ary perspectie. The labelsare printedon DIN A4 papers,andthe
dimensionsof the boxesare 30x 30x40 (lengthxwidthxheight),having the labelsat
thetop of eachside. Examplesof suchlandmarksareshawvn in Figure6.3.
Thealgorithmfor recognizingtheselandmarkds basedon thefactthatthe pattern
of a seriesof alternatedblack andwhite barsof equalwidth is very unusual. First of
all, theimageis binarized,sinceit is in gray scale,andthe algorithmneedsto have
pureblackandwhiteimages.A closeoperationis alsoapplied.This operations useful
for removing noisefrom theimage.Oncethe binarizationandthe closeoperationsare
done,the algorithm startsscanningthe imageline by line, looking for the patternof
blackandwhite bars.Whenit findssucha pattern,it scansvertically thebinarycodeto
identify whichlandmarkhasbeendetected Dependingon thelighting, alandmarkcan
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Figure6.2: Communicatiorwith therobot

be detectedusinga binarizationthreshold but not detectedor otherthresholdsThus,
this scanningprocesds doneseveraltimeswith differentthresholds.Oncethewhole
imagehasbeenprocesseavith all thethresholdvalues theinformationof all detected
landmarksis sentto the Navigation system. A flowchartof the processs showvn in
Figure6.4.

Althoughtherobotis equippedwith two camerasye arenow processingnly the
imagesof one of them, aswe have not yet finishedthe implementatiorof the stereo
vision algorithm. This algorithmwould usethe imagesfrom both camerago compute
thedistanceo the detectedandmarks However, we simulatethatwe alreadyhave this
stereovision algorithm. To do so, we have designedhe landmarkssothatall of them
have the samesize. This way, knowing the heightof the bars(in pixels of theimage)
of a landmark,the distancefrom the robot to that landmarkcan be computed. The
headingis takenasthe angleto the centralpoint of the label. However, evenwith the
robotstoppedanddueto illumination conditions theimageprocessinglgorithmdoes
not alwaysdetectthe landmarksn the sameplace(it canvary somepixels). Thus,the
computeddistancesandangleshave someimprecision.

Sincethequality of thecamerass not very good,the Vision systemhassomeprob-
lemswith recognizinglandmarksthat arefar from the robot. To have a robustrecog-
nition system,we have setthatit only informs aboutthe landmarksthat are within a
distanceof 3 metersaroundthe robot. However, evenif alandmarkis in this “visible
area”,the Vision systemsometimesnisidentifiesit. To solve this problem,we require
thata landmarkhasto be recognizedn several subsequerframeswith the samecode
beforeinforming aboutits detection.

But eventhis lastrequirements not alwaysenoughto give correctlandmarkiden-
tification. To add more robustnesgo the Vision system,the detectedandmarksare
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Figure6.3: Left Landmarkiabel21 (code=10101=21). Right Oneof theboxeswith
multiple landmarklabels

checledagainsthe VisualMemory (seeChapter4 for a detaileddescriptionof the Vi-
sualMemory). For eachlandmarkin the list of detectedandmarks.two checksare
done. First, we checkthat the detectedandmarkis notin a locationcloseto another
landmarkstoredin the Visual Memory (i.e. the distancebetweenthe two locations—
one given by the Vision systemand the other one storedin the Visual Memory — is
belown athreshold).If thisis thecase andthecodeof thelandmarkdiffersfrom theone
given by the Vision system we replacethe codeof the detectedandmarkby the one
storedin the VisualMemory on thatlocation. If the codeis the samethenthelocation
givenby the Vision systemis assumedo be correct,andit replaceghelocationstored
in the VisualMemory. Secondlywe checkthatthe detectedandmarkis not storedin
the VisualMemory at a very differentlocationthanthatgivenby the Vision system.If
thisis thecaseandthelocationstoredin the VisualMemoryliesin theview field of the
camerathis locationis givenasthelocationof the detectedandmark.If thelocation
doesnotlie in theview field, thelandmarkis ignored.Finally, if the detectedandmark
is neitherstoredin the VisualMemory nor locatedcloseto anothedlandmark,it means
thatit is anew landmark,andit is addedto the VisualMemory. Table6.1 summarizes
the actionstaken in eachsituation. We indicatethe information aboutthe landmark
(codeandlocation)thatis finally sentto the Navigationsystemandhow the informa-
tion of the Visual Memory is modified. The subscriptVS standsfor the information
givenby the Vision systemwhile the subscriptVM refersto theinformationstoredin
theVisualMemory:.

Although this checkaddsrobustnesgo the Vision system,it may have undesired
effectsin somesituations,sinceit gives more importanceto the information stored
in the VisualMemorythanto thatcomingfrom the Vision system.For instancejf the
locationof acorrectlydetectedandmarkdifferstoomuchfromits locationstoredn the
VisualMemory, notbecaus®f anerrorof theVision systembut dueto theimprecision
of thestoredocation,it will notbeupdatedalthoughit shouldbe. Anotherproblematic
situationwould ariseif the robotwere movedto anotherocation,without it noticing
it (whatis known asthe “kidnapping problem”). From the new location, the Vision
systemwould detectsomelandmarks but their locationswould not matchat all with
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Table6.1: CheckagainstisualMemory

Closelocation Differentlocation
—Right recognition— —Wrongrecognition—
return(idvs,locyvs) if locy ar in viewfield then

SamelD Updatelocationin VM return(idy s, locv ar)

elseignorelandmark

—Wrongrecognition— | —Right identification—
DifferentiD | return(idvar,locys) return(idy s, locv s)
Updatelocationin VM Add to VM

the locationsstoredin the Visual Memory, and,therefore they would not be updated
eithet The first problemcan be solved by changingthe imprecisionthresholdabove

which thelandmarksareremovedfrom the VisualMemory, sothatit only keepsthose
landmarkswhoselocationis very preciselyknown. However, thereis no way to solve

the“kidnappingproblem”. The only way to handleit would beto have a betterVision

systemsothatit would not needto checkthelocationswith the VisualMemory. Since
we still do not have sucha Vision system,andin our experimentsthe robotis never

“kidnapped”,we rely ontheVisualMemory.

With all theseprovisions,landmarksarealwayscorrectlyidentified,thereforethere
is no uncertaintyaboutthe presencef landmarksalthoughthereis imprecisionabout
their exactlocation.

The fact of the Vision systembeing only capableof recognizinglandmarksnot
furtherthan3 meterdrom therobot,togethemwith theassumptiorof theinitial visibility
of thetarget, restrictsthe possibleervironmentson which we canexperiment.In order
to be ableto testthe Navigation systemon moreinteresting(larger) environmentswe
have a speciallandmarklabelthatis consideredisthe targetandcanbe seenfrom 7-8
meters.This landmarklabelis of the sametype asthe rest,but hasa larger size (DIN
A1), andwhencomputingthe distancefrom the robotto it, this is takeninto account.
In Figure6.5this largertargetlandmarkis shown (therearefour “standard’landmarks,
plusthelargertarget, placedhigherthanthe others).

i

Figure6.5: Largertargetlandmarklabel
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6.3 Graphical Interface

In orderto carry out the experimentationwe have developeda graphicalinterfaceso
thata humanoperatorcangive ordersto therobot. Theinterface,shovn in Figure6.6,
permitsthe operatorto manuallycontrol the robot motion (translationabndrotational
speedskhndthe panandtilt unit movements. The interfacehasa three-dimensional
representatiof the environment,shaving the robot andthe detectedandmarksand
obstacleqincluding thosestoredin the Visual Memory). It also shows the images
gatheredrom thecamerasndalist of detectedandmarks.

The operatorcan selectthe type of landmarksto be recognized.In our case,we
wereonly ableto usethe barcodediandmarkslescribedn the previoussection.Once
thelandmarks'type hasbeenselectedthe Vision systemstartsprocessingheimages
comingfrom the camerasandthe detectedandmarksare displayedin the interface.
Theoperatorcanthenselectoneof the detectedandmarksandsetit asthetargetland-
markto bereached.Oncethe targetis selectedthe operatorcaninstructthe robotto
goto thetarget. Fromthis point on, the robotwill autonomoushnavigatetowardsthe
targetuntil eitherit reacheshetargetor it is instructedto stopnavigating.

Theinterfacealsogivesinformationaboutthe Navigation system suchasthe cur-
renttargetor how mary object,betaandtopologicalunitsthe Map Manager hasstored,
anda graphicalrepresentationf the topologicalmap. Whenthetargetis reachedthe
relevantinformationaboutthetrial is given: trial duration,total lengthof the path,dis-
tribution of winning bidsamongthe agentsandnumberof divertingtargetscomputed.
This informationcanalsobe storedfor later statisticalanalysis.

Althoughtheinterfacehasbeenusedonly with our robot, we have developedit so
thatit canbeusedwith arny roboticsystemsothereis no needto have a specificcontrol
interfacefor eachdifferentrobotwe mayhave in thelab. Theideais to let the operator
configurea specificsystemby choosinga robotplatform (beit wheeled)egged,or ary
otherkind of autonomousobot), the type of landmarksto be used(which mayimply
having morethanoneVision systemrunningin parallel),andthe Pilot andNavigation
systemghatwill controltherobot. Oncetheroboticsystemhasbeenconfiguredijt can
be controlledasdescribedibove.

6.4 Goalsof the Experimentation

Thefirst goal of the realexperimentatioris to checkwhetherthe goodresultsobtained
throughsimulationarealsoobtainedwith therealrobot. Ideally thiswould bethe case,
sothe only modificationsneededvould beto make the existing Navigation systemuse
the real robot insteadof a simulatedone. However, moving from simulationto the
realworld is not thateasy asmary problemsarisewhenworking with physicalrobots
whichwerenot presenbnthesimulatedvorld (unlesghesimulatorusedhasvery high
realism). Theseproblemsare mainly relatedto the motion andvision systemsof the
realrobot.

Regardingthe motion system,we have to take into accountthat the robot needs
sometime in orderto executemotion commands.On simulation,we could run the
systemasfastaswe liked, sincethe commandavere executedimmediately however,
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Figure6.6: Graphicalcontrolinterface
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we cannotdo sowith therealrobot. Thefrequeng of sendinghesemotioncommands
to therobotshouldbe setaccordingo theresponseime of the robot,soacommands
only sentwhentherobotis really preparedo executeit.

Another problemof usinga real robotis the vision system. Although the vision
systemandthe landmarkswe have designedare very simple, the systemis not able
to identify the landmarksall the time, dueto changesn illumination, interferenceon
videotransmissionblurring causedy motionof thecameragtc. Therefore asalready
mentionedthe vision systemneedgo processsomeframesbeforeit is ableto inform
aboutthe detectedandmarks.Thus,the actionsfor moving the cameraandidentifying
landmarksmustalsobe sentwith the properfrequeng so thatthe vision systemhas
time to processenoughframes.

To overcometheseproblems we have tunedthe agentsso thatthe robotis ableto
executeall thecommandgeneratedby the system.

Throughtherealexperimentave alsocheckwhetherthe Navigationsystemwe have
designeds ableto performwell in differenttypesof ervironmentsandif the designof
eachindividualagentis themostappropriatdor obtaininggoodoverall performancef
the Navigation system.To checkthis, we have experimentedwith differentscenarios,
startingwith simpleronesandincreasingheir complexity stepby step. Thetwo main
variableshatdescribehe compleity of ascenaricare:

¢ Densityof landmarks the fewer landmarksin the scenariothe morerisky it is,
sincethe map containsvery little informationaboutthe relative location of the
target and otherlandmarks. On the otherhand,if the densityof landmarksis
high, therewill very probablybe alwayssomelandmarksvisible, andthe Navi-
gationsystemwill be ableto computethe locationof the targetfrom thevisible
landmarks.

¢ Densityof obstaclesif the densityof obstacless low, the pathfrom the starting
pointto thetargetmaynotbeblocked,or only blockedby easilyavoidableobsta-
cles,sotherobotmaynot needto computedivertingtargetsto reachthe original
one. Contrarily, in a scenariovith mary obstaclestherobotis forcedto change
directionvery often,which may causat to losesightof thetarget,andtherefore,
to increasethe imprecisionaboutits location. Moreover, if the obstacledblock
the way to the target, the Navigation systemmay needto computea diverting
targetto reachtheoriginal one.

6.5 The Real Scenarios

The differentclassesof scenariooon which the experimentatiorhasbeencarriedout
arethefollowing:

1. Singlelandmark in this classof scenaricthereis only onelandmark,which is
thetarget,andno obstaclesThis classof scenarioss usedto checkthattherobot
is ableto reachatamgetwhentherearenoreferenceso it andthereexistsaclear
pathto thetarget.
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2. Singlelandmarkand obstacles thesescenariosare composedf a singleland-
mark which is the target, and several small obstacleghat do not occludethe
target, but forcetherobotto avoid themin orderto getto thetarget.

3. Several landmarks in thesescenarioghereareseverallandmarks,oneof them
beingthe target, but no obstaclegapartfrom the landmarksthemseles, which
areobviously seemasobstacles)In thesescenarioshe Navigationsystems able
to build amapof the ervironment,andwe will checkhow goodit is.

4. Several landmarksand obstacles in thesescenariosve add obstaclesetween
the landmarksof the previous scenariosso that they block the robot andit is
forcedto computediverting targetsto reachthe original one. In thesescenarios
the Navigation systemis alsoableto build a mapof the environment,including
thedetectedlockingobstacles.

Somepicturesof thedifferentscenarioxanbe seenin Figure6.7.

The first two classesof scenariosare very simple, and the experimentson such
scenariogust checkthe very basicbehaiior of reachinga targetthrougha quite clear
path.In thesescenarioghetargetis visible all thetime, asthe only obstaclesaresmall
ones thereforenot occludingtheview field of thecamera.Therealtestsarein classes
3 and4, asthetarget may be occludedby otherlandmarks andthe pathto the target
might be blockedby landmarksandobstaclesThus,in thesescenariosthe robotmust
malke useof its navigationalskills.

We imposetherestrictionof the objectson the ervironment(thatis, landmarksand
obstaclespestatic,sotheir locationcannotchangeduringatrial. If thatwereallowed,
the computedrelationamonglandmarkswould be inconsistentandthusthe 3-vector
computatiorwould not bevalid at all.

6.6 Experimentation Results

We describegheexperimentatiorcarriedoutin eachoneof thefour scenarioslescribed
above. We have usedthe parametersbtainedthroughthe GeneticAlgorithm approach
describedn Chapter5 (discardingthosethat are not usedin the final versionof the
Navigation system). For eachscenario thereis a brief discussionof the results. In
eachof thesescenariosve have defineddifferentstartingpoints (two startingpoints
in scenariosl and2, andthreein scenarios3 and4). We have run 40 trials for each
startingpoint andstoredthe following statistics:

e SuccessHilurerate
e Numberof divertingtargets
e Distribution of winning bidsamongthe agents

Therelevantstatisticsof the experimentsareshown in Table6.2.
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Figure6.7: Top left: oneof the obstaclesisedin the ervironments.Topright: scenario
1. Middle left: scenarid2. Middle right: scenarid3. Bottomleft andright: scenario4.
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Table 6.2: Resultsof experimentation(TT: Target Tracker; RM: Risk Manager; RE:
RescuerPS:Pilot system

Scenario|| Success| #d.t. || Winningmoving bids || Winninglooking bids
class rate TT | RE| PS TT | RM | RE| PS
1 100% 0 100% | 0% | 0% | 0% | 54% | 0% | 46%
2 100% 0 79% | 0% | 21% || 0% | 66% | 0% | 34%
3 85% 0 78% | 0% | 22% || 0% | 56% | 0% | 44%
0:24%
4 84% 1:58% | 67% | 2% | 31% | 3% | 41% | 0% | 56%
2:18%

Scenariol. Singlelandmark

Description: Scenariawith justonelandmarkandno obstacles.

Task: Reachthelandmark.

Results: In this scenariahe robot behaior was,asexpected o go directly to the
targetin a straightline. The Target Tradker won 100% of the moving actionsit bid
for, sinceits bids were high becausehe imprecisionaboutthe location of the target
wasverylow. TheRescuedid notbid becausé neverreachedts activationlevels: the
imprecisionwasneverhighenoughandtherewereno blockingsituations.Similarly, as
therewereno obstaclesthePilot did nothaveto bid for changingherobot'strajectory
Regardingthelooking actions the RiskManager andthe Pilot won a similar numberof
bids. Sincetherewasonly onelandmark therisk wasvery high, andthe RiskManager
alwaysbid to look ahead.Thetargetwaspreciselylocatedall thetime, sothe looking
bids of the Target Tradker werevery low, andneverwon.

Scenario?2. Singlelandmark and small obstacles

Description: Scenariowith just onelandmarkandsomesmall obstacledetween
therobotandthelandmark.Thesmallobstaclesrenotvisible andcanonly bedetected
by bumpinginto them.

Task: Reachthelandmark,avoiding the obstaclesletectedy thebumpers.

Results: The robot did always reachthe target. The winning bids for looking
actionswere distributed, again,amongthe Risk Manager andthe Pilot. The Target
Tradker did notwin ary of thebidsbecaus¢heimprecisionof thetarget'slocationwas
not high enough.As in the previous scenariothe Rescuedid not have to interveneat
ary point. Regardingthe moving actions,only the Pilot and Target Tradker won bids:
the Pilot whenanobstaclevasdetectecandavoided,andthe Target Tracker whenthe
pathto thetamgetwasfree.

Scenario3. Several landmarks

Description: Scenariovith mary landmarksandwith no obstaclespartfrom the
landmarksthemseles. In orderto have aninterestingscenariowe placedthe target
landmarklabel higher sothatit wasvisible from the startingpoint, evenif therewere
otherlandmarksin the view line from the robotto the target. If we hadnot doneso,
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Figure6.8: Mapsof 2 differentscenario®f scenaricclass3

the pathfrom the startingpoint to the target would always have beenclear, sincethe
targethasto beinitially visible, which actually correspondso the first scenario.This

changerequiredtherobotto movethe cameraup anddown to beableto have thetarget
landmarkin its view field (in the previousscenariosit wasonly doingapanmovement,
with notilt atall). Thus,wehadto changehelookingactionsin orderto incorporatehe
tilt angle. The agentshidding for looking actionsaddedthetilt anglein thefollowing

way: the Target Tracker selectsa randomtilt angle,rangingfrom 0 degrees(so that
thetargetlandmarkcanbein theview field whenit is 7-8 metersaway) to 35 degrees
(sothatthetargetcanbein the view field whenit is lessthan1 meteraway); the Risk
Manager doesa similar thing, but it only selectsa randontilt angleon onethird of the

actionsit bidsfor, while it setsanull tilt angleontheothertwo thirds,sincemostof the

landmarkgactually all but the target) areat the sameheightof the cameradi.e. in the

null tilt angleplane);finally, the Rescuerwhenbidding becauseheimprecisionis too

high, doestwo visualscansaroundtherobot,onewith anull tilt angle,andanotherone
with arandompositive tilt angle.

Task: Reachthe target landmark,eventually avoiding othersalong the way and
build amapof the environment.

Results: Thebehavior of therobotin this scenariovassimilar to the oneexhibited
in the previous one. However, it reachedhetargetin 85% of thetrials; in 15% of the
trials it failed becausehe error on the locationof the targetmadeit supposet wasat
thetargetlocationwhenit wasreally notthereyet. Thiswascausedy thetamgetbeing
occludedby otherlandmarks,and the constantchangein trajectoryneededo avoid
thesdandmarks Thesetwo factorscausedhelocationof thetamgetstoredin the Visual
Memoryto increaséts imprecision.However, theimprecisionwasnot high enoughfor
the Rescuelto becomeactive. A differencewith the previous scenarids thatthe Risk
Manager bid for looking bothaheadandaround sincethereweremary landmarksand
atsomepoint, it hadenoughandmarksaheadput notaround,soit bid to look around.
Someexamplesof mapsbuilt in scenario®f this classduring the trials are shavn in
Figure6.8. In thesemaps,numbersrepresentandmarksthe robot hasseen,andthe
triangularregions correspondo topolagical units of the Map Manager's topological
map(seeChapter3 for detailson how this mapis built).
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Scenario4. Several landmarks and obstacles

Description: In thisscenaridherearealsoafew nonvisiblelongobstaclebetween
somelandmarksthat completelyblock the shortestpathfrom the startingpoint to the
targetlandmark.

Task: Reachthe target landmarkavoiding obstaclesand building a map of the
ernvironment,andusingit to computedivertingtargets.

Results: therobotdid successfullencodeheobstacle®nthetopologicalmapand
usedit to computedivertingtargets. In 58% of thetrials only onedivertingtargetwas
computedn orderto avoid a long obstacleblocking the path;the restof the obstacles
wereavoidedby the Pilot system with no needto computemoredivertingtargets. In
18% of thetrials, however, it wasnecessaryo computeanotherdivertingtarget, since
the Pilot found the pathblocked againby a long obstacle.On the otherhand,in 24%
of the trials, the Pilot was ableto avoid the long obstaclesbut did not realizethat
they weresuchlong obstaclesThis situationhappenedvhenthe crashpointswith the
long obstaclewere not closeenoughto eachotheror to the landmarks so they were
consideredasindependenbbstacles.Thus,whenthe Pilot tried to avoid these“point
obstacles”,it was actually avoiding the long obstacle,without realizingit. In such
situationstherobotreachedhetargetwithout having to computeary divertingtarget.
Bidsfor moving actionsweredistributedvery similarly asin thetwo previousscenarios.
The only differenceis thatthe Rescuerlsowon somebids (actually it only wins one
bid for stoppingthe roboteachtime it asksfor a divertingtarget). Regardingbids for
looking actions,now the Target Tracker alsowon a few bidsto look towardsthe target
to decreasédts location's imprecision. Be it for theseactionsor becausehe scenario
wasnot complex enough the imprecisionwasnever high enoughso thatthe Rescuer
hadto bid for looking actions.Again, someof thetrials failed becausef the erroron
thetamget'slocation.In Section6.7 we describan detailonetrial in this scenario.

6.7 A Trial Example

In this sectionwe describein detail one of thetrials run in a scenarioof class4. The
environmentandthe path followed by the robot are shovn in Figure 6.9. The target
landmarkin this trial is landmarknumberl0. In Figures6.10and6.11theincremental
building of themapis depicted.They shav botha 2D representatioandthetopological
mapactuallystoredby theMap Manager. In thetopologicalmapsalthoughnotshown,

thearcshave afixed costof 1, unlessotherwisespecified.Figures6.12and6.13shov

the evolution of the bids of eachagentandthe Pilot for moving andlooking actions,
respectiely. In thesegraphicsthefilled areasndicatethe agentthatmadethe highest
bid atthatpointin time. The correspondingpointsin Figure6.9 arealsoshavn. Next,

we commenton therelevantpointsof the path:

e A: Startingpoint of thetrial. Initially, landmarksl0, 29 and19 arevisible. With
thesehreelandmarksnomapis createdsinceatleastfour landmarksareneeded
in orderto startbuilding the map. Landmark10 is selectedasthe target by the
userandthe Rescuelis informedaboutit. Then,the Rescuelbidsfor doingan
initial sweepasdescribedn Section4.4.4. During this sweepJandmarks, 21
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Figure6.9: Pathfollowedduringthetrial. Seeexplanationof relevantpointsonthetext

and17 arealsoidentified. With thesenew landmarksthe Map Manager is able
to startbuilding the map. The stepby stepupdateof the mapis shavn in Figure
6.10. The correspondingipdatesafter seeingeachof thesethreelandmarksare
maps(1) to (3). Whenthe sweepis finished, the Rescuerinforms the Target
Tradker aboutthe target beinglandmark10, which immediatelystartsbidding
for going towardsit, andthe robot startsmoving. Actually, the point A in the
graphicsof the bids correspondso this moment,whenthe Target Tradker starts
bidding. As canbe seenin thegraphicof moving actionbids,the Pilot won most
of thebids. This wassobecausdandmark4 wascloseto therobot,andthe Pilot
wantedto avoid it. The trajectory however, was minimally modified. Before
reachingpoint B, landmark13 is identified,andthe mapis updatedaccordingly
resultingin map(4) in Figure6.10.

e B: The robot bumpsinto the obstaclebetweenlandmarks29 and4 andimme-
diately backsup. However, it is not yet consideredas being a long blocking
obstaclesincethereis still enoughspacebetweerthe crashpoint andlandmark
29, throughwhich the robot could pass. This backup is a built-in actionof the
Pilot, andit doesnot bid for executingit. Thatis why in the graphicthe Target
Tradker winsthebids. However, while thebackup actionis beingexecutedthese
bidsarenottakeninto account.
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Figure6.10: Map createdduringthetrial
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Figure6.11: Map createdduringthetrial (cont.)
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Ilﬂ_mvll 3¢
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Figure6.12: Moving bids. Target Tracker in red,andPilot in green
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Figure6.13: Looking bids. Target Tradker in red, Pilot in greenand RiskManager in
blue
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e C: After backingup,the Target Tracker bidsagainfor moving towardsthetarget,
but thesebidsaresurpassety the Pilot’s bidsto avoid thejust detectedbstacle
(ascanbeseerin themoving bidsgraphic),andthetrajectoryis slightly modified.

¢ D: Therobotbumpsagaininto theobstacleandbacksup. After thissecondrash,
the obstacleis consideredo be blocking the path. The Pilot informs the Navi-
gationsystemaboutthe blocking situation. This informationis internally sentto
the Map Manager, which updategshe map(the correspondingrcis assignedn
infinite cost, seemap (4b) in Figure6.11), andto the Rescuerwhich asksthe
Map Manager for a divertingtarget. Again, althoughin the graphicsthe Target
Tradker is winning the bidding, the backup actionis really beingexecuted.

e E: The Map Manager computeghedivertingtamgetasbeing: “to crossthe edge
betweenandmarksl7 and29” andinformsthe Rescuerwhich will inform the
Target Tracker aboutthe new target. This agentstartsbiddingto move the robot
sothatit crosseshegivenedge.

o F: At thispoint,the Target Tracker considerghattheedgel7/29hasbeencrossed
andinformsaboutit. This causeghe Rescuelto setthetargetto be the original
one (landmark10). The Target Tracker's bids are againto move towardsthis
landmark.Beforereachingpoint G, landmarksl and20 aredetectecandthe map
is updated(maps(5) and (6)). Landmark20 is not visible in Figure6.9; it is
behindlandmarkl.

e G: Theproximity of landmarkl3 makesthe Pilot bid high to avoid it, surpassing
the Target Tracker's bids, andthe robot’s trajectoryis modified. While avoiding
this landmark,landmark? is detectedandthe mapis updatedresultingin the
final map(7).

e H: At this point thePilot considerghatlandmarkl3 hasbeenavoidedandstops
bidding. The Target Tradker wins again,andit makesthe robot go towardsthe
target.

| Thetargetis finally reached.

Analyzing the graphicof looking action bids, we canseethat the winning bid is
periodicallychangingbetweerthe Pilot andthe RiskManager. The bids of the Target
Tradker areverylow, sincethetargetis preciselylocatedduringthewholetrial. Around
pointH, the bidsof the RiskManager alsodecay Thisis sobecausatthatpoint, there
aremorethan six landmarksbehindthe robot, which makesthe risk 0. The winning
bids of the Target Tradker, at point I, aredueto the factthatthis agentbids very high
to look towardsthe targetwhenthis hasbeenreached The executionof this actionhas
no intentionof decreasingheimprecisionof thetarget'slocation,but it is justaway to
show thatit “knows” thatthetargethasbeenreached.
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Table6.3: Sourcef computatiorof thetarget's location

Vision System | 12.7%
VisualMemory | 76.1%
Map Manager | 11.2%

6.8 Discussionand Future Work

The resultsobtainedconfirmedthat, as alreadyseenthrough simulation, the bidding
coordinationmechanisnmandthe mappingandnavigationmethodswork appropriately
The bidding mechanisnmachievesthe desiredeffect of combiningthe simplebehaiors
of theagentsinto anoverall behaior thatexecuteshe mostappropriateactionat each
momentandleadstherobotto thetargetdestination As for themappingandnavigation
method,we have seenthatit is ableto build a mapof the environmentandis usedfor
two differentpurposeson onehand,to computedivertingtargetswhentherobotfinds
the pathto the target blocked, and on the otherhand,to computethe location of the
target whenthis is not visible. Regardingthis latter useof the map, Table 6.3 shavs
the statisticsof how thetarget’s locationis computed.The sourcef this computation
canbethefollowing: (1) the real Vision system thatis, the targetis recognizedand
its locationcomputedfrom the images,(2) the Visual Memory (describedn Chapter
4), and,(3) the Map Manager, thatis, thelocationof the targetis computedusingthe
beta-codicient systemandthe locationsof otherlandmarks.As canbe seenfrom the
statisticsmostof thetime (76.1%)the locationis computedusingthe VisualMemory,
however, sometimeg11.2%)the Navigation systemmustmake useof its “orientation
sense”in orderto figure out wherethe tamgetis. Figure 6.14 shaws the evolution of
the imprecisionon the target’s location andthe differentsourcegthe coloredbandat
the bottomof the graphic).Although, usually therobotrealizesthatit hasreachedhe
targetby obtainingits locationfrom the VisualMemory;, it sometimesealizesit using
the orientationsense.However, sincethe computationof the targetlocationusingthe
orientationsensds more imprecisethanthe Visual Memory (becauset accumulates
the imprecisionof several landmarks’locations),the robot sometimednforms about
having reachedhetargetwhenit hasnot really doneit, thusfailing in its mission.

Thescenariosisedin therealexperimentsverenotvery complex. Thereforesome
more experimentationon more complex scenariosshould be performed. Thesenew
scenariosshouldinclude more blocking obstaclespossiblyhaving somecul-de-sacs,
sothattherobotwould needto undothe pathalreadydone.

Although the goodresultsobtainedindicatethat the agentsare well designedwe
couldstill improvethemand,hopefully, improve the performancef the overallrobotic
system.Actually, during the experimentatiorwith the realrobot, we alreadydid some
refinementHowever, thisrefinementanbeanever-endingtask,andfor thisreasorwe
decidedto stopit anddo the real experimentswith the versionof the agentsdescribed
in Chapter4. The possiblefurther refinementof someof the agentscould go in the
following directions:

e Target Tracker: this agentcould do a moreintelligenttilt angleselection,such
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Figure6.14: Evolution of thetarget's locationimprecisionandsourceof computation

asbeinga function of the distanceto the target, thus, increasinghe chanceof
having it in theview field of thecamera.

e RiskManager: this agentcould alsobid, not only for looking aheador around,
but alsoto otherareaswith fewerlandmarkspr evenselectingarandomdirection
to look to. Right now, if therearevery few landmarksaheadthis agentsticksto
bidding for looking ahead,and never bids for looking around,thus,ignoring a
large part of the ervironment. An alternatve to modifying the Risk Manager
would beto adda new agentwith this behaior.

Someimprovementcouldalsobe doneonthePilot andVision systemsRegarding
the Pilot, we could usea betterobstacleavoidancealgorithm. With the currentalgo-
rithm, only the closestobstacleis consideredor computingthe avoidancepath. We
couldimprove the robot'’s performancef the Pilot took into accountall the obstacles
and landmarksstoredin the Visual Memory, thus, producingbetteravoidancepaths.
We arealsoplanningto equipthe robotwith alaserscannerThis laserwould be con-
tinuouslyscanninga 180degreeareain front of therobotto accuratelydetectobstacles
thatareseseralmetersaway. With this new sensoythe Pilot could avoid the obstacles
beforebumpinginto them,thus,generatingetterpaths.Regardingthe Vision system,
we planseveralimprovementsThefirst oneis to finish the sterecalgorithm,sowe can
usethe two available camerador computingthe distanceto the landmarks. Another
very importantimprovementis to make the Vision systemmorerobust, sothatit does
not needto checkthe recognizedandmarksagainstthe Visual Memory. Actually, we
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shouldusethe robust Vision systemto adjustthe imprecisionsof the Visual Memory.

We also plan to corvert the Vision systeminto a Multiagent Vision system. In this

system severalagentsvould procesghe cameramageswith differentalgorithms.and
the agentsshouldagreeon what could be a goodlandmarkcandidatgsalientenough,
robust, static,etc.). A final improvementof the Vision systemwould beto let it bid for

servicedy othersystemgeitherthe Pilot systenor itself). With thebiddingcapability,

it couldrequesthePilot to approachalandmarkto betterrecognizdt, or even“request
itself” to slightly movethecameraothata partially visible landmarkenterscompletely
theview field.



