Chapter 5

Simulation Results

In this chapterwe describethe experimentswe have carriedout throughsimulation.

We have usedsimulationfor threedifferenttasks:firstly, to checkthatthe multiagent
Navigation systemwe have designedvorks properly;secondlywe have appliedRein-

forcement_earningtechniquesn orderto learna policy ontheuseof thecameraand

finally, we have useda GeneticAlgorithm approacho tunetheparametersf theagents
in the Navigationsystem.

For thesddifferenttasks we have usedwo simulators We startedusingthe Webots
simulator On this simulatorwe implementedhe Navigation systemandwe alsoused
it for the Reinforcement.earningtask. However, we found someproblemswith the
Webotssimulator mainly relatedto batchexecution,which madethe experimentation
veryslow. Althoughwewereableto getresultswhenusedfor Reinforcementearning,
we decidedo developour own simulator to do extensie simulationwith no problems.
We usedthis new simulatorto run againthe multiagentNavigation systemandfor the
GeneticAlgorithm approacho tunethe parameters.

5.1 The Simulated System

It hasto bepointedoutthatthe overall system(thatis, the Navigation, Pilot andVision
systems)sedin the simulationsis not exactly the sameasthe one describedn the
previous chapter(also describedn [13]). Sincethe beginning of this researchfour
yearsago,the Navigation, Pilot andVision systemshave beenevolving (agentsof the
Navigation systemhave beenaddedmodifiedandremoved,andthe capabilitiesof the
Pilot and Vision systemshave alsochangeduntil we have reachedwhat, by now, is
the definitive version,which hasjust beendescribed.This evolution hasbeenguided
by the experimentation both on simulationand with the real robot. The simulation
experimentsdescribedn this chaptershav the performanceof a previous versionof
our system59, 12].

One of the main differencesbetweenthe simulatedsystemandthe definitive one
is thatin the simulatedonethe Vision systemdid not provide information aboutthe

1From Cyberboticshttp://iwwwcyberbotics.com
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58 Chapter 5. Simulation Results

distanceo thevisible landmarksijt providedthe Navigation systemonly with angular
information. Moreover, the simulatedVision systermhadno rangelimitation, thatis, it
couldidentify any landmark no matterhow farit was,aslongasit wasin theview field
of thecamera Obviously, this doesnot hold on thereal Vision system.

Dueto this lack of distanceinformation,the Map Manager agenthadto compute
thedistanceo thelandmarkausingthechangdn angleof eachlandmarkon successie
viewframes.Sincethe changedn anglecanvary verylittle for thelandmarktherobotis
goingtowards(i.e. thetarget),it wasvery difficult to accuratelycomputethe distance
to thetarget. In the simulatedsystem therewasanadditionalagent the DistanceEsti-
mator, thathelpedon computingthedistanceo thetarget. Therole of thisagentwasto
move therobotorthogonallywith respecto theline connectingherobotandthetarget
landmarkwhile pointingthe cameran the directionof the target, sothatthe changen
anglewas maximal, permittingthe Map Manager to computethe distanceaccurately
The DistanceEstimatoragentcomputedthe imprecisionassociatedo the distanceto
thetarget. Thisimprecisionis computedas; = 1 — 1/e"¢, wherex is aparameteto
controlthe shapeof the function,ande; is the errorin distanceand,similarly to what
the Target Tradker does,it is computedasthe sizeof theinterval correspondingo the
70% a-cut of the fuzzy numberrepresentinghe distanceto the target. The Distance
Estimatoragentbids werea function on thisimprecision.If theimprecisionwashigh,
it bid high to move the robot orthogonally so the distanceto the target could be com-
putedwith a lower error.. Onthe otherhand,if the imprecisionwaslow, sowerethe
bids. This agentplayeda very importantrole at the beginning of the navigation, since
thedistanceo the targetwasunknawn, andtherefore theimprecisionmaximal. Thus,
the DistanceEstimatorwould bid very highin orderto let the Map Manager geta first
estimateof the distance.This agentwasalsoresponsibldor decidingif therobothad
reachedhetarget,sinceit hadthe distancanformation. On the definitive system this
is responsibilityof the Target Tradker.

Anotherimportantdifferences thatthe simulatedsystemdid not useVisual Mem-
ory. Thatis, the Navigation systemwasonly informedaboutthe landmarkscurrently
visible within the view field of the camera.This restrictionmadeit difficult to create
“good” beta-unitssinceall thevisible landmarkswverewithin a narrov view field, and
thus,very collinear

The Rescueragentalsohad somedifferences:apartfrom getting active whenthe
robotwasblockedandwhentheimprecisionin thetarget'slocationwastoo high, it also
got active whentherisk (computedandbroadcastety the RiskManager) wasover a
threshold. Furthermorejts behavior wasto alwaysvisually scanthe surroundingsof
therobotand,afterthat,askfor adivertingtarget, nottakinginto accounthe reasorof
its activation.

Therewerealsodifferencesn the Pilot system.Anotherpartneron the projectwe
areinvolvedin wasresponsiblef building the Pilot system.Thereforejnitially, we did
not focuson this system,anddid not worry abouthow it wasdesigned.As long asit
wasableto avoid theobstaclegncountereth its way, its designdid notaffectatall our
coordinatiormechanismmorthedesignof theagents For thisreasonyve startedusinga
built-in pilot systemof the Webotssimulatorthatusedsimulatedsonarsensorsn order
to avoid obstacleslIn therealrobot,however, suchsonarsensorsarenot available,and,
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asexplainedin the previous chaptey the Pilot systemwe finally implementeds only
ableto detectobstacledy bumpinginto them.

A final differenceis that the mappingandnavigation methodusedwasnot asex-
plainedin Chapter3. Firstly, the criterion usedto selecttopologicalregionswasbased
only onthecollinearity of theregion andits size,thus,permittingoverlappingregions,
andnotassuringa completerepresentationf theervironment.And secondlythecom-
puteddivertingtargetswerealwayssinglelandmarksthe computationof edgesasdi-
vertingtargetswasintroducedafterexperimentingwith therealrobot.

Despiteall thesdlifferencesthebasicelement®of ourapproachave notbeendras-
tically modifiedduring the evolution of the system:the bidding coordinationmecha-
nismhasnot beenchangedat all, andthe mappingmethodhasexperiencednly slight
modifications.

5.2 Multiagent Navigation SystemSimulation

The goal of simulationwasto checkwhetherour approachthatis, the architecture,
the bidding coordinationmechanisnandthe mappingmethod,could leadto a robust
navigationsystem.

We implementedhe agentsof the Navigation systemandtestedthe algorithmon
the Webotssimulatorandin our own developedone. Eachagentwas executedasan
independenthread,andthey usedsharedmemoryfor messag@assing We alsosimu-
latedthe Pilot andVision systemsn bothsimulators. We setthe parametersf eachof
theagentdy hand.We first settheir valuesintuitively, andslightly modifiedthematfter
somesimulationtrials.

As afirst step,we checledwhetherthe bidding mechanisnwasableto adequately
coordinatethe agentsof the Navigation systemandthe Pilot, sothatthe taskof reach-
ing the targetwasaccomplished The Pilot systemusedwasnot ableto inform about
the presencef long obstacledetweenandmarksalthoughit would avoid them. For
this reasonwe werenot still checkingthe mappingand navigation capabilitiesof the
system.

Figure5.1 shavs a navigationrun in the Webotssimulator It shaws the pathfol-
lowed by the robot from a startingpoint to a targetlandmark. The ervironmentwas
composedy a setof landmarks(shovn ascircles), a river (the thick blue traversing
line) with a coupleof bridges,andsomefencesandother obstacles.Theseobstacles
did not occludethe target landmark,so it wasvisible from ary location of the ervi-
ronment. Thetaskto be performedwasto reachthe target (at the left-handside of the
world) avoiding ary obstacleencounteredn theway.

At thevery beginning, the distanceto the targetis unknown, so the DistanceEsti-
matoragent(DE) bidsvery high to move therobotorthogonallyto theline connecting
it to the target andlooking to the target, so that the Map Manager can estimatethe
distanceto thetarget. The Target Tracker agent(TT) bids for moving andlooking to-
wardsthe target, but the bids of DE are higherandthe robot movesorthogonally As
therobotmoves,the Map Manager computeghe distanceo thetarget,andtheimpre-
cisioncomputedby the DE decreases;ausingits bidsalsoto decay At a givenpoint,
thebidsof TT arehigherthanthoseof DE, andtherobotstartsgoing towardsthe tar
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Figure5.1: Robot’s pathfrom startingpoint to the target

get. Sincethereareno obstaclesaround,the Pilot doesnot bid at all. However, after
someadwance the robotencountersan obstacle andthe Pilot bids very high to avoid
it, surpassinghe bidsof TT and DE. Whenthe obstaclehasbeentotally avoided,the
Pilot stopsbidding, the bids of TT win again,andthe robot movestowardsthe tamget.
This situationis repeated coupleof timesuntil therobotfinally reacheghetarget.

Although the ervironmentusedin this first stepwas simple, mainly becauseof
the constantisibility of the target, simulationsshoved that the bidding coordination
mechanismworkedproperly sinceit wasableto coordinatehedifferentagentsandthe
Pilot.

Thenext stepwasto testthe mappingandnavigation capabilitiesof the Navigation
system.In this stepwe usedour own developedsimulator with a betterPilot system,
capableof informing aboutthe linear obstaclesbetweenlandmarks,and with more
realisticenvironmentsincluding occludingobstaclesso that the targetwasnot visible
all thetime.

In Figure 5.2 we seehow the Navigation systemcomputesdiverting targetsfor
reachingthe initial target whenthis is lost. In this ernvironment,filled polygonsare
occludingobstaclesandemptyonesarenon-occludingones thus,permittingthe visi-
bility of thetargetfrom the startingpoint. At point A, it seeghetargetandstartsgoing
towardsit. However, at point B, it detectsan obstacle,so the Pilot forcesthe robot
to turn. Whenit reachegoint C, it cannotseethe targetarymore,asit is behindan
occludingobstacle At this point, adivertingtargetis computedin this caseJandmark
30is selected).Therobotstartsgoingto this divertingtarget. Oncereachedpoint D),
anew divertingtargetis computedlandmark38is selected)andtherobotgoestoward
it. At point E, afterreachingthe currentdivertingtarget,a new oneis computedland-
mark 12), which is reachedat point F. Fromthis point, it seesthe initial targetagain,
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Figure5.2: Computingdivertingtargets
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goesstraighttowardsit, andfinally reacheshetarget.

Someonanay askwhy the Navigation systemcomputedso mary divertingtargets,
insteadof trying to go towardsthe initial targetmorefrequently Thereasorwasthat
the risk wastoo high very often. This was becauseof the narrov view field of the
cameraand the fact that the systemwas not using Visual Memory, thus, having too
few landmarksin sightvery often. Althoughthe performancevasgoodenough- the
robotreachedhe target— this behavior of constantlycomputingdiverting targetswas
notwhatwe really wanted.Moreover, in the situationof therobotbeingin anareawith
very few landmarkspossiblyseeingonly thetamet, therisk would be very high, but it
would not be a wise decisionto stopgoingtowardsthe targetand,instead,computea
divertingtarget. Thatis why the Rescueragentwasmodifiedsothatit did nottake into
accountherisk, aspresentedn the previouschapter

In Figure5.3themapgeneratedavhile reachinghetargetis shovn. Althoughinter-
nally the Map Manager agentstoresthe mapasa graph,here,for clarity, we shaw the
triangularregions correspondingo the nodesof this graph. As canbe seenthe map
hasmary overlappingregions,unconnectedegionsandregionswith obstaclesnside.
Obviously, it is nota very goodrepresentatioof the ervironment.In orderto obtaina
bettermapof the ervironment,we modifiedthe mappingalgorithmsothatit included
the constraintgpresentedn Chapter3. As will be seenin the experimentatiorwith the
realrobot(Chapter6), the modifiedmappingalgorithmobtainsmuchbettermaps.

Although in the simulation we simplified the task in comparisonto navigating
througharealernvironment(the Vision systemworked perfectly withoutary limitation
on its view range,the Pilot usedsonarsfor obstacleavoidance),the resultsobtained,
shawing thatthe coordinationandmappingworkedwell, werevery promisinganden-
couragedusto keepworking on the refinemenif the systemin orderto testit on the
real robot. However, eventhoughthe main experimentationvasto be donewith the
realrobot,we still employedsimulationto apply MachineLearningtechniquesn order
to automaticallytune the parametersand obtain betterperformance.In the following
sectionswve describehow we have appliedthesetechniques.

5.3 ReinforcementLearning

As mentionedgachof the agentswithin the Navigation systemhasa bidding function
thatis controlledby a setof internalparametersTheseparametersieedto betunedin
orderto achiese the bestperformanceof the Navigation systemandof the overall sys-
tem. Although,asshown in the previous section,we achievzed goodresultswith hand-
tunedparametersye wantedto explore if therewere other parameterconfigurations
thatled to betterperformancef the system.Adjusting theseparametersnanuallycan
be very difficult, particularlybecausef the tradeofs confrontingthe top-level agents.
An alternatie to manuakuningis to employ MachineLearningtechniquesspecifically
Reinforcement.earningmethodq64]. In this section,we describesomeexperiments
to testthe feasibility of applying Reinforcement.earningwithin this multiagentsys-
tem.

Reinforcement.earningis oneof the mostcommonlyusedlearningtechniquesn
Robotics. In Behavior-basedarchitecturedearning can be appliedat two levels: at
the coordinationlevel, wherethe goal is to apply learningto the coordinationsystem
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Figure5.4: Modified navigationsystemwith the new agent

[44, 28], or at the behaior level, wherethe goalis to apply learningto the individual
behaviors of thesysteni45, 14]. In our casewe havetakenthelatterapproachl0, 11].

Ideally, we wouldlik eto applyReinforcementearningto tuneall of theparameters
of all of the agentsin the system. However, this is a very difficult problem,andit is
not clearthat Reinforcement.earningis the bestsolutionat all levels of the system.
Insteadwe have choserto focuson a particularlearningproblemwithin the Navigation
system.Reinforcement_earningis mostneededand mostappropriatén caseswvhere
thereis a comple, quantitatve tradeof betweenbehaiors. In suchcasesmanual
tuningis difficult, andthe quantitatve criterion of maximizingexpectedreward,which
is the goal of Reinforcement.earning,permitsusto representhetradeof nicely.

Within the Navigation system,sucha tradeof exists betweenthe Target Tracker
agent,the RiskManager, andthe DistanceEstimator— recall that we usetheinitial
versionof thesystemasdescribedn Sectionb.1. TheTarget Tradker wantsto know the
exactheadinganddistanceo thetargetat all times. This canbe achiezed by pointing
the cameraat the target and moving towardsit. The Risk Manager wantsto ensure
thatthe robotis surroundedy arich network of landmarksso thatthe robotdoesnot
getlost. This canbe achieved by pointing the camerain variousdirectionsaroundthe
robot to identify andtrack landmarks.Finally, the DistanceEstimatorseeksto know
accuratalistancedo thetarmgetlandmark.This canbeachiezedby pointingthe camera
in the direction of the target while moving the robot orthogonallyto the direction of
thetarget. In additionto this conflict, the Navigation systemmustnot monopolizethe
camerapecause¢he Pilot needdo useit for obstacleavoidance.

Insteadof trying to learnthe appropriatevaluesfor eachof the parametersf these
agentswe proposeto replacethe Target Tradker, the RiskManager, andthe Distance
Estimatorby a new Learning Agent that learnsits behaior through Reinforcement
Learning. We formulatethe reward function for this agentso thatit is rewardedfor
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reachingthe currenttargetlocationwhile minimizing the useof the camera.The two
remainingagentshave very differentroles. The Map Manager maintainsthe beta-
coeficient map, but doesnot bid on actions. The only remainingbidding agentis the
Rescuer which is responsiblefor the higherlevel choice of diverting targetswhen-
ever therobotbecomeslocked. This actwity is betterimplementedoy pathplanning
algorithmsthanby Reinforcement.earning,sowe have notincludedthe Rescue€ls re-
sponsibilitieswithin the LearningAgent The modifiedarchitecturdor the Navigation
systemis shovn in Figure5.4.

5.3.1 The Taskto be Learned

The task confrontingthe Learning Agent is to chooseactions(for both motion and
vision) in orderto reachthe currenttarget location while minimizing the useof the
camera. The Map Manager informs the Learning Agent aboutthe target location. If
therobotbecomeslocked,the Rescuemwill askthe Map Manager for a new target(a
diverting target), andthenthe Learning Agent will take controland chooseactionsto
reachthatnew target. Oncethedivertingtargetis reachedthe Rescuemaybe ableto
setthe currenttargetto bethe original goal, andthenthe Learning Agentwill attempt
to moveto thattarget(andhence solve the original task).

5.3.2 The ReinforcementLearning Algorithm

Therearetwo generaltypesof Reinforcement.earningalgorithms: Model-basedand
Model-free. Model-basedalgorithmslearna transitionmodel P(s'|s, a) for the ervi-
ronmentwheres is the stateof theervironmentattimet, a is anactionto be executed,
ands’ is theresultingstateof the environmentattime ¢ + 1. Model-basechlgorithms
also learn a reward model R(s, a, s'), which gives the expectedone-stepreward of
performingactiona in states andmakinga transitionto states’. Oncethesemodels
have beenlearneddynamicprogrammingalgorithmg6] canbeappliedto computethe
optimalvaluefunction V* andthe optimalpolicy =* for choosingactions.

In contrastmodel-freemethodgsuchasQ learningandSARSA(\)) directlylearna
valuefunctionV* by repeatedlynteractingwith theervironmentwithoutfirst learning
transitionor revardmodels.They rely ontheervironmentto “modelitself”. For robot
learning, however, model-freemethodsare impractical, becausehey require mary
more interactionswith the ernvironmentto obtain good results. They make sensein
simulatedworldswherethe costof performinganactioncanbemuchlessthanthe cost
of storingthe transitionandreward models particularlyif the ervironmentis evolving
overtime. But the costof performingan experimentalactionwith a realrobotis very
high.

Hence,for our experimentswe have chosernthe model-based@lgorithmknown as
Prioritized Sweepindg49]. Prioritized Sweepingworks asfollows. At eachtime step,
the learnerobsenesthe states of the ervironment,choosesan actiona, performsthe
action,recevesaone-stepewardr, andobsenestheresultingstates’. Thelearnerthen
updatests estimateof P(s'|s,a) andof R(s,a,s’) usingthe obseredresultstates’
andtheobsenedrewardr. Finally, thelearnemerformsthe ¥ mostimportantBellman
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backupgo updateits estimateof the valuefunction V. A Bellmanbackupin states is
computedasfollows:

V(s) = max Z P(s'|s,a)[R(s,a,s") +V (s")]

Thisis essentiallyaone-stegookaheadhatconsidersll possibleactionsa andall pos-
sibleresultingstatess’, computeshe expectedbacled-upvalueof eacha, andassigns
the maximumsuchvalueto bethe new estimateof V' at states.

Prioritized Sweepingmaintainsa maximizing priority queueof statesin which it
believesa Bellmanbackupshouldbe performed.First, it performsa Bellmanbackup
for themostrecentstates. In eachBellmanbackupjt computeshechangean thevalue
V () resultingfrom the backup:

A(s) = |V(s) —max ) P(s'|s,a)[R(s,a,s") + V(s")]

After performingthe Bellmanbackup PrioritizedSweepingconsidersll statess— that
are known predecessorsf s, and computesthe potentialimpactC' of the changein
V (s) onthechangen thevalueof s~ accordingo

C(s7) =Y P(s|s™,a)A(s)

It thenplacegthestates™ onthepriority queuewith priority C(s™). Finally, Prioritized
Sweepingperformsk — 1 iterationsin which it popsoff the statewith the maximum
potentialimpact, performsa Bellmanbackupin that state,andthencomputeghe po-
tentialimpactof thatbackupon all predecessastates.In our experimentsk = 5. (In
our implementationyve actuallyusethe state-actiongr @, representationf the value
functionratherthanthe statevaluefunction V. We have described¢he methodusingV’
in orderto simplify the presentation.)

Prioritized Sweepings essentiallyanincrementaform of valueiteration,in which
the mostimportantupdatesare performedfirst. Becauseevery interactionwith the
ervironmentis appliedto updatethe model, Prioritized Sweepingmakes maximum
useof all of its experiencewith the ervironment. Prioritized Sweepingis an “off-
policy” learningalgorithm. During thelearningprocessary explorationpolicy canbe
employedto chooseactionsto execute.|f the explorationpolicy guaranteeso choose
every actionin every stateseveral times, then Prioritized Sweepingwill corvergeto
the optimal action-selectiorpolicy. We employ e-greedyexploration. In this form of
exploration,whentherobotreachestates, it executesarandomactionwith probability
e. With probability 1 — ¢, it executegheactionthatis believedto beoptimal(according
to thecurrentvaluefunction V). Tiesarebrokenrandomly

We represenboththetransitionmodel P(s'|s, a) andtherewardmodel R(s, a, s)
by three-dimensionahatriceswith onecell for eachcombinationof s, s’, anda. This
techniquewill only work if the stateandactionspacesresmall. Therearetwo reasons
for this. First, the tablesmustfit into memory Secondthe time requiredfor learning
is proportionalto the numberof cellsin thesetables,becaus¢he LearningAgentmust



66 Chapter 5. Simulation Results

Figure5.5: Division of ervironmentin sectorsThearrov shavsthedirectionin which
therobotis facing(directionof motion,not directionof gaze)

experiencemultiple visits to eachstates sothatit canperformeachactionqa several
timesandgatherenoughdatato estimateP(s'|s,a) and R(s,a, s'). Hence,the most
challengingaspecbf applyingReinforcemenkLearningis theproperdesignof the state
representation.

State Representation

We wantthe LearningAgentto learna generalpolicy thatworksfor any ernvironment,
independentlyf thelocationsof the landmarksandtargets.Hence our staterepresen-
tation mustnot directly employ the locationsof the landmarks. Moreover, the robot
cannotdirectly obsene the completestateof theervironment,whichwouldincludethe
locationof therobot, all obstaclesandall landmarks!Instead the taskof therobotis
to learn,underconditionsof incompleteknowledge,aboutthe locationsof obstacles,
landmarksandtargets.

Statespaceghatencodeincompleteknowledgeareknown as“belief statespaces”
[15]. The purposeof a belief staterepresentations to capturethe currentstate of
knowlede of theagent ratherthanthe currentstateof the externalworld. In our case,
the Learning Agent is trying to move from a startingbelief statein which it knows
nothingto a goal belief statein which it is confidentthat it is locatedat the target
location. Along theway; it seekgo avoid gettinglost (which is a belief statein which
it doesnotknow its locationrelative to the targetposition).

To explain our staterepresentationye begin by defininga setof belief statevari-
ables.Thenwe explain how thesearediscretizedo provide a smallsetof featuresach
taking on a small setof values,sothat P(s’|s, a) and R(s, a, s") canbe represented
with smalltables.

At ary given point in time, the headingsto all objects(landmarksandthe target
position)aredivided into six sectors.The field of view of the robotis 60 degrees,so
atary pointin time, therobotcanobsene onesector seeFigure5.5. For eachsector
we representnformationaboutthe numberof landmarksbelievedto be in that sector
andthe precisionof our beliefsabouttheir headingsand distances.This information
is gatheredrom an initial versionof the Visual Memory that constantlyupdatesthe
locationof the seenlandmarksandto which the LearningAgenthasaccess.

Giventhesesectorsthefollowing statevariablescanbe defined:

e Distanceto target,andits imprecision,D(t), I4(t)
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e Headingto target,andits imprecision,H (t), I, (¢)
e Thelandmarksn eachsector L(s) = {l1,...,1n, }
e Numberof landmarksn eachsector N(s) = min(4, |L(s)|)

e Average imprecision of landmarks in each sector 1(s) =
1
N{(s) ZleBest(4,L(s)) I(l)

We now explain eachof these.ThedistanceD(l) to alandmark(or D(t) to thetarget)
is afuzzy numberin therange|0, oo]. Theheadingto alandmarkH (1) (or H (t) to the
target)is afuzzy numberwith range[0, 27]. For eachof thesejts imprecision(I4(1) for
distance I, (1) for heading)is definedby takingthe size of the interval corresponding
to the 70% «-cut of thefuzzy number

Theimprecisionof alandmarkis computedusingthe equation3.3 alreadygivenin
Section3.2.2:

In(1)

I(l) =X tanh(8 - (1)) + (1 = \) - o

For anexplanationof the equationseethe mentionedsection.

We summarizehe agents knowledgeof thelandmarksn eachsectorby averaging
theimprecisionof thefour most-precisely-kn@n landmarksThefunction Best : N x
2l — 2T selectsasubset,B = Best(n, L), of agroupof landmarksL = {l1, ..., l,x },
suchthat |B| < n A VepVrer—pI(l) < I(I'). Having 4 landmarksin one sectoris
alreadyvery good,sinceonly 3 landmarksareneededo usethebeta-codicientsystem
network. Furthermorewe do not wantthesemeasure$o be affectedby badlandmarks
whenwe have somethat are good enough. Thatis why we use Best (4, L(s)) when
computingZ(s).

Features

After computingthesestatevariableswe combineanddiscretizethemto defineasmall
numberof featureseachof which takeson a small numberof values. Thesefeatures
definethe statespaceandthey areusedto accesshetablesP(s'|s,a), R(s,a,s") and
V (s) in thelearningphaseandalsoto accessr(s) for policy exploitation.

We employ thefollowing features:

e TametDistance,D(t), discretizedo 5 intervals.

e TargetLocationimprecision:measurefimprecisiononthelocationof thetarget,
I(t), discretizedo 7 intervals.

e LandmarkCount: averagenumberof landmarksoverthe six sectors,
C =13, N(s), discretizedo 4 intenals.

e Landmarkimprecision:averagemprecisionof landmarkslocationsin eachsec-
tor, T = £ 5°°_ 1(s), discretizedo 7 intenals.

This givesatotal of 980 belief states.
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Actions

JustasReinforcement.earningrequirescarefuldesignof the statespaceo ensurehat
it is compact,it alsorequirescarefuldesignof the actionsetto ensurethatit is small
but alsosufiicient for therobotto achieveits goals.

Physically therobotis ableto simultaneouslyperformtwo typesof actions:moving
actionsandlookingactions.Moving actionsmake therobotmove in a givendirection.
Lookingactionsemploy thecamerao identify or tracklandmarksn theervironmentin
specifiedsectors.The Vision systemcaneithersearchor new landmarksor re-acquire
already-detecteldndmarksbutit is notableto doboththingsatthesameime, because
differentimageprocessingoutinesarerequiredfor each.In eithercase however, the
Vision systenreturnsthe headinganddistanceto thelandmarkst detects.

An additionalconstrainton the designof actionsis thatthe Vision systemis most
effective whentherobotis moving in certaindirectionsrelative to thelandmarkseing
obsened.

Giventheseconstraintswe have designedhefollowing setof actionsfor theLearn-
ing Agent

e Move Blind (MB): move toward the target (i.e., in the directionin which the
targetis believedto be). Do notusethe Vision system.

e MoveandLook for LandmarkgMLL): movetowardthetarget. Pointthecamera
in the sectorthat containsthe fewestnumberof known landmarks andlook for
new landmarksn this sector

e Move Orthogonallyto Target (MOT): move orthogonallyto the directionof the
target. Pointthe cameraat the targetandattemptto improve the precisionof the
headinganddistanceo the target.

e Move andVerify Landmarkg(MVL): move towardthetarget. Pointthe camera
to the sectorwith the maximumimprecision,/, andattemptto re-acquireknown
landmarksandmeasureaheir headinganddistancemoreaccurately

e Move and Verify Target (MVT): move toward the target. Point the cameraat
thetargetandattemptto re-acquiraét andmeasuréts headinganddistancemore
accurately

Theseactionsshouldaffect the statevariablesasfollows. All actionsexceptMOT
make thedistanceo thetargetdecreaseMB makesall imprecisiongrow. MLL should
increasehe numberof detectedandmarks MOT shouldreducetheimprecisionabout
the target’s location, while MVL shouldreducethe overall imprecision. MVT also
reduceghe imprecisionof the target’s location, but not asmuchasMOT. All actions
requirethat the headingto the targetis known (at leastapproximately). The heading
is chosenasthe centerof the fuzzy interval for H(t). If the headingis completely
unknown, the centerof this interval is 7. This causeghe robotto “pace” backand
forth, turning180degreeqw radians)eachtime anactionis executed.

We have assignedan immediatereward to eachactionto reflectthe load on the
Vision systemandthe motionsystem.Therewardsarenegative, because¢hey arecosts.
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MB is the cheapestction, sinceit doesnot usethe camera. It hasa reward of —1.
MVL andMVT producea reward of —5, sincethey make moderatedemandon the
Vision system MOT givesarewardof —6, becausét requiresmoremotionin addition
to the sameimageprocessinggsMVL andMVT. Finally, MLL is the mostexpensve,
with arewardof —10, becausé mustdo extensive imageprocessindo searchfor new
landmarksandverify thatthey arerobustto changesn viewpoint.

The systemreceies a reward of 0 whenit reacheghe target location. The Re-
inforcementLearningobjectie is to maximizethe total reward. In this case,this is
eqguialentto minimizing the total costof theactionstakento reachthetarget.

5.3.3 Experimentation

We have employedthe Webotssimulatorto performour experiments.Theervironment
containsasetof landmarkspneof whichis designatedsthetarget. Thereis alsoawall
thatsurroundgheregion in which therobotis navigating. Thelandmarksarethe only
objectsin theenvironment. Thereareno obstaclesasobstacleavoidanceis handledoy
thePilot system.However, therobotcanbeblockedby thelandmarksor by thewall. In
eachtrial, therobotstartsat arandomlocationin this environment,andit hasto reach
thetarget. Thetrial terminatesinderthreeconditions:(a)if therobotreacheshetarget
(andis confidentthatit hasreachedhetarget), (b) if therobottakes500stepswithout
reachinghetarget,or (c) if therobotis blocked. Whenthetrial is finished thenext one
beginswith anotherandominitial locationfor the robot.

In orderto seeif the performanceof the systemimprovesafter learning,we com-
paredit with a hand-codedolicy. The hand-codedolicy usedthe samediscretized
featuresasthe learningalgorithm (Target Distance,LandmarkCount, Landmarkim-
precisionand Target LocationImprecision). The following table shows the policy for
choosinganactiondependingn thevaluesof thesefeatures

R \/'Zr \/'Z:- A
high low * * MLL
high | —low high * MVL
high | =low | —high high || MOT
high | =low | —hitgh | —high || MB

=high * high high || MVL

=high * —high high || MVT
very low * * —high || MVT
low * * —high || MB

wherehigh, low andvery low aredefinedasfollows:
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Variable very low | low | high
TargetDistance <1 <2 >2
TargetLocationlmprecision - <5 | =25
LandmarkCount - <2 >2
Landmarkimprecision - <5 | 25

The readershouldnote that this hand-codedolicy is not the sameasthe policy
producedy the hand-codediddingfunctionsdescribedn Chapte. We have chosen
this policy becauset allows usto delug andtestthe Learning Agent separatelyfrom
therestof the multi-agentsystem.

The LearningAgentwastrainedfor 2000simulatedtrials. At regularintervals,the
learnedvaluefunctionwastestedby placingtherobotin 100randomly-chosestarting
locations funningonetrial from eachlocation,andmeasuringhetotal reward,thetotal
numberof actionsandwhethertherobotsucceedeah reachinghetargetposition. The
samesetof 100startinglocationswasemployedin eachtestingperiod. Thehand-coded
policy wasalsoevaluatedon thesel00startinglocations.

First,letusconsidetthefractionof successfulrials. Figure5.6shovsthatevenafter
only 100 trials, the Learning Agent is alreadyout-performingthe hand-codedgolicy.
After 2000trials, the LearningAgentsucceed reachingthetargetin 84 of thetrials,
comparedo only 24 for thehand-codegbolicy. Fromtheseresultswe alsoseethatour
hand-codegbolicy waspretty bad. Althoughwe could have tried to rewrite the policy
to improve its performancethe resultsshown that Reinforcement.earningcangreatly
helpon solvingcomple tradeofs, very difficult to handlemanually
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Figure5.6: Numberof successfutesttrials asa function of theamountof training

A secondway of analyzingthe performanceof the Learning Agentis to compute
the averagereward pertrial, the numberof actionspertrial, andthe numberof actions
of eachtype. Table5.1 displaysthis informationafter 2000training trials. Eachvalue
is averagedover five testruns. The only differencebetweentestrunsis the random
numberseedor theWebotssimulator We seethatwhile thehand-codegolicy receies
anaverageof —858 unitsof reward,thelearnedpolicy only receves—336 units,which
is a hugeimprovement. In addition,the Learning Agent on the averageonly requires
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Table5.1: Comparisorof the Learning Agent (LA) andthe hand-codedgolicy (HC)
after 2000trainingtrials.
Rewardpertrial ~ Actionspertrial MB MOT MVT MVL  MLL
HC -858 153.33 494 1859 052 12196 7.32
LA -336 4995 1141 652 561 4.97 21.43

50 stepsto terminatea trial (reachthe goal, becomeblocked, or execute500 steps)
comparedo 153 stepsfor the hand-codedolicy. Actually, the Learning Agentnever
terminatesecausef reachingthe 500-stedimit.

Table5.1containsotherinterestingnformation. In particular we seethattheLearn-
ing Agenthaslearnedto performfewer MOT andMVL actionsandmoreMB, MVT,
andMLL actions. Note particularlythat the Learning Agent is executingan average
of 11.4MB (Move Blind) actionsper trial, comparedo only 4.9 for the hand-coded
policy. Oneof the goalsof applying Reinforcement.earningwasto find a policy that
freedthecamerdor useby thelow-level obstaclevoidanceroutines andthisis exactly
whathashappenedthe hand-codegbolicy usesthe camera®6% of thetime, while the
Learning Agent usesit only 77% of thetime. On the otherhand,we were surprised
to seethat the Learning Agent choosedo executethe most expensve action, MLL,
sooften (21.4timespertrial, comparedo only 7.3 timespertrial for the hand-coded
policy). Certainly it hasfound thata mix of MLL andMB givesbetterreward than
the combinationof MVL and MOT thatis producedby the hand-codedolicy. The
LearningAgentspendsnuchmoretimelooking for new landmarksaandmuchlesstime
verifying the directionanddistanceio known landmarks.

5.3.4 Future Work

Althoughtheobtainedresultsshawv thatthe LearningAgenthaslearnedo selectactions
to resohe the complex cameratradeof, we needto integrateit into the overall multi-
agentsystem(asdepictedn Figure5.4),to seeif the performancef thewhole system
is alsoimproved. Eventhoughthe Learning Agent knows which actionsit hasto bid
for (following thelearnpolicy), it is not clearhow its bidding function shouldbe (e.g.
constantdependingnthevaluesof 1 (s)).

Somemorefurtherwork will be focusedon the designof the stateandfeaturerep-
resentatiomand the setof available actions. Asadaet al. [5] proposeda solutionfor
copingwith the “state-actiondeviation problem”, in which actionsoperateat a finer
grainthanthefeaturecanrepresenthaving the effectthatmostactionsappeato leave
thestateunchangedandlearningbecomesmpossible We planto evaluatethe suitabil-
ity of this approachin our experiments Regardingthe actionsetdesignwe foundthat
thesetof availableactionswasmaybetoo smallandsomemoreactionsmaybeneeded.
We areworking on an “action refinement’method[20] that exploits prior knowledge
informationaboutthe similarity of actionsto speedup thelearningprocessin this ap-
proach the setof availableactionsis larger, but in orderto not slow down thelearning,
the actionsare groupedinto subsetof similar actions. Early in the learningprocess,
the Reinforcement_earningalgorithmtreatseachsubsef similar actionsasa single
“abstract”action,estimatingP(s'|s, a) notonly from theexecutionof actiona, but also
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from theexecutionof its similar actions.This actionabstractions lateron stoppedand
then eachactionis treatedon its own, thus, refining the valuesof P(s'|s,a) learned
with abstraction.

5.4 Evolving the Multiagent Navigation System

As we have alreadymentionedpreviously, our Navigation systemis decomposeéhto
a setof differentagentsthat are responsibldor differenttasks. Eachof theseagents
hascertainparametershataffectits biddingbehaior. Trying to manuallyfind the best
valuesfor the parametersf the bidding functionsis an extremelydifficult task. In this
sectionwe describeheapplicationof anevolutionaryapproacho dothis optimization.

5.4.1 Navigation Tasks

For agivenervironmentwe considerntwo differentnavigationtasks.Eachoneof them
with a differentlevel of complexity. The bestparametesetmay changedependingon
the compleity of thetask. We conjecturethatthe parametergounddependmainly on
the compleity of the navigationtaskandnot so muchon the structureof the overall
environment.This compleity is dependenthoughnot equal to thecartographicom-
plexity of theworld in whichtheagentmoves,andis basednthefollowing factors:

1. Numberof visible landmarksat ary time
2. Densityof obstaclesn theregion of navigation

3. Visibility of thetargetatarny time

Usingthis notion of navigationalcomplexity, the total spaceof all navigationtasks
canbe split into two representatie classesgoing towardsthe target free of obstacles,
andreachingtargetslocatedbehindobstacles.In our experimentswe useclustersC;
(encircledtargetsin Figure5.7) and C, (encircledtargetsin Figure5.8) asrepresenta-
tivesof thetwo taskcomplexity classesThebestparametesetis determinedor both
theseclasses.The aim of the experimentsis to endav the Navigation systemof the
robotwith the capabilityto switch betweenthesetwo parametesetsaccordingto the
actualtaskcompleity it is facing.

5.4.2 The Agents

Although a detaileddescriptionof the agentswvasalreadygivenin Chapter4, aswell
asthedescriptionof the differencedetweerthe simulatedsystemandthefinal system,
(givenatthebeginningof this chapter) we review the parametersf eachof theagents:

e TargetTracker («, 3, k1, K2)

— «: controlshow rapidly the bids for moving towardsthe target decrease,
bid(move(9)) = k1 (1 — Ii/“); high valuesof a make bidsincreaseast,
while low valuesmalke bidsincreaseslowly
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Figure5.7: ClusterC1
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Figure5.8: ClusterC2

73



74 Chapter 5. Simulation Results

— B: controlsthe shapeof theimprecisionfunction, I, = (%)B; highvalues
malkeit increaseslowly, while low valuesmaleit increasdast

— k1 maximumvaluefor moving actionsbids

— k2: maximumvaluefor looking actionsbids
e DistanceEstimator (s, ¢, )

— k: controlstheshapeof thedistancamprecisionfunction,; = 1 —1/e"¢t;
high valuesof x make theimprecisiongrow fast,while low valuesmake it
increaseslowly

— ¢,6: controlsthe at target computation;it considersthat the robot has
reachedhe targetif the upperboundof the a-cut of level ¢ of the fuzzy
numbemodelingthe distanceo thetargetis lessthand timesthebodysize
of therobot

e Risk Manager (74, v5, 7r)

— v4,7B: controltherelative importanceof the positionof landmarksahead
andaround frespectiely, usedin therisk computation,

A YA B B
RZl—min(l,qA(|6—|) +q3(%) )

— 7-: maximumvaluefor looking actionsbids
¢ Rescuer(,,R)

— 1,: imprecisionthreshold above which this agentgetsactive

— R: risk threshold above which this agentgetsactive

5.4.3 The GA algorithm
Representation

We seekto optimize the Navigation systemwith respectto its 10 parametersTarget
Tracker (o, 3, k1, k2), DistanceEstimator(x), RiskManager (va, vB, 7r), andRes-
cuer (I,, R). The DistanceEstimatots parameters) and§ are fixed to 0.7 and 2
respectiely sincethey do not affectthe efficiengy of the system.We usearealvalued
chromosomeeachchromosomdeinga vectorof 10 dimensiongseeFigure5.9). The
initial populationis generatedandomly
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Evaluation

Eachindividualin thepopulationspecifiesa particularparametesetfor thesystemand
is evaluatedby runninga simulationwith the specifiedparameterén a given erviron-
ment. Considerthatthe agentnavigatesfrom aninitial positionp, to thetargetcluster
C containingthe n target positions(ty, t», ..., t,) andthatit takesd; stepsto reach
thetargett; from py with asucceswvalues;. A thresholdis definedfor the numberof
stepsthat aretakento reachthe target, abose which the agentis saidto have failedin
its attemptto navigateto thetarget(i.e. its successalueis 0, otherwiseit is 1).

This formalizationgives the cluesto definethe fitnessfunction that permitsthe
selectionof the bestparametesets.lt is clearthatthe averagecostof reachingatarget
from theinitial positionpy is definedasthe summationof the stepsrequiredto reach
eachtargetdivided by the numberof targets. Thatis,

Z?:1 di

n

Cc =
Similarly, we cannaturallydefinethe averagesuccesvalueas:

Diei Si

n

Thebestbehavior for anavigationsystenis theonethathasahigh successatewith
alow averagecostandwith alow standardleviationfor this averagecost,o.. Thus,we
definethefitnessfunctionasfollows:

s =

Evolution

We follow anelitist approachThatis, from a populationof individuals,thefittestindi-
vidual is passedo the next generation.The remainingindividualsform the pool from
which the new generatioroffspring are created. We randomlyselecttwo individuals
from the mating pool whosefitnessis over a randomly determinedvalue. Thenwe
apply cross@erandmutationonthemto generatanew individuals:

begin
counter.=0;
repeat
r ;= generatarandomnumber;
i :=find thefirstindividual whosefitness> r;
r' := generat@arandomnumber;
i’ :=find thefirst individual whosefitness> r’;
applycross@er operatoroni andi’;
apply mutationoperatoroni andi’;
counter.= counter+1;
until counter= populationsize/ 2
end
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Figure5.9: Chromosomavith the setof parameters

Crossaer

A simple two point cross@er is usedwith the two parentsexchangingtheir genetic
materialbetweentwo randomlygeneratedreakpointsn the genestring. A point to

noteis thatthe chromosomearebrokenonly atagentboundariegseeFigure5.9). The
ideais thatoneof the parentsnayhave goodgenedor aparticularagentwhile theother
parentmay have goodgenedor anotheragent. This way the crossaer could resultin

anoffspring having a higherfitnessvaluethanbothits parents.

Mutation

The mutationoperatorfor the geneticalgorithm hasbeenadoptedfrom the Breeder
GeneticAlgorithm [53]. Givenary setof parameterasa chromosomewe canview
it asa point x within a 10 dimensionalspace. Using our mutationoperator we seek
to searchfor optimality within a “small” hypercubecenteredat x. How small this
hypercubeis, dependson the rangesin eachparametricdimensionwithin which we
allow the chromosomeo mutate. The parametricdimensionsare not homogeneous,
hencemutationrangesdiffer for eachdimension,being directly proportionalto the
varianceallowed in that parameter Anotherfeatureof this mutationoperatoris that
while it searchesvithin thehypercubeenteredtx, it testsmoreoftenin thevery close
neighborhoodf x, the ideabeingthat, while we wantto conducta global searchfor
optimumusingour recombinationmutationis usedfor a morerestrictedocal search.
Having understoodhe broadfeatureswvhich the mutationoperatorshoulddemonstrate,
we formally definethe mutationasfollows:

Given a chromosomex, eachparameterr; is mutatedwith probability 0.1. The
numberof parameterbeingl0impliesthatatleastoneparametewill beprobablymu-
tated. Further giventhe mutationrangefor the parameter:; asrange;, the parameter
x; iIs mutatedo thevaluez;* givenby

*
T; = x; £range;-p

As previously discussedp shouldbe suchthatit lies betweerQ and1 (to generatehe
hypercubecenterecht z) andalsoit shouldprobabilisticallytake on smallvaluessoas
to testmoreoftenin thecloseneighborhoof z. Thisis realizedby computingp from

thedistribution
p=2 027
J

whereeacha; is probabilisticallyeitherO or 1.
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@ B8 K1 K2 K YA B YR 1. R
C1l | 1.731 2.03 0.314 0.493| 0.355| 0.240 0.521 0.054| 0.386 0.215
C2| 1231 212 1.0 0.564| 0.178| 1.377 4.39 0.707| 0.871 0.906

Table5.2: Optimal parameteraluesfor eachof the clustersfor one executionof the
GA over100generations

Diversity

The corvergenceof the geneticalgorithmis estimatedhroughits populationdiversity.
Initially, the populationhasa high diversity sinceall the individualsarerandomlyse-
lected.As the algorithmcorverges theindividualsin the populationcorvergetowards
the bestsolution,thusdecreasindhe diversity. In our case the individualsare points
in a heterogeneoudimensionspacewith «, 3, y4 andyg € R+ while the otherpa-
rametergangingbetweerD and1. Hencewe usethe Mahalanobiglistancemeasurdo
determinghediversity of a population[22].

The Mahalanobidistancetakesinto accountthe heterogeneityn dimensionsand
correspondinglyscaleseach dimensionwhile estimatingthe distancebetweentwo
points. Given a set of data points {z;} with eachdatapoint z; being an n-tuple
(241 < j < n), the Mahalanobidistanced,,, betweentwo pointsz;, andz; is given
as

dn (28, 21) = (2 — 2) TS (21, — 21)

HereX isthen x n variance-coariancematrixfor thegivendatapoints. To comparehe
diversity of populationsacrossgenerationsthe covariancematrix is computedtaking
into accountall the chromosomesver all generations.The diversity of a population
is thencalculatedasthe averageMahalanobiglistanceof eachchromosomdrom the
meanchromosome.

5.4.4 Results

The geneticalgorithmwasrun on the two taskcomplexity classegepresentedby the
targetclustersC; andC; in our simulator The populationsizewasof 20 individuals,
andwe ranthegeneticalgorithmfor 100generationsTheinitial positionwasthe same
for bothtaskswith the cross@er andthe mutationratesbeing0.8 and0.1respectiely.
In the algorithm, four of the parameters— a, 3, y4 and~g lie on the positve real
axis and hencewe have to choosean upperlimit on the real line. This upperlimit
is importantsincea low upperlimit valueimplies that we implicitly restrictour real
valuedparameterso thatlimit, while ahighupperlimit valuemayincreasehe number
of generationgor which the geneticalgorithm may have to be run sincethe initial
randomgeneratiorwill beverydispersea andg areexponentof numberdessthanl
andhencetheir large valueswill not be useful. Keepingthesefactorsin consideration,
theupperlimit valuehasbeenfixedto 5 in our simulations.

The geneticalgorithm cornvergesto an optimal solutionfor eachclusterascanbe
seenin Figures5.10-5.15.By optimal solutionwe refer to the bestsolutionthe algo-
rithm hasfound, which may not necessarilybe the optimal solutionto the navigation
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Goingto ¢ Goingto C,

2 f 5 c f
Cyiset|| 1 |505|0.017| 0.5| 127.5| 0.003
Cyset|| 0.5]425| 0.011 1 122 | 0.007
HT set| 0.5| 69 | 0.005|f O - 0

®|

Table5.3: Resultsobtainedby the differentparametesets

task. The optimal valuesfor someof the parametergliffer significantly for the two
clustersasshavn in Table5.2. The parameterassociatetb thebiddingfunctionof the
Risk Manager agentdiffer the mostbetweenthe two clusters. This is so becausehe
RiskManager is very sensitve to the compleity of the task. The moreobstaclesthe
highertherisk of losingsightof landmarks.

In orderto checkthe resultsobtainedfor eachof the clusters,we have testedthe
two parametesetsfoundby thegeneticalgorithmonthetwo differentnavigationtasks
(goingto clusterC; andgoingto clusterCs). We have alsotestedour original param-
eterset,which we setby hand,on the sametwo navigationtasks.Theresultsobtained
by eachseton eachof thetasksareshavnin Table5.3. For eachtask,themeanaverage
succesvalue(s), averagecost(c) andthefitnessvalue(f) is computed.As expected,
theparametesetfoundfor clusterC; performsperfectlywhengoingto clusterC; and
it only reacheghetargetsof clusterC, 50% of thetime. Onthe otherhand,theparam-
etersetfoundfor clusterC; reacheshetargetsof clusterC, all thetimes,while it only
reacheghe targetsof clusterC; 50% of thetime. Finally, the hand-tunedbarameter
setreache$0% of the time for targetsin clusterC;, andnever reachegshe targetsof
clusterCs. Therefore the evolutionary approachhasimproved the global navigation
behavior.

In Figures5.16and5.17 we canseesomepathsfollowed by the robot usingeach
of the parametesseton eachof the tasks. Successfupathsare only shavn for those
parametesetwith asuccessalueof 1. Otherwise anexampleof afailing path(marked
with acrossatits end)is shovn.

5.4.5 Future Work

We will analyzethe generality in termsof differentervironmentsandstartingpoints,
of theparametersbtainedby the geneticalgorithm. Furtherwork shouldalsofocuson
designingan agentcapableof identifying the complexity of the taskbeingperformed,
sothatthe parametersanbe switchedfrom onesetto another We will exploretheuse
of CaseBaseReasonindechnique®nthis “situationidentifier” agent.
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Figure5.16: Goingto clusterC

Figure5.17: Goingto clusterC,
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