Chapter 2

RelatedWork and
State-of-the-art

In this chapterwe review relevantrelatedwork andthe state-of-the-aron the field of
autonomousobotics. We have dividedit in two sectionspnefor eachmain threadof
our researchControl ArchitecturesandMappingandNavigation.

2.1 Control Architectures

A mobilerobotworkingin unknovn ervironmentshasto beableto perceve theworld,
reasonaboutit, andactconsequentlyn orderto achiese its goals. The way in which
this processs doneis definedby therobot’s controlarchitecture Many approachefor
controlarchitecture®iave beendeveloped andtherealsoexist mary definitionsof what
acontrolarchitectures:

“Robotic architecture is the disciplinedevotedto the designof highly specificand
individual robotsfroma collectionof commorsoftwae building blocks” — Adaptation
of Stones[62] definitionof computerarchitecture.

“ [an architecture refeis to] the abstact designof a classof agents: the set of
structural component$n which perception,reasoning and action occur; the specific
functionality and interface of eadh componentand the interconnectiontopolagy be-
tweencomponents.— Hayes-RotH30].

“An architecture providesa principled way of organizinga control system.How-
ever, in addition to providing structure, it imposesconstaints on the way the control
problemcanbesolved. — Mataric[48].

“An architectureis a descriptionof howa systenis constructedrombasiccompo-
nentsand howthesecomponentsit togetherto form thewhole” —JamedAlbus,atthe
1995AAAIl SpringSymposium.

The maindifferencebetweerthe architectureproposedn the pastyearsrelieson
whetherthey aremoredeliberatie or morereactve. Figure2.1 depictsthe spectrunof
controlarchitectures.
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Figure2.1: Controlarchitecturesspectrum

In this sectionwe give anoverview (characteristicsadvantagesanddisadwantages)
of the threemain approachespurely deliberatve or hierarchical architectues purely
reactive or behaviorbasedarchitectuies andhybrid architectuies which combineboth
previousmethods.

2.1.1 Hierarchical Architectures

Hierarchicalarchitecturesalsonameddeliberatve control architectureswereusedfor
mary yearssincethe first robotsbeganto be built. Examplesof sucharchitectures
androbotsare SRI's Shaley [54], Stanfords CART [50], NASA's Nasremsystem[42]
andlIsik’'s ISAM [32], amongothers. Thesearchitecturesare basedon a top-dovn
philosophyfollowing a sense-plan-aanodel(seeFigure2.2). The control problemis
decomposeithto a setof modules sequentiallyorganized:first the perceptiormodule
getsthe sensoryinformation, which is passedo the modelingmodule that updates
aninternalmodel of the environment; after that, planningis doneusingthis internal
model,andfinally the executionmoduleimplementshe solutionwith the appropriate
commanddor the actuators.
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Figure2.2: Sense-plan-achodel

This modelworks very well whenthe environmentin which the robotis working
can be tailoredto the taskto be performed(e.g. industrial robotsin factories,with
magneticheaconsmarked paths,etc.). However, whenthe taskis to be performedin
anunknawn, unpredictablenoisy environment,they fail to succeedasthe planningis
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Figure2.3: Singlebehaior diagram

usuallyout-of-dateby thetime it is beingexecuted.

Anotherdrawbackof sucharchitecturess their lack of robustnessSincethe infor-
mationis processedequentiallyafailurein any of thecomponentgauses complete
breakdevn of thesystem.

2.1.2 Behavior-basedRobotics

Behaior-basedrobotics[3] appearedn the mid 1980sin responseo the traditional
hierarchicalapproach Brooks[8] proposedo tightly coupleperceptiono action,and
thereby provide a reactve behaior that could dealwith any unpredictedsituationthe
robotmay encounter Moreover, Brooksadwcatedfor avoiding keepingany modelof
the ervironmentin which the robot operatesarguing that “the world is its own best
model”. Behavior-basedroboticsis a bottom-upmethodologyinspiredby biological
studies,wherea collectionof behaiors actsin parallelto achieve independengoals.
Eachof thesebehaiorsis asimplemodulethatrecevesinputsfrom therobot'ssensors,
and outputsactuatorcommandgseeFigure 2.3). The overall architectureconsistsof
several behaviors readingthe sensoryinformationand sendingactuatorcommanddo
a coordinatorthat combineshemin orderto senda singlecommando eachactuator
(seeFigure2.4).
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Figure2.4: Behavior-basedarchitecture

Themostrepresentatie of sucharchitecturesireBrooks’ subsumptiomrchitecture
[8], Maes’actionselection[43] andArkin’smotorschemad4]. Sincethen,mary other
architectureiave beenproposed.

Behavior-basedarchitecturesreclassifieddependingon how the coordinationbe-
tweenbehaiorsis done:

e Competitive in thesearchitectureshe coordinatoiselectsanactioncomingfrom
one of the behaviors and sendsit to the actuatorsthatis, it is a winnertake-
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all mechanism.Subsumptiorarchitectureand action selectionare examplesof
competitive coordination.

e Coopeative in thesearchitectureshe coordinatorcombineghe actionscoming
from severalbehaiors to producea new onethatis sentto the actuators Motor
schemass anexampleof cooperatie coordination.

In this sectionwe give a brief overview of the threemostknown behaior-based
architecturesndpoint out someothersrelevantto our work.

Subsumptionarchitecture

The Subsumptiorarchitecture designedby Rodne Brooks [8], was the first of the
Behavior-basedarchitecturesln thisarchitectureeachbehaior is representedsasep-
aratelayer, having directaccesdo sensoryinformation. Eachlayer hasanindividual
goal, andthey all work concurrentlyandasynchronouslyA layeris constructedf a
setof AugmentedFinite StateMachines(AFSM), connectedy wires throughwhich
signalscan be passedrom one AFSM to another Theselayersare organizedhierar
chically, andhigherlevels areallowedto subsumehencethe name,lower ones. This
subsumptiorcantake form of inhibition or suppressioninhibition eliminatesthe sig-
nal coming out from an AFSM of the lower level, leaving it inactive. Suppression
substituteghe signal of the AFSM by the signal given by the higherlevel. Higher
level AFSMs canalsosendresetsignalsto lower ones. Thesemechanismgprovide a
competitive, priority-basecdcoordination.
Thehierarchicabrganizatiorpermitsanincrementatlesignof thesystemashigher
layersareaddedntop of analreadyworking controlsystemwith noneedof modifying
thelowerlevels. An exampleof suchbehaior layeringis depictedn Figure2.5.

Back-out-of-tight
situations layer

— MOTORS
= BRAKES

Figure2.5: Exampleof a controlsystemusingthe subsumptiorarchitecture Eachbox
is an AFSM, and signalsare passedhroughthe arrons connectingthe AFSMs. An
encircledS is a suppressiomoint,andanemptycircle is aresetpoint

The main strengthsof this architectureare its incrementaldesign methodology
which makesit easyandintuitive to build a system,its hardwareretagetability (each
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of thelayerscanbeimplementedlirectly onlogic circuitry), andthe supportfor paral-
lelism, sinceeachlayercanrunindependentlyandasynchronously

However, this theoreticindependencés not absolute sincehigherlayerscansup-
press,inhibit andalsoreadthe signalsof lower layers. Moreover, theseconnections
betweenayersare hard-wired,sothey cannotbe changedduring execution,thus, not
allowing on-the-flyadaptabilityof the systemto changesn the ervironment. Onefi-
nal aspeciagainsthis architecturds thatit forcesthe designetto prioritize behaiors,
therefore the caseof behaviors with equalpriority cannotbe representegvith the sub-
sumptionarchitecture.

Action selection

Action selectionis an architecturalapproactdevelopedby Pattie Maes[43] that uses
a dynamicmechanisnfor behaior (or action) selection. This dynamicmechanism
solvesthe problemof the predefinedpriorities usedin the subsumptiorarchitecture.
Eachbehaior hasan associate@ctivation level, which canbe affectedby the current
situationof the robot (gatheredrom the sensors)its goals,andthe influenceof other
behaviors. Eachbehaior alsohassomepreconditionghathave to bemetin orderto be
active. Fromall theactive behaviors, the onewith the highestactivationlevel is chosen
for actualexecution.

This coordinationmechanisnresemblewery muchour bidding approach.Iin our
architecture eachsystem(or agentwithin the Navigation system)bids accordingto
the urgeng for having the actionexecuted which is equivalentto the activationlevel.
However, our biddingagentdhave no preconditiongo bemetin orderto becomeactive,
andthey arealwaysreadyto bid. Anotherimportantdifferenceis that behaiors in
action selectioncaninfluencethe activation level of otherbehaiors, whereasn our
approachheagentsaretotally independentsinceanagentcannotinfluencethe bids of
anotheragent.

Motor schemas

The Motor schemaspproachwasproposedy RonaldArkin [4], andit is a morebio-
logically basedapproactio controlarchitectureshantheprevioustwo. As in theprevi-
ousapproachesachbehaior recevessensorjinformationasinputsandgenerategan
actionasoutput. This outputis alwaysa vectorthatdefineshow shouldtherobotmove,
and canhave asmary dimensionsas needede.g. two dimensiongor ground-based
navigation, threefor flying or undervaternavigation, etc.). Eachbehaior usesthe po-
tentialfield approachdevelopedby Khatib [34] andKrogh[37]) to produceits output
vector However, insteadof computingthe entire potentialfield, only the responseat
the currentlocationof therobotis computedallowing a simpleandfastcomputation.
Contrarily to the previous two approachesnotor schemasisesa cooperatie coordi-
nationmechanism.The way the differentbehaiors are coordinateds throughvector
summation Eachbehaior contributesto theglobalreactiondependingn againfactor
(G:). Eachoutputvector(R;) is multiplied by its behavior gainfactorandsummedup
with therestto producea singleoutputvectorthatwill be sentto therobot’s actuators
(seeFigure2.6). Thesegain factorsarevery usefulfor adaptabilitypurposesasthey
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canbedynamicallychangediuringexecution thus,astheactionselectiorarchitecture,
alsoovercomingtherestrictingsubsumptiorarchitectures priority scheme.
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Figure2.6: Motor-schemasirchitecture

However, cooperatie mechanismbiave someproblems A first problemis thatthey
canreachlocal minimain the potentialfield. Imaginethe situationin which the robot
hasan obstaclein front of it, andthe taskto be performedis to reacha targetlocated
right behindthe obstacle.In this situation,the behavior for avoiding obstaclesvould
computea repulsive vectorcomingfrom the obstacle while the go-to-tagetbehaior
would computea vector going to the target, which would also point to the obstacle.
Thus, in a particularlocation, the sum of both vectorswould be null, and the robot
would not move arymorefrom thatlocation. This problemis easilysolved by adding
a noiseschemathat always producesa small randomvectorin orderto avoid these
blocking situationsfrom happening. Anotherproblemof cooperatre mechanismss
thattheactionactuallyexecuteds onethatno behaior hasgeneratedAgain,imaginea
robotwith anobstacleaheadandimaginethattwo differentbehaiors generateutputs
for avoiding that obstacle,one trying to avoid it throughthe right and the otherone
trying to avoid it throughthe left. The sum of the vectorwould be a vector going
straightaheado the obstaclewhich obviously would not be the bestthing to do.

Other behavior-basedsystems

Rosenblatt[56], in CMU’s Distributed Architecturefor Mobile Navigation project
(DAMN), proposedanarchitecturehatis similarto our approachin this architecture,
a setof modules(behaviors) cooperatdo control a robot’s pathby voting for various
possibleactions(steeringangleand speed)andan arbiterdecideswhich is the action
to beperformed.Theactionwith morevotesis theoneactuallyexecuted However, the
setof actionsis pre-definedwhile in our systemeachagentcanbid for any actionit
wantsto perform. Moreover, in the experimentscarriedout with this system(DAMN),
the navigation systemuseda grid-basedmap and did not useat all landmarkbased
navigation.

Safioti et al [58, 57] developedthe Saphiraarchitecturewhich usesfuzzy logic
to implementthe behaiors. Eachbehaior consistsof several fuzzy rulesthat have
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fuzzy variablesasantecedentgextractedfrom sensoryandworld modelinformation),
and generateas outputa control set(i.e. fuzzy control variable). This control setis
computedfrom the valuesof the fuzzy variables,andit representshe desirability of
executingthe controlaction,beingsimilar to the activationlevel of theactionselection
architecture Eachbehavior alsohasafixed priority factorwhichis usedfor coordinat-
ing all the behaviors. This coordinationis very similar to the cooperatre mechanism
usedin Motor schemas.However, insteadof combiningvectors,it combinescontrol
setsandthendefuzzifiesheresultingsetin orderto getasinglecontrolvalue.
Humphrys[31] presentseveral actionselectionmechanismshatusea similar co-
ordinationmechanisnto ours. Eachagentsuggestghe actionit wantsthe robot to
performwith a givenstrengthor weight(equivalentto our bid), andthe actionwith the
highestweightis the oneexecuted.Theseweightsare computedandlearnedthrough
Reinforcement.earning)usingthe one-stegeward of executinganaction,which each
agentis ableto predictfor theactionsit suggestsThisis animportantdifferencewith
our problem,sincewe cannotassignaone-stegewardto anaction;theonly rewardthe
robotmayreceveis whentherobotreacheshetarget,andit is verydifficult to split this
rewardinto smallerrewardsfor eachactiontakenduringthe navigationto thetarget.

2.1.3 Hybrid Architectures

Althoughit hasbeenwidely demonstratethatbehaior-basedarchitectureeffectively
producea robust performancen dynamicandcomplex environmentsthey arenot al-
ways the bestchoicefor sometasks. Sometimedhe taskto be performedneedsthe
robotto make somedeliberationandkeepa modelof the ervironment. But behaior-
basedarchitectureslo avoid this deliberatiorandmodeling.However, aswe have men-
tionedatthe beginning of this section purelydeliberatve architecturesrealsonotthe
bestchoicefor tasksin complex ervironments.Thus,a compromisebetweerthesetwo
completelyoppositeviews mustbereachedThisis whathybrid architectuesachiese.

In thesehybrid architectureghereis a part of deliberation,in orderto modelthe
world, reasonaboutit and createplans,anda reactie part, responsibleof executing
the plansand quickly reactingto any unpredictedsituationthat may arise. Usually
thesearchitecturesare structuredin threelayers(seeFigure2.7): (1) the deliberatve
layer, responsibleof doing high-level planningfor achieving the goals,(2) the control
executionlayer, which decomposg¢he plangivenby the deliberatve layerinto smaller
subtaskgthesesubtaskdmply activating/deactiatingbehaiors, or changingpriority
factors)and(3) thereactivelayer, whichis in chaigeof executingthesubtasksetby the
control executionlayerandcanbe implementedvith ary behaior-basedarchitecture.
Examplesof suchhybrid architecturesamongothers,are Arkin’s AURA [2] andGat’s
Atlantis system[29] for JPLsrovers.

Anotherhybrid architecturealthoughnot following thethree-layestructurejs that
of Liscanoetal [25]. In their architecturethey usean actiity-basedblackboardcon-
sisting of two hierarchicallayersfor stratgic and reactive reasoning. A blackboard
databas&eepgrackof the stateof theworld anda setof actiities to performthe nav-
igation. Arbitration betweerncompetingactiities is accomplishedy a setof rulesthat
decidewhich activity takescontrolof therobotandresohesconflicts.
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Figure2.7: Threelayershybrid architecture

Although our approachs presentedisa behaior-basedsystemiit is not a purely
reactive system,sincethereis somemodeling (one of the agentsof the Navigation
systemis in chage of building a map of the ervironmentand computingroutes)and
deliberation(the agentseasoraboutthe world andcommunicatevith eachother). So
if we hadto classifyit onthe spectrunof controlarchitecturesywe would placeit in the
hybrid group,having thereactve anddeliberatie partsmixedin onesinglelayer.

2.1.4 Bidding Mechanisms

Regardingthe useof biddingmechanismsye have foundveryfew systemsnakinguse
of it. At CMU, the FIRE project[19] usesa market-orientechpproactto modeltheco-
operationof ateamof robots.In this approachinsteadof usingthebiddingmechanism
to coordinate¢heagentwf asinglerobot,biddingis usedto coordinateateamof robots
thathave to accomplishseveraltasks. Therationaleis thatwith this mechanismeach
taskis performedby the bestsuitedrobot for the task, thusachiesing a betterglobal
performance.

SunandSession$63] have alsoproposedinapproacHor developinga multi-agent
reinforcementearningsystemthat usesa bidding mechanisnto learncomplex tasks.
Thebiddingis usedto decidewhich agentgetsthe control of thelearningprocessThe
agentshid accordingto the expectedreward thatwould receve if they weregiventhe
control. Thus,althoughthey arecompetingfor the control, they alsocooperatesince
they seekto maximizethe overall systenreward.

2.2 Mapping and Navigation

The mappingproblemis regardedas one of the mostimportantproblemsin the field
of autonomousobotics,andit datesbackto SRI's famousShaley robot[54]. A robot
operatingautonomouslneedgo answetrthe threebasicquestionsaboutmappingand
navigation,aspositedby Levitt andLawton[39]:
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e Wheream|?
e How dol getto otherplacesfrom here?

e Whereareotherplacesrelativeto me?

This would be easyif ana priori mapwereavailable, but we aredealingwith the
scenarioof unknaovn ervironments. Thatis, the robot hasno knowledgeat all about
what the ervironmentlooks like, wherethe landmarks the obstaclesgetc are. To be
ableto answerthesequestionsand,thereby be ableto performits task,therobotmust
acquireamodelof theervironmentin whichit hasto navigatethrough.Recentesearch
onmodelingunknavn ervironmentds basentwo mainapproachesoccupancygrid-
based(or metric),andtopological maps

Anotherdistinctive andvery importantfeatureof mappingapproachess localiza-
tion. Thelocalizationproblemcanbe split in two very differentparticularproblems:
local localizationand global localization. Local localization,alsoknown as position
tracking,aimsat compensatingdometricerrorsoccurringduringrobotnavigation. On
theotherhand,globallocalizationis concernedvith the problemof finding outwherea
robotis relativeto a mapof thewholeernvironment.In thisthesiswe tacklethe problem
of globallocalization. Therearetwo mainapproache$or solvingit: modelmatding
andlandmarkbasedocalization.

In therestof this sectionwe will go throughall theseapproachesstartingwith the
globallocalizationapproachesandthenthe grid-basedandtopologicalmappingones.

2.2.1 Localization

As justmentionedgloballocalizationis the problemof finding outwherearobotis rel-
ative to amap(i.e. aligntherobot’s local coordinatesystemwith the globalcoordinate
systemof the map). This problemis asimportantasbeingableto build a good map
of the ervironment. No matterhow goodthe mapis, it will be of no useif we arenot
ableto localizetherobotonit. Corversely evenif we know how to localizethe robot
with high precision,thatwill be uselessf thereis no goodmapavailableon whereto
localizeit. Moreover, theaccurag of ametricmapdependsighly onthealignmentof
therobotwith its map. If we arenot ableto localizethe robot, the resultingmapsare
too erroneougo be of practicaluse. As seenthesetwo problemsare closelyrelated,
andmostof the mappingapproachetry to addressoth problemsat the sametime, in
whatis known assimultaneousocalizationand mapping(SLAM).

Model matching localization

Thesealgorithmsextract geometricfeaturesrom the sensorreadingsandtry to match
them with a map of the ervironment,in order to correctpossibleodometricerrors.
This approachs closelyrelatedto grid-basednapping(describedelow), sincethese
geometrideaturesaretheinformationpieceghatgrid-basednappingapproachestore
onthemap.

The positionof the robotis incrementallycomputedusingodometryandinforma-
tion from sensorsby matchingthis informationwith the mapalreadybuilt. The sensor
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informationusedfor matchingcanbe single sonarscanswhich are matchedwith the
obstacle®nthemap,suchin MoravecandElfe’sapproach23, 52]. Otherapproaches,
suchasChatilaandLaumonds[18] extractgeometrideaturegline sggmentsandpoly-
hedral objects)from the sensorreadingsand matchthemto a geometricmap of the
ervironment.

One problemwith this approachis that it requiresaccurateodometryto disam-
biguateamongpositionsthatlook similar. Probabilisticapproache¢Smith et al [61],
Fox et al [27], Castellanosand Tardds [16]) try to solve this ambiguity problem,and
they arethe mostfrequentlyusedin thefield of robotmapping.The basicideaof these
algorithmsis to employ probabilisticmodelsof the robotandthe ervironmentto cope
with the uncertaintyof robotmotionandsensoreading.Iln orderto localizetherobot,
they useconsecutie sensoreadinggo estimatea distribution over the spaceof all lo-
cationsin the erwvironment. The more readingsthe robot gets,the more preciselyits
locationcanbe computed.

In our casewe do not have to dealwith this ambiguity sincewe have developed
a Vision systemrobust enoughto correctlyidentify the landmarks. Thus, thereis no
uncertaintyaboutthe presenceof a landmark. However, thereis someimprecision
aboutits location,which we dealwith usingfuzzy techniques.

The modelmatchingapproachhowever, is computationallyvery expensve, since
the procesof matchingthe currentsensoreadingswith the maprequiresmary com-
putations.

Landmark-based localization

In theseapproachesandmarksare usedas referencego computethe location of the
robot. Landmarkscanrangefrom a setof sensoreadinggo artificial landmarkssuch
asbeaconr barcodesor naturallandmarksdetectedoy vision systems.Becausenf
its computationalsimplicity and alsoits closerelationshipwith humannavigational
abilities, this approachs the mostwidely used,andit hasbeenusedwith both grid-
basedandtopologicalapproaches.

This approachalso suffers from the problemof ambiguity amonglandmarksthat
look similar. Again, the probabilisticapproachcanhelp solving this problem. Thrun
[65] andDissanayak et al [21], amongothers,usethis approachtogetherwith grid-
basednapsandSimmonsandKoenig[60] andKaelblingetal [33] combineit with the
topologicalapproach.

2.2.2 Map Representation

In orderto navigatethroughtheervironment,therobotmustcreatea modelof it. There
aretwo approacheso modelthe ervironment,the metric or grid-basedapproachand
the topologicalapproach.Dependingon the type of ervironmentoneor the otherap-
proachis mostappropriateTable2.1 summarizethe advantagesanddisadwantage of
thesetwo approaches.
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Table 2.1: Advantagesaanddisadwantagef grid-basedand topologicalmappingap-
proaches

Grid-based mapping

This approachwas originally proposedby Elfes [23] and Moravec[51]. Cellsin an
occupanyg grid containinformation aboutthe presenceor not of an obstacle. Each
of thesecellsis updatedusing sensorreadingsandits valuerepresentshe degreeof
beliefin the presencef an obstacle.The vastnumberof grid-basedalgorithmsdiffer
ontheway in which sensoreadingsaretranslatednto occupang levels. Amongother
techniques probability theory [51, 66, 67] and fuzzy settheory [41, 40] have been
used. This mappingapproachcan be usedin conjunctionwith the two localization
approachesashasbeenjust describedabove.

In this approach nhavigationis performedusing path planningalgorithms,which
computepreciseroutesthroughthe ervironmentin orderto reacha goal avoiding the
obstacles.

Althoughthis approactis widely usedandachievesvery goodresults,it is mainly
focusedfor indoorstructuredernvironments.The sizeof suchenvironmentgpermitsthe
robotto maintainagrid with ahigh enoughresolution(i.e. smallcells). In largeoutdoor
ernvironments however, this techniquecannotbe applied,asthe computationatostof
the grid would betoo high.

Moreover, in mostof thealgorithmsfollowing thisapproachtherobothasatraining
periodin whichit navigatesthroughthe ervironmentwith theonly purposeof building
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amap.After thistraining period,therobotis ableto performits taskandlocalizeitself
usingthe alreadybuilt map. In our scenariohowever, thereis no suchtraining period,
astherobotdoesnot have the opportunityto inspecttheenvironmentbeforeattempting
to reachthetarget,but hasto reachit while exploringtheervironmentfor thefirsttime.

Topologicalmapping

In comparisorto grid-basedepresentationgppologicalrepresentationsuchasthose
proposedy Chatila[17], KuipersandByun [38], Mataric [47] andKortenkamp[36],
amongothers)arecomputationallycheaper They usegraphsto representhe environ-
ment.Eachnodecorrespond$o anernvironmentfeatureor landmarkandarcsrepresent
pathsor motion instructionsbetweenthem. Someapproache¢Kuipers[38], Korten-
campandWeymouth[35]) alsodefinethenodesas“places”,wherea“place”is defined
asa locationwherea setof featuresor landmarksfulfill a given property(e.g. sonar
readingsmatchinglandmarkvisibility, etc.).

With this graph,the problemof navigationis reducedto the problemof finding a
route from one nodeto another— the target one. This canbe easily computedwith
mary graphsearchalgorithms(Dijkstra’s shortestpath, A*, dynamicprogramming).
However, this simplicity of computingrouteshasthe disadantagethat the routesare
not always the optimal ones,sincethereis not an accurategeometricdescriptionof
the ervironment, and path planningalgorithmsfor metric worlds cannotbe applied.
Moreover, in topologicalgraphsthereis no explicit representationf the obstaclesas
in ametricmap. Therefore whenmoving from onenodeto anotheythereis no way of
planninganoptimal path,sincetheremay be someobstacle®n theway.

The advantageof topologicalapproachess thatthey do not rely on odometryin
orderto build the mapnor localizetherobotonit. The only pointin which odometry
is sometimesisedis to labelthe arcsbetweemodes. As alreadymentionedthe arcs
containinformationabouthow to getfrom onenodeto another This informationcan
be, dependingon the approachmetric information (headingand distanceto the next
node). If this werethe case the odometryerror would influencethe precisionof this
information. However, sinceneighboringnodesare closeto eachother, this erroris
boundedanddoesnot accumulateastherobotnavigatesthroughthe ervironment.

The drawbackof not usingmetricinformationis thattopologicalapproachebave
difficultiesin determiningf two placesthatlook similar arethe sameplace,sincethey
computethe positionof therobotrelative to theknown landmarks.This problemcanbe
tackledif arobustenoughlandmarkrecognitionsystemis in place. Landmarkrecog-
nition is a very active field of researctin vision andvery promisingresultsare being
obtained46]. In this work we assumehatthevision systemcanrecognizdandmarks.
However, in theabsencef arobustrecognitionsystema probabilisticapproachsimi-
lar to the onedescribedor metricmaps,couldbe applied.

Topologicalapproachesanalsobe combinedwith grid-basedapproachesThrun
[66] combineshothrepresentation his work on learningmapsfor navigationin in-
door structuredervironments. The grid-basedmapis partitionedin coherentregions
to generatea topologicalmapon top of the grid. By combiningboth methodshis ap-
proachgainsthe advantagef both methods resultingin an accurategconsisteneind
efficient mappingapproachThis is indeeda goodideafor indoorenvironmentsbut for
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large-scaleoutdoorervironmentsmay not be worth the computationakffort of main-
taininga grid representationnderatopologicalone.

In ourwork we usethe approachwherenodesrepresentegionsdefinedby groups
of threelandmarksandthatareconnectedy arcsif the regionsareadjacentthatis, if
they have two landmarksn common.The arcs,insteadof containingmotioninforma-
tion, representhe costof goingfrom oneregionto another This graphis incrementally
built while therobotis moving within the environment.This incrementamapbuilding
approachs basedn previouswork by Prescot{55] thatproposedinetwork modelthat
usedbarycentriccoordinatesalso called beta-codicientsby Zipser[68], to compute
the spatialrelationsbetweenandmarksor robotnavigation. By matchinga perceved
landmarkwith the network, the robot canfind its way to a targetprovidedit is repre-
sentedn the network. Prescott approachis quantitatve whereaur approachusesa
fuzzy extensionof the beta-coeficientcodingsystemin orderto work with fuzzy qual-
itative information aboutdistancesainddirections. Anotherdifferencewith Prescott
approachs that his topologicalgraphcontainsonly adjaceng information, thus, not
maintainingary informationaboutcosts,asin ours. This costinformationis very im-
portantwhen planningroutesfrom oneregion to anothey sinceit is the only way to
know whethera pathis blocked or free. Onefinal pointto mentionis thatin Prescot
experiments carriedout only on simulation,the robot was allowed a training period,
while this periodis not presenin ourapproach.

Levitt andLawton[39] alsoproposeda qualitatve approacho the navigationprob-
lem. In this approachlandmarkpairsdivide the ervironmentinto two regions,onefor
eachsideof theline connectinghetwo landmarks.The combinationof all suchlinear
divisionsgenerates topologicaldivision of the ervironment,on which navigationcan
be performed. Navigation consistsof crossinga seriesof landmarkpairsin orderto
reachthe region containingthetargetlandmark.Our navigationmethodusesthe same
ideafor computingand navigating to diverting targets. The differencebetweenthis
approachandoursis thatwe usethreelandmarksfor creatingthe region subdvision,
insteadof only two. This givesasresulta betterandmorecompactdivision of theen-
vironment. Moreover, this third landmarkpermitsthe robotto computea relationship
amongthe landmarkghatis uniqueandinvariantto viewpoint.

Anotherqualitatve methodfor robotnavigationwasproposedy EscrigandToledo
[24], using constraintlogic. However, they assumethat the robot hassomea priori
knowledgeof thespatialrelationshipof thelandmarkswhereasur systembuilds these
relationshipavhile exploring the environment.

Oneof the dravbacksof mostof the mappingapproachess thatthey arethought
for staticervironments. Thatis, landmarksare not supposedo changetheir location
while therobotis exploring theervironment.Thus,researclon vision systemsapable
of extracting robust (distinguishablejnvariantto viewpoint and illumination, static)
landmarkss very important. However, somemappingapproachearealreadyableto
copewith dynamicervironments.In [1] landmarkshave an existencestate(usingthe
principlesof neuralnetworks). This mechanisnpermitsthe removal of landmarksor
which their existenceis not certainenough. We have useda similar ideato devise a
Visual Memory(seechapterd), a shorttermmemaoryof detectedandmarks.



