
Chapter 2

RelatedWork and
State-of-the-art

In this chapterwe review relevant relatedwork andthe state-of-the-arton the field of
autonomousrobotics.We have divided it in two sections,onefor eachmain threadof
our research:ControlArchitecturesandMappingandNavigation.

2.1 Control Ar chitectures

A mobilerobotworking in unknown environmentshasto beableto perceivetheworld,
reasonaboutit, andact consequentlyin orderto achieve its goals. The way in which
this processis doneis definedby therobot’scontrolarchitecture.Many approachesfor
controlarchitectureshavebeendeveloped,andtherealsoexist many definitionsof what
a controlarchitectureis:

“Robotic architecture is thedisciplinedevotedto thedesignof highly specificand
individual robotsfroma collectionof commonsoftware building blocks.” – Adaptation
of Stone’s [62] definitionof computerarchitecture.

“ [an architecture refers to] the abstract designof a classof agents: the set of
structural componentsin which perception,reasoning, and action occur; the specific
functionality and interfaceof each component,and the interconnectiontopology be-
tweencomponents.” – Hayes-Roth[30].

“An architecture providesa principled way of organizinga control system.How-
ever, in addition to providing structure, it imposesconstraints on the way the control
problemcanbesolved.” – Mataric[48].

“An architecture is a descriptionof howa systemis constructedfrombasiccompo-
nentsandhowthesecomponentsfit togetherto form thewhole.” – JamesAlbus,at the
1995AAAI SpringSymposium.

Themaindifferencebetweenthearchitecturesproposedin thepastyearsrelieson
whetherthey aremoredeliberativeor morereactive. Figure2.1depictsthespectrumof
controlarchitectures.
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Figure2.1: Controlarchitectures’spectrum

In this sectionwe giveanoverview (characteristics,advantagesanddisadvantages)
of thethreemainapproaches:purelydeliberative or hierarchical architectures, purely
reactiveor behavior-basedarchitectures, andhybridarchitectures, whichcombineboth
previousmethods.

2.1.1 Hierar chical Ar chitectures

Hierarchicalarchitectures,alsonameddeliberativecontrolarchitectures,wereusedfor
many yearssincethe first robotsbegan to be built. Examplesof sucharchitectures
androbotsareSRI’s Shakey [54], Stanford’sCART [50], NASA’s Nasremsystem[42]
and Isik’s ISAM [32], amongothers. Thesearchitecturesare basedon a top-down
philosophy, following a sense-plan-actmodel(seeFigure2.2). Thecontrolproblemis
decomposedinto a setof modules,sequentiallyorganized:first theperceptionmodule
gets the sensoryinformation, which is passedto the modelingmodule that updates
an internalmodelof the environment;after that, planningis doneusingthis internal
model,andfinally theexecutionmoduleimplementsthesolutionwith theappropriate
commandsfor theactuators.
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Figure2.2: Sense-plan-actmodel

This modelworks very well whenthe environmentin which the robot is working
can be tailored to the task to be performed(e.g. industrial robotsin factories,with
magneticbeacons,markedpaths,etc.). However, whenthe taskis to beperformedin
anunknown, unpredictable,noisyenvironment,they fail to succeed,astheplanningis
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Figure2.3: Singlebehavior diagram

usuallyout-of-dateby thetime it is beingexecuted.
Anotherdrawbackof sucharchitecturesis their lack of robustness.Sincetheinfor-

mationis processedsequentially, a failurein any of thecomponentscausesa complete
breakdown of thesystem.

2.1.2 Behavior-basedRobotics

Behavior-basedrobotics[3] appearedin the mid 1980sin responseto the traditional
hierarchicalapproach.Brooks[8] proposedto tightly coupleperceptionto action,and
thereby, provide a reactive behavior thatcoulddealwith any unpredictedsituationthe
robotmayencounter. Moreover, Brooksadvocatedfor avoiding keepingany modelof
the environmentin which the robot operates,arguing that “the world is its own best
model”. Behavior-basedroboticsis a bottom-upmethodology, inspiredby biological
studies,wherea collectionof behaviors actsin parallel to achieve independentgoals.
Eachof thesebehaviorsis asimplemodulethatreceivesinputsfrom therobot’ssensors,
andoutputsactuatorcommands(seeFigure2.3). The overall architectureconsistsof
several behaviors readingthe sensoryinformationandsendingactuatorcommandsto
a coordinatorthat combinesthemin orderto senda singlecommandto eachactuator
(seeFigure2.4).
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Figure2.4: Behavior-basedarchitecture

Themostrepresentativeof sucharchitecturesareBrooks’subsumptionarchitecture
[8], Maes’actionselection[43] andArkin’ smotorschemas[4]. Sincethen,many other
architectureshavebeenproposed.

Behavior-basedarchitecturesareclassifieddependingon how thecoordinationbe-
tweenbehaviors is done:

� Competitive: in thesearchitecturesthecoordinatorselectsanactioncomingfrom
oneof the behaviors and sendsit to the actuators,that is, it is a winner-take-
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all mechanism.Subsumptionarchitectureandactionselectionareexamplesof
competitivecoordination.

� Cooperative: in thesearchitecturesthecoordinatorcombinestheactionscoming
from severalbehaviors to producea new onethat is sentto theactuators.Motor
schemasis anexampleof cooperativecoordination.

In this sectionwe give a brief overview of the threemostknown behavior-based
architecturesandpointout someothersrelevantto our work.

Subsumptionarchitecture

The Subsumptionarchitecture,designedby Rodney Brooks [8], was the first of the
Behavior-basedarchitectures.In thisarchitectureeachbehavior is representedasasep-
aratelayer, having direct accessto sensoryinformation. Eachlayer hasan individual
goal, andthey all work concurrentlyandasynchronously. A layer is constructedof a
setof AugmentedFinite StateMachines(AFSM), connectedby wires throughwhich
signalscanbe passedfrom oneAFSM to another. Theselayersareorganizedhierar-
chically, andhigherlevelsareallowed to subsume,hencethename,lower ones.This
subsumptioncantake form of inhibition or suppression.Inhibition eliminatesthesig-
nal coming out from an AFSM of the lower level, leaving it inactive. Suppression
substitutesthe signal of the AFSM by the signal given by the higher level. Higher
level AFSMs canalsosendresetsignalsto lower ones. Thesemechanismsprovide a
competitive,priority-basedcoordination.

Thehierarchicalorganizationpermitsanincrementaldesignof thesystem,ashigher
layersareaddedontopof analreadyworkingcontrolsystem,with noneedof modifying
thelower levels.An exampleof suchbehavior layeringis depictedin Figure2.5.
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Figure2.5: Exampleof a controlsystemusingthesubsumptionarchitecture.Eachbox
is an AFSM, andsignalsarepassedthroughthe arrows connectingthe AFSMs. An
encircledS is a suppressionpoint,andanemptycircle is a resetpoint

The main strengthsof this architectureare its incrementaldesignmethodology,
which makesit easyandintuitive to build a system,its hardwareretargetability (each
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of thelayerscanbeimplementeddirectlyon logic circuitry), andthesupportfor paral-
lelism,sinceeachlayercanrun independentlyandasynchronously.

However, this theoreticindependenceis not absolute,sincehigherlayerscansup-
press,inhibit andalsoreadthe signalsof lower layers. Moreover, theseconnections
betweenlayersarehard-wired,so they cannotbe changedduringexecution,thus,not
allowing on-the-flyadaptabilityof the systemto changesin the environment. Onefi-
nal aspectagainstthis architectureis that it forcesthedesignerto prioritize behaviors,
therefore,thecaseof behaviors with equalpriority cannotberepresentedwith thesub-
sumptionarchitecture.

Action selection

Action selectionis an architecturalapproachdevelopedby Pattie Maes[43] that uses
a dynamicmechanismfor behavior (or action) selection. This dynamicmechanism
solves the problemof the predefinedpriorities usedin the subsumptionarchitecture.
Eachbehavior hasanassociatedactivationlevel, which canbeaffectedby thecurrent
situationof the robot (gatheredfrom thesensors),its goals,andthe influenceof other
behaviors. Eachbehavior alsohassomepreconditionsthathaveto bemetin orderto be
active. Fromall theactivebehaviors, theonewith thehighestactivationlevel is chosen
for actualexecution.

This coordinationmechanismresemblesvery muchour bidding approach.In our
architecture,eachsystem(or agentwithin the Navigation system)bids accordingto
theurgency for having theactionexecuted,which is equivalentto theactivation level.
However, ourbiddingagentshavenopreconditionsto bemetin orderto becomeactive,
and they arealways readyto bid. Another importantdifferenceis that behaviors in
actionselectioncan influencethe activation level of otherbehaviors, whereasin our
approachtheagentsaretotally independent,sinceanagentcannotinfluencethebidsof
anotheragent.

Motor schemas

TheMotor schemasapproachwasproposedby RonaldArkin [4], andit is a morebio-
logically basedapproachto controlarchitecturesthantheprevioustwo. As in theprevi-
ousapproaches,eachbehavior receivessensoryinformationasinputsandgeneratesan
actionasoutput.Thisoutputis alwaysavectorthatdefineshow shouldtherobotmove,
andcanhave asmany dimensionsasneeded(e.g. two dimensionsfor ground-based
navigation,threefor flying or underwaternavigation,etc.).Eachbehavior usesthepo-
tentialfield approach(developedby Khatib [34] andKrogh [37]) to produceits output
vector. However, insteadof computingthe entirepotentialfield, only the responseat
thecurrentlocationof therobot is computed,allowing a simpleandfastcomputation.
Contrarily to the previous two approaches,motor schemasusesa cooperative coordi-
nationmechanism.Theway the differentbehaviors arecoordinatedis throughvector
summation.Eachbehavior contributesto theglobalreactiondependingonagainfactor
( G

i

). Eachoutputvector( R

i

) is multiplied by its behavior gainfactorandsummedup
with therestto producea singleoutputvectorthatwill besentto therobot’s actuators
(seeFigure2.6). Thesegain factorsarevery usefulfor adaptabilitypurposes,asthey
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canbedynamicallychangedduringexecution,thus,astheactionselectionarchitecture,
alsoovercomingtherestrictingsubsumptionarchitecture’spriority scheme.
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Figure2.6: Motor-schemasarchitecture

However, cooperativemechanismshavesomeproblems.A first problemis thatthey
canreachlocal minimain thepotentialfield. Imaginethesituationin which therobot
hasanobstaclein front of it, andthe taskto be performedis to reacha target located
right behindthe obstacle.In this situation,the behavior for avoiding obstacleswould
computea repulsive vectorcomingfrom the obstacle,while the go-to-targetbehavior
would computea vectorgoing to the target, which would alsopoint to the obstacle.
Thus, in a particularlocation, the sumof both vectorswould be null, and the robot
would not move anymorefrom that location. This problemis easilysolvedby adding
a noiseschema,that alwaysproducesa small randomvector in order to avoid these
blocking situationsfrom happening.Anotherproblemof cooperative mechanismsis
thattheactionactuallyexecutedis onethatnobehavior hasgenerated.Again,imaginea
robotwith anobstacleahead,andimaginethattwo differentbehaviorsgenerateoutputs
for avoiding that obstacle,one trying to avoid it throughthe right and the otherone
trying to avoid it throughthe left. The sum of the vector would be a vector going
straightaheadto theobstacle,whichobviouslywould not bethebestthing to do.

Other behavior-basedsystems

Rosenblatt[56], in CMU’s Distributed Architecturefor Mobile Navigation project
(DAMN), proposedanarchitecturethat is similar to our approach.In this architecture,
a setof modules(behaviors) cooperateto control a robot’s pathby voting for various
possibleactions(steeringangleandspeed),andanarbiterdecideswhich is theaction
to beperformed.Theactionwith morevotesis theoneactuallyexecuted.However, the
setof actionsis pre-defined,while in our systemeachagentcanbid for any actionit
wantsto perform.Moreover, in theexperimentscarriedout with this system(DAMN),
the navigation systemuseda grid-basedmap anddid not useat all landmarkbased
navigation.

Saffioti et al [58, 57] developedthe Saphiraarchitecture,which usesfuzzy logic
to implementthe behaviors. Eachbehavior consistsof several fuzzy rules that have
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fuzzy variablesasantecedents(extractedfrom sensoryandworld modelinformation),
andgenerateasoutputa control set (i.e. fuzzy control variable). This control set is
computedfrom the valuesof the fuzzy variables,and it representsthe desirabilityof
executingthecontrolaction,beingsimilar to theactivationlevel of theactionselection
architecture.Eachbehavior alsohasa fixedpriority factorwhich is usedfor coordinat-
ing all the behaviors. This coordinationis very similar to the cooperative mechanism
usedin Motor schemas.However, insteadof combiningvectors,it combinescontrol
setsandthendefuzzifiestheresultingsetin orderto getasinglecontrolvalue.

Humphrys[31] presentsseveralactionselectionmechanismsthatusea similar co-
ordinationmechanismto ours. Eachagentsuggeststhe action it wantsthe robot to
performwith a givenstrengthor weight(equivalentto our bid), andtheactionwith the
highestweight is theoneexecuted.Theseweightsarecomputed(andlearnedthrough
ReinforcementLearning)usingtheone-steprewardof executinganaction,whicheach
agentis ableto predictfor theactionsit suggests.This is animportantdifferencewith
ourproblem,sincewecannotassignaone-steprewardto anaction;theonly rewardthe
robotmayreceiveis whentherobotreachesthetarget,andit is verydifficult to split this
rewardinto smallerrewardsfor eachactiontakenduringthenavigationto thetarget.

2.1.3 Hybrid Ar chitectures

Althoughit hasbeenwidely demonstratedthatbehavior-basedarchitectureseffectively
producea robustperformancein dynamicandcomplex environments,they arenot al-
ways the bestchoicefor sometasks. Sometimesthe task to be performedneedsthe
robot to make somedeliberationandkeepa modelof theenvironment.But behavior-
basedarchitecturesdoavoid thisdeliberationandmodeling.However, aswehavemen-
tionedat thebeginningof this section,purelydeliberativearchitecturesarealsonot the
bestchoicefor tasksin complex environments.Thus,acompromisebetweenthesetwo
completelyoppositeviewsmustbereached.This is whathybrid architecturesachieve.

In thesehybrid architecturesthereis a part of deliberation,in order to model the
world, reasonaboutit andcreateplans,anda reactive part, responsibleof executing
the plansand quickly reactingto any unpredictedsituationthat may arise. Usually
thesearchitecturesarestructuredin threelayers(seeFigure2.7): (1) the deliberative
layer, responsibleof doinghigh-level planningfor achieving thegoals,(2) thecontrol
executionlayer, which decomposetheplangivenby thedeliberative layer into smaller
subtasks(thesesubtasksimply activating/deactivatingbehaviors, or changingpriority
factors),and(3) thereactivelayer, whichis in chargeof executingthesubtaskssetby the
controlexecutionlayerandcanbe implementedwith any behavior-basedarchitecture.
Examplesof suchhybrid architectures,amongothers,areArkin’ s AuRA [2] andGat’s
Atlantis system[29] for JPL’s rovers.

Anotherhybridarchitecture,althoughnot following thethree-layerstructure,is that
of Liscanoet al [25]. In their architecture,they useanactivity-basedblackboardcon-
sisting of two hierarchicallayersfor strategic and reactive reasoning.A blackboard
databasekeepstrackof thestateof theworld anda setof activities to performthenav-
igation.Arbitration betweencompetingactivities is accomplishedby a setof rulesthat
decidewhichactivity takescontrolof therobotandresolvesconflicts.
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Figure2.7: Threelayershybridarchitecture

Althoughour approachis presentedasa behavior-basedsystem,it is not a purely
reactive system,sincethereis somemodeling(one of the agentsof the Navigation
systemis in charge of building a mapof the environmentandcomputingroutes)and
deliberation(theagentsreasonabouttheworld andcommunicatewith eachother).So
if wehadto classifyit on thespectrumof controlarchitectures,wewouldplaceit in the
hybridgroup,having thereactiveanddeliberativepartsmixedin onesinglelayer.

2.1.4 Bidding Mechanisms

Regardingtheuseof biddingmechanisms,wehavefoundveryfew systemsmakinguse
of it. At CMU, theFIREproject[19] usesa market-orientedapproachto modeltheco-
operationof a teamof robots.In thisapproach,insteadof usingthebiddingmechanism
to coordinatetheagentsof asinglerobot,biddingis usedto coordinateateamof robots
thathave to accomplishseveral tasks.The rationaleis thatwith this mechanism,each
taskis performedby the bestsuitedrobot for the task,thusachieving a betterglobal
performance.

SunandSessions[63] havealsoproposedanapproachfor developingamulti-agent
reinforcementlearningsystemthatusesa biddingmechanismto learncomplex tasks.
Thebiddingis usedto decidewhich agentgetsthecontrolof thelearningprocess.The
agentsbid accordingto theexpectedreward thatwould receive if they weregiventhe
control. Thus,althoughthey arecompetingfor thecontrol, they alsocooperate,since
they seekto maximizetheoverall systemreward.

2.2 Mapping and Navigation

The mappingproblemis regardedasoneof the most importantproblemsin the field
of autonomousrobotics,andit datesbackto SRI’s famousShakey robot[54]. A robot
operatingautonomouslyneedsto answerthe threebasicquestionsaboutmappingand
navigation,aspositedby Levitt andLawton [39]:
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� WhereamI?

� How do I getto otherplacesfrom here?

� Whereareotherplacesrelative to me?

This would be easyif an a priori mapwereavailable,but we aredealingwith the
scenarioof unknown environments.That is, the robot hasno knowledgeat all about
what the environmentlooks like, wherethe landmarks,the obstacles,etc are. To be
ableto answerthesequestionsand,thereby, beableto performits task,therobotmust
acquireamodelof theenvironmentin whichit hasto navigatethrough.Recentresearch
onmodelingunknownenvironmentsis basedontwo mainapproaches:occupancygrid-
based(or metric),andtopological maps.

Anotherdistinctive andvery importantfeatureof mappingapproachesis localiza-
tion. The localizationproblemcanbe split in two very differentparticularproblems:
local localizationandglobal localization. Local localization,alsoknown asposition
tracking,aimsatcompensatingodometricerrorsoccurringduringrobotnavigation.On
theotherhand,globallocalizationis concernedwith theproblemof findingoutwherea
robotis relativeto amapof thewholeenvironment.In this thesiswetackletheproblem
of global localization. Therearetwo mainapproachesfor solving it: modelmatching
andlandmarkbasedlocalization.

In therestof this sectionwe will go throughall theseapproaches,startingwith the
global localizationapproaches,andthenthegrid-basedandtopologicalmappingones.

2.2.1 Localization

As justmentioned,globallocalizationis theproblemof findingoutwherearobotis rel-
ative to a map(i.e. align therobot’s local coordinatesystemwith theglobalcoordinate
systemof the map). This problemis asimportantasbeingableto build a goodmap
of theenvironment.No matterhow goodthemapis, it will beof no useif we arenot
ableto localizetheroboton it. Conversely, evenif we know how to localizetherobot
with high precision,thatwill beuselessif thereis no goodmapavailableon whereto
localizeit. Moreover, theaccuracy of ametricmapdependshighly on thealignmentof
the robotwith its map. If we arenot ableto localizethe robot, the resultingmapsare
too erroneousto be of practicaluse. As seen,thesetwo problemsarecloselyrelated,
andmostof themappingapproachestry to addressbothproblemsat thesametime, in
whatis known assimultaneouslocalizationandmapping(SLAM).

Model matching localization

Thesealgorithmsextractgeometricfeaturesfrom thesensorreadingsandtry to match
them with a map of the environment, in order to correctpossibleodometricerrors.
This approachis closelyrelatedto grid-basedmapping(describedbelow), sincethese
geometricfeaturesaretheinformationpiecesthatgrid-basedmappingapproachesstore
on themap.

Thepositionof therobot is incrementallycomputedusingodometryandinforma-
tion from sensors,by matchingthis informationwith themapalreadybuilt. Thesensor
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informationusedfor matchingcanbesinglesonarscans,which arematchedwith the
obstaclesonthemap,suchin MoravecandElfe’sapproach[23, 52]. Otherapproaches,
suchasChatilaandLaumond’s[18] extractgeometricfeatures(line segmentsandpoly-
hedralobjects)from the sensorreadingsandmatchthem to a geometricmapof the
environment.

One problemwith this approachis that it requiresaccurateodometryto disam-
biguateamongpositionsthat look similar. Probabilisticapproaches(Smithet al [61],
Fox et al [27], CastellanosandTardós [16]) try to solve this ambiguityproblem,and
they arethemostfrequentlyusedin thefield of robotmapping.Thebasicideaof these
algorithmsis to employ probabilisticmodelsof therobotandtheenvironmentto cope
with theuncertaintyof robotmotionandsensorreading.In orderto localizetherobot,
they useconsecutivesensorreadingsto estimatea distribution over thespaceof all lo-
cationsin the environment. The morereadingsthe robot gets,the morepreciselyits
locationcanbecomputed.

In our casewe do not have to dealwith this ambiguity, sincewe have developed
a Vision systemrobust enoughto correctly identify the landmarks.Thus,thereis no
uncertaintyabout the presenceof a landmark. However, there is someimprecision
aboutits location,whichwe dealwith usingfuzzy techniques.

Themodelmatchingapproach,however, is computationallyvery expensive, since
theprocessof matchingthecurrentsensorreadingswith themaprequiresmany com-
putations.

Landmark-based localization

In theseapproacheslandmarksareusedasreferencesto computethe locationof the
robot. Landmarkscanrangefrom a setof sensorreadingsto artificial landmarkssuch
asbeaconsor bar-codesor naturallandmarksdetectedby vision systems.Becauseof
its computationalsimplicity and also its closerelationshipwith humannavigational
abilities, this approachis the mostwidely used,andit hasbeenusedwith both grid-
basedandtopologicalapproaches.

This approachalsosuffers from the problemof ambiguityamonglandmarksthat
look similar. Again, the probabilisticapproachcanhelp solving this problem. Thrun
[65] andDissanayake et al [21], amongothers,usethis approachtogetherwith grid-
basedmaps,andSimmonsandKoenig[60] andKaelblingetal [33] combineit with the
topologicalapproach.

2.2.2 Map Representation

In orderto navigatethroughtheenvironment,therobotmustcreateamodelof it. There
aretwo approachesto modeltheenvironment,themetricor grid-basedapproach,and
the topologicalapproach.Dependingon the typeof environmentoneor the otherap-
proachis mostappropriate.Table2.1summarizestheadvantagesanddisadvantagesof
thesetwo approaches.
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Table2.1: Advantagesanddisadvantagesof grid-basedandtopologicalmappingap-
proaches

Grid-basedmapping

This approachwasoriginally proposedby Elfes [23] andMoravec [51]. Cells in an
occupancy grid containinformation aboutthe presenceor not of an obstacle. Each
of thesecells is updatedusingsensorreadings,andits valuerepresentsthe degreeof
belief in thepresenceof anobstacle.Thevastnumberof grid-basedalgorithmsdiffer
on theway in whichsensorreadingsaretranslatedinto occupancy levels.Amongother
techniques,probability theory [51, 66, 67] and fuzzy set theory [41, 40] have been
used. This mappingapproachcan be usedin conjunctionwith the two localization
approaches,ashasbeenjust describedabove.

In this approach,navigation is performedusing pathplanningalgorithms,which
computepreciseroutesthroughthe environmentin orderto reacha goalavoiding the
obstacles.

Althoughthis approachis widely usedandachievesvery goodresults,it is mainly
focusedfor indoorstructuredenvironments.Thesizeof suchenvironmentspermitsthe
robotto maintainagrid with ahighenoughresolution(i.e. smallcells). In largeoutdoor
environments,however, this techniquecannotbeapplied,asthecomputationalcostof
thegrid would betoo high.

Moreover, in mostof thealgorithmsfollowing thisapproach,therobothasatraining
periodin which it navigatesthroughtheenvironmentwith theonly purposeof building
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a map.After this trainingperiod,therobotis ableto performits taskandlocalizeitself
usingthealreadybuilt map. In our scenario,however, thereis no suchtrainingperiod,
astherobotdoesnothavetheopportunityto inspecttheenvironmentbeforeattempting
to reachthetarget,but hasto reachit while exploringtheenvironmentfor thefirst time.

Topologicalmapping

In comparisonto grid-basedrepresentations,topologicalrepresentations(suchasthose
proposedby Chatila[17], KuipersandByun [38], Mataríc [47] andKortenkamp[36],
amongothers)arecomputationallycheaper. They usegraphsto representtheenviron-
ment.Eachnodecorrespondsto anenvironmentfeatureor landmarkandarcsrepresent
pathsor motion instructionsbetweenthem. Someapproaches(Kuipers[38], Korten-
campandWeymouth[35]) alsodefinethenodesas“places”,wherea“place” is defined
asa locationwherea setof featuresor landmarksfulfill a given property(e.g. sonar
readingsmatching,landmarkvisibility, etc.).

With this graph,the problemof navigation is reducedto the problemof finding a
route from onenodeto another– the target one. This canbe easily computedwith
many graphsearchalgorithms(Dijkstra’s shortestpath,A*, dynamicprogramming).
However, this simplicity of computingrouteshasthe disadvantagethat the routesare
not always the optimal ones,sincethereis not an accurategeometricdescriptionof
the environment,andpathplanningalgorithmsfor metric worlds cannotbe applied.
Moreover, in topologicalgraphsthereis no explicit representationof theobstacles,as
in a metricmap.Therefore,whenmoving from onenodeto another, thereis no wayof
planninganoptimalpath,sincetheremaybesomeobstacleson theway.

The advantageof topologicalapproachesis that they do not rely on odometryin
orderto build themapnor localizethe roboton it. Theonly point in which odometry
is sometimesusedis to label the arcsbetweennodes.As alreadymentioned,the arcs
containinformationabouthow to get from onenodeto another. This informationcan
be, dependingon the approach,metric information(headinganddistanceto the next
node). If this werethe case,the odometryerror would influencethe precisionof this
information. However, sinceneighboringnodesarecloseto eachother, this error is
boundedanddoesnotaccumulateastherobotnavigatesthroughtheenvironment.

Thedrawbackof not usingmetric informationis that topologicalapproacheshave
difficultiesin determiningif two placesthatlook similar arethesameplace,sincethey
computethepositionof therobotrelativeto theknown landmarks.Thisproblemcanbe
tackledif a robustenoughlandmarkrecognitionsystemis in place. Landmarkrecog-
nition is a very active field of researchin vision andvery promisingresultsarebeing
obtained[46]. In this work we assumethatthevisionsystemcanrecognizelandmarks.
However, in theabsenceof a robustrecognitionsystem,aprobabilisticapproach,simi-
lar to theonedescribedfor metricmaps,couldbeapplied.

Topologicalapproachescanalsobe combinedwith grid-basedapproaches.Thrun
[66] combinesbothrepresentationsin his work on learningmapsfor navigationin in-
door structuredenvironments.The grid-basedmapis partitionedin coherentregions
to generatea topologicalmapon top of thegrid. By combiningbothmethods,his ap-
proachgainsthe advantagesof bothmethods,resultingin an accurate,consistentand
efficientmappingapproach.This is indeedagoodideafor indoorenvironmentsbut for
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large-scaleoutdoorenvironmentsmaynot be worth thecomputationaleffort of main-
tainingagrid representationundera topologicalone.

In our work we usetheapproachwherenodesrepresentregionsdefinedby groups
of threelandmarksandthatareconnectedby arcsif theregionsareadjacent,that is, if
they have two landmarksin common.Thearcs,insteadof containingmotioninforma-
tion, representthecostof goingfrom oneregionto another. Thisgraphis incrementally
built while therobotis moving within theenvironment.This incrementalmapbuilding
approachis basedonpreviouswork by Prescott[55] thatproposedanetwork modelthat
usedbarycentriccoordinates,alsocalledbeta-coefficientsby Zipser[68], to compute
thespatialrelationsbetweenlandmarksfor robotnavigation. By matchinga perceived
landmarkwith the network, the robotcanfind its way to a targetprovided it is repre-
sentedin thenetwork. Prescott’s approachis quantitativewhereasour approachusesa
fuzzyextensionof thebeta-coefficientcodingsystemin orderto work with fuzzyqual-
itative informationaboutdistancesanddirections. Anotherdifferencewith Prescott’s
approachis that his topologicalgraphcontainsonly adjacency information, thus,not
maintainingany informationaboutcosts,asin ours. This costinformationis very im-
portantwhenplanningroutesfrom oneregion to another, sinceit is the only way to
know whethera pathis blockedor free. Onefinal point to mentionis thatin Prescott’s
experiments,carriedout only on simulation,the robot wasallowed a training period,
while thisperiodis not presentin ourapproach.

Levitt andLawton[39] alsoproposedaqualitativeapproachto thenavigationprob-
lem. In this approach,landmarkpairsdivide theenvironmentinto two regions,onefor
eachsideof theline connectingthetwo landmarks.Thecombinationof all suchlinear
divisionsgeneratesa topologicaldivision of theenvironment,on which navigationcan
be performed. Navigation consistsof crossinga seriesof landmarkpairs in order to
reachtheregion containingthetargetlandmark.Our navigationmethodusesthesame
idea for computingandnavigating to diverting targets. The differencebetweenthis
approachandoursis that we usethreelandmarksfor creatingthe region subdivision,
insteadof only two. This givesasresulta betterandmorecompactdivision of theen-
vironment.Moreover, this third landmarkpermitsthe robot to computea relationship
amongthelandmarksthatis uniqueandinvariantto viewpoint.

Anotherqualitativemethodfor robotnavigationwasproposedby EscrigandToledo
[24], using constraintlogic. However, they assumethat the robot hassomea priori
knowledgeof thespatialrelationshipof thelandmarks,whereasoursystembuilds these
relationshipswhile exploring theenvironment.

Oneof thedrawbacksof mostof themappingapproachesis that they arethought
for staticenvironments.That is, landmarksarenot supposedto changetheir location
while therobotis exploring theenvironment.Thus,researchonvisionsystemscapable
of extracting robust (distinguishable,invariant to viewpoint and illumination, static)
landmarksis very important. However, somemappingapproachesarealreadyableto
copewith dynamicenvironments.In [1] landmarkshave anexistencestate(usingthe
principlesof neuralnetworks). This mechanismpermitstheremoval of landmarksfor
which their existenceis not certainenough. We have useda similar ideato devise a
VisualMemory(seechapter4), ashorttermmemoryof detectedlandmarks.


