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Abstract. Inter-urban road passenger transportation requires the al-
location of drivers and buses to transport people. In such allocation
process, several constraints on driving time are being imposed by the
governments in order to assure citizens safety. Such constraints, how-
ever, are posing a lot of difficulties to the allocation process, usually
generated by human operators. In this paper we formalize the problem
and provide an auction framework based on a multi-agent environment
in order to give a first approach to the problem solution. Such framework
is decentralized because each agent computes the utility of its bids re-
garding private information that is not explicitly known by the decision
maker. Particularly, we propose the use of combinatorial auctions. The
first results obtained in the first prototype developed are provided and
discussed.

1 Introduction

Transportation problems are a matter of concern from the Artificial Intelligent
research community, and particularly, from the Planning and Scheduling commu-
nity, as the recent publication of [1] has shown. However, most of the problems
are related to logistics for industrial procurement [2] , traffic control [3], and
even bus routes for cities [4]. However, the inter-urban transport poses particu-
lar challenges to the research community that have not been tackled before. The
definition of different time measures, as effective working time, presence time,
break and weekly break time, characterize the problem with quite complex con-
straints and preferences not handled in other domains. The challenge is not so
much related to regular and down town services that can be scheduled once a
year, but to just-in-time services. That is, services required within a short period
of time, usually, from one day to the next one. This kind of services are often
related to conference events, holidays, excursions, etc., which are provided by
inter-urban transport companies.

In the past, human operators in the inter-urban transport companies were
in charge of allocating drivers to required services once a day. For example, at
night, when all the customers have already performed they requests, the opera-
tor dedicate so much time to the allocation process. New laws and regulations,
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however, are posing too many constraints for being manually managed. As a by-
pass solution, operators elaborate schedulers in which drivers have unoccupied
hours. The economic consequences for the benefits of the companies are evident:
with the same amount of drivers, they can provide less services, and so they earn
less money. Moreover, there is no guarantee that all the constraints imposed by
the law are satisfied, so the company is assuming the risk to be billed by the
traffic authorities.

Trying to allocate buses and drivers to services, is a well known allocation
problem. Particularly, after observing that most of the constraints are related
to the resources (drivers), we think that we are tackling with a decentralized
allocation model, in which each resource (driver) is locally controlling its con-
straints. There are two main research lines regarding decentralized allocation
problems: distributed constraint optimization problems [5] and multi-agent re-
source allocation [6]. Based on our previous experiences [7, 8], we model the
problem as a multi-agent resource allocation, and particularly, by following an
auction approach as explained in this paper.

This paper is organized as follows. First, we give a description of the road
passenger problem in section 2. We continue by giving our approach to solve
the problem in a decentralized environment in section 3, and particularly the
auction framework in section 4. We proceed by giving our first results in section
5 and we end with some discussion and conclusions in 6.

2 Problem description

In the road passenger transportation domain we are given with two set of re-
sources, drivers D = {d1, . . . , dn} and buses: B = {b1, . . . , bm}, and a set of
tasks (services) to be performed by using the resources S = {s1, . . . , sl}. The
problem consists on assigning to each service a driver and a bus, subject to
the constraints and preferences provided by the government. Since each driver
has a bus assigned by default, with some exceptions, we ignore buses in a first
approximation to the problem.

The time unit used in the allocation process is the hour. However, in order
to verify the different constraints imposed by low, the definition of a sliding time
window of one month is also required. For convenience, we consider a month
composed by 28 days organized in four weeks: week 1 (from day 1 to 7), week
2 (from day 8 to 14), week 3 (from day 22 to 28) and week 4 (from day 22 to
28). All the definitions that follows are contextualized within this sliding time
window.

2.1 Services

Definition 1. A service is a tuple

si =< tii, tfi, duri, origi, desti, ni, D
i, bi >



where tii is the initial time, tfi the final time ( tfi > tii), duri the service
duration, origi the place where the service starts, desti the destination place,
ni the number of passengers, Di the drivers assigned (Di = {di

1, . . . , d
i
pi
} and

|Di| ≥ 1) and bi the bus allocated.

2.2 Drivers

Definition 2. A driver is a tuple

di =< T d
i , T p

i , T b
i , T w

i , pi, pkmi >

where T d
i , T p

i , T b
i , and T w

i are four different time measures (effective working
time, presence time, break time and weekly-break time, see below), pi is the
basic cost and pkmi is the cost per kilometer.

The effective working time T d
i measures the time the driver i is effectively

driving a bus. This time includes auxiliary works.

Definition 3. The effective working time T d
i for driver i is defined as the set of

all dairy effective working times within the sliding time window:

T d
i = {T d1

i , . . . , T d28
i }

where: T
dj

i is the dairy effective working time for day j.

The dairy effective working time for day j, T
dj

i , is the sequence of all time slots
assigned to driver i for driving a bus along journey j.

The presence time T p
i measures the time the driver is in the bus but not

driving.

Definition 4. The presence time T p
i for driver i is defined as the set of all dairy

presence times within the sliding time window:

T p
i = {T p1

i , . . . , T p28
i }

where T
pj

i is the dairy presence time in day j.

The dairy presence time for day j, T
pj

i , is the sequence of all time slots assigned
to driver i along journey j in which he/she is not driving. There should be a
relationship between two consecutive effective working time slots, tdi and tdi+1

and a presence time slot in between, tpj . That is, if two consecutive effective time
slots have some time gap, such time gap should correspond to a presence time
slot.

The break time T b
i measures the time the driver is out of the vehicle along

its journey. The minimum length is one hour.



Definition 5. The break time T b
i for driver i is defined as the set of all dairy

break times within one month:

T b
i = {T b1

i , . . . , T b28
i }

where T
bj

i is the dairy break time for day j.

The dairy break time for day j, T
bj

i , is the sequence of all time slots assigned to
driver i along journey j in which he/she is out of the car.

The weekly break time T w
i measures the time the driver has continuous break

along a week (week ends, holiday). Weekly break time includes dairy break
time. Both concepts, break and weekly-break should be considered as separated
entities related to constraints required by the UE.

Definition 6. The weekly break time T b
i for driver i is defined as the set of all

four break times corresponding to the four weeks within the sliding time window:

T w
i = {Tw1

i , . . . , Tw4
i }

where T
wj

i weekly break time in week j

The weekly break time for week j, T
wj

i , is the sequence of all time slots assigned
to driver i along week j in which he/she is either out of the office.

2.3 Constraints and preferences

The following hard constraints should be satisfied in any allocation solution:

Coverage The addition of all the time slots of effective working time of the
drivers allocated to a service should cover the duration of the service.

Overlapping Different services with common drivers assigned should not have
overlapping times.

Constraints on journey The maximum time a driver can be at work within
a day is 12h.

Constraints on effective working time There are several maxima on the ef-
fective working time: 9 hours in a day (exception: 10h twice a week.), 90 hours
in a week, and 4.5 h of continuous driving time. Violation of any constraint
up to 20% of the time, is considered a minor fault.

Constraints on presence time : the maximum is 20h per week in average in
a month period.

Constraints on break time : the minimum continuous break time between
two consecutive journeys is 11h (exception: 9h three times a week). In case
that the time is split in several bits at least one of the bits should be 8h
long, the remaining bits should be at least 1h long, and the total amount of
all the bits should be 12h. Vehicles with two drivers are allowed to have a
minimum continuous break time of 8h within 30hours.



Constraints on weekly break time : the minimum continuous weekly break
time at home is 36 hours, out of home is 24 hours. The recommended (nor-
mal) time is 45 hours. If this time is less than 45 hours, the differential should
be recovered in the next three weeks

It is important to note that exceptions allows some scheduling flexibility that
can be taken into account in the allocation process. For the sake of length, we
do not include the formal specifications of the constraints and preferences here
(see [9] for a full description and formalization of the problem).

Regarding preferences (soft constraints), they are defined in two layers:

Global These preferences are related to the business rules. They are:
Cost Drivers with low cost are preferred than expensive drivers. Low cost

drivers means 0 basic cost, since they are employer of the company.
Otherwise, drivers are hired as required.

Continuity Time slots of effective working time for a given driver are pre-
ferred to be continuous.

Local They are related to the private preferences of each driver. Namely:
– Preferences on working hours: morning, afternoons
– Preferences on working days: from Monday to Friday, do not work on

Saturday and Sunday.
– Preferences on short/long distances, as for example, one driver that do

not like at all to get services from/to Barcelona due traffic jumps.

2.4 Problem formulation

Definition 7. Driver’s allocation problem. Given a set of services S = {s1, ..., sl}
required in day x, and a set of drivers D, assign a set of drivers Di ∈ 2D for
each service si subject to the constraints and preferences described above.

Different solutions are feasible. Each solution sol has a global cost or utility
for the company u(sol) that relates the number of constraints violated per each
driver, the number of preferences unsatisfied, the drivers cost and the buses cost.
The optimization problem consists then on finding the best solution. Formally:

Definition 8. Driver’s optimization problem. Given a set of services S = {s1, ..., sl}
required in day x, a set of drivers D, and an utility function u, find the set of
drivers Di ∈ 2D for each service si subject to the constraints and preferences
described above so that u is maximized.

The complexity of the problem is known to be exponential, regarding the
number of services requested.



3 Decentralized allocation problem

There are two main research lines regarding decentralized allocation problems:
distributed constraint optimization problems [5] and multi-agent resource allo-
cation [6]. Based on our previous experiences [7, 8], we model the problem as
a multi-agent resource allocation. Following this approach, the problem is mod-
elled following a multi-agent system in which resources actively participate in
computing an allocation [6]. Tasks are distributed amongst a number of agents
by following an allocation procedure. In our case, we have chosen a auction
approach, mainly due our past experience on it (see for example [7, 8]).

According to [10], auctions are the heart of decentralized resource allocation.
The allocation problem for a decision maker is to allocate the resources in an
optimal way. Regarding our transportation problem, resources are the driver
agents that are assigned to services by a decision maker agent Note, then, that
we are distributing tasks to resources (represented as agents).

An overview of the system is the following. At the end of the day, there are a
set of services to be performed, that a human operator has entered thanks to a
nice user interface. Then, he pushes the start button and the multi-agent system
starts. The decision maker agent (auctioneer) is responsible of the allocation
procedure. Particularly, it starts a combinatorial auction process from which
all the drivers agents are informed of the current requested services. Then, the
drivers agents answer with bids. According to the services requested, each driver
agent di generate a possible partial solution or alternative regarding the tasks
that it can perform. Each alternative is a list (Seqi

j , u
i
hj , u

i
sj), where Seqi

j is the
sequence of services that the driver can accomplish according to his/her agenda,
ui

hj is the utility of the sequence of services regarding hard constraints and ui
sj

the one related to soft constraints. For each service, the corresponding initial
and end time are also provided.

Seqi
j = {< sj1 , tij1 , tfj1 >,< sj2 , tij2 , tfj2 >, . . . , < sj

ni
j

, tij
ni

j

, tfj
ni

j

>}

Finally, the decision maker agent computes the best combination of all the bids
in order to determine a final allocation, that is prompted to the human operator
through the user interface.

Note, then, that the allocation process is decentralized because each agent
computes the utility of its bids regarding private information that is not ex-
plicitly known by the decision maker. This is the key difference from previous
centralization approaches. However, regarding the allocation procedure in which
a combination of bids is selected, this is done by a single agent, the decision
maker, in a centralized way.

There are several kind of auctions that depends of different parameters of
the problem at hand. Particularly, Parker [10] defines the framework for an
auction according to six components: resources, market structure, preference
structure, bid structure, matching supply to demand (winner determination),
and information feedback. Table 4.1 shows the parameters configuration for our
transportation domain.



Before proceeding with the particular description of the parameters in our
domain, it is important to clarify the different notation regarding task and re-
sources, since it have different ascriptions in manufacturing, multi-agent resource
allocation and the Economic Sciences, the latter being the discipline where auc-
tions originally come from. In this paper we will assume tasks as the items to be
auctioned, that is, services to be performed; resources as the agents that actively
participate in the allocation process (also called buyers in auctions, or suppliers),
and the decision maker the agent that sets the allocation (also called auctioneer,
or seller). The auctioneer is characterized by an optimal strategy with which
to solve the allocation problem; while resource agents have a valuation process
assigned in which they compute the bids with which to participate in the auction
process.

4 Auctions framework for road passenger transportation

In this section we resume the different parameters of our problem related to the
auctions framework proposed by [10].

4.1 Resources

Resources can be single item or multiple items, with a single or multiple unit
each of item. Since there are multiple services to be covered in one day, the road
passenger transportation problem is a multiple item type. Regarding the number
of units, we assume a single unit for each item, that is, there are no multiple
units of the same service.

Multiple item auctions are known as combinatorial auction process, since
bidders are allowed to have valuations over bundles of items [10]. Alternatively,
if in our domain items (services) are auctioned one by one, there is no guarantee
that the last services can be assigned to the still available drives. So combinatorial
auctions seems the appropriate framework.

Table 1. Auction parameters for the road passenger transportation problem.

Parameter Value

Resources Mutiple Items, single unit
Market Structure Forward

Preference Structure Utility function based on time constraints violations
Bid Structure Multiple Items

Winner determination multiple-sourcing
Information feedback Indirect



4.2 Market Structure

The market structure provides the negotiation mechanism between buyers (drivers)
and sellers (services). Three main types are distinguished:

1. Forward auctions: there is a single seller
2. Reverse auctions: there is a single buyer, and multiple sellers
3. Double auctions or exchanges: multiple buyers and sellers.

In the road passenger transportation domain we have a single operator deal-
ing with the scheduling process, so we assume forward auctions in order to
emulate the current situation. So we are dealing with a forward auction.

Other issues that should be taken into account related to the market struc-
ture are side constrains, that are some considerations to take into account in
addition to the optimization problem. For example, the number of supplier that
are contracted in the final scheduled. In our problem, drivers is one of the most
expensive resources. For this reason, minimizing the number of drivers (buyers)
is an important aspect to take into account.

4.3 Preference Structure

The preference structure relates to the utility function used for each agent in
order to measure the auctions outcomes. This is particularly important in the
problem we are dealing with. Utility functions are not known by the decision
maker, they are private, so this is way the information is decentralized and differs
from classical optimization process.

Regarding our domain, we characterize all drivers with two utility functions:
uh(ai) that measures the cost of the hard constraints and us(ai) that is related
to soft constraints.

On one hand, hard constraints are related to the constraints inherent to
the problem and defined in section 2.3. On the other hand, soft constraints are
particular to each driver and takes into account the particular drivers preferences
as working hours or days, short/long distances, etc. (see also section 2.3).

Each driver computes both measures regarding the service to be performed,
and both measures are used to compute an allocation that maximizes the average
utility enjoyed by the agents.

The fact that bids consider more than one attribute, in our case, the hard
constraints utility and the soft constraint utility, configure our problem as a
multi-attribute auction. The solution should consider a trade off across the dif-
ferent attributes [10].

4.4 Bid Structure

The bid structure specifies the flexibility of agents on resource requirements. As
stated in the previous section, our problem presents a bid structure known as
all-or-nothing, with an utility given for the complete set of bids. Such kind of
structure state that the bids are indivisible.



4.5 Matching Supply to demand

Matching supply to demand, or winner determination, is related to the kind
of problem regarding bid selection and the remaining auction features (bid
structure, resources, etc.). There are two main sorts: single-sourcing and multi-
sourcing. In the former, a single buyer is matched against a single seller; while
in the latter, there are multiple buyers or sellers. Consistently, in our problem,
we have multiple buyers (drivers) so we are dealing with a multi-sourcing winer
determination problem.

Since the market structure has been defined as forward, the multi-sourcing
winner determination problem is also known as the set packing problem, known
to be NP-hard. However, there are several works, as for example, [11], that argue
about the polynomial solution of the problem given some particular topology of
the bid space.

4.6 Information feedback

This is an important auction feature, that depends on allowing buyers to adjusts
bids according to the information gathered in the auction process. So, direct
communications do not allow adjustment, while indirect they do.

Regarding our problem, we can imagine a myriad of possible combinations
of services that a driver can perform in a given day, any of them with a different
utility. Then, two main situations can happen:

1. Agents participate in an auction process with as many bids as combinations
can provide.

2. Agents participate in an auction process with the best bid according to their
utility function.

In the former case, there can be a huge amount of combinations, so the
problem can become quite computationally complex, and even unfeasible. While
in the latter, a locally constraint satisfaction process can be required in order to
build a single bid with the best combination. This process is also time consuming.

An hybrid approach are handled by iterative combinatorial auctions. If there
are n drivers, only n bids will be received by the auctioneer in order to compute
a tentative final allocation. As soon as the allocation is know by the agents, they
can submit alternative bids. So there is a reduction on the agents valuation work
and the optimal strategy performed by the auctioneer.

4.7 Combinatorial auctions for road passenger transportation

According to the previous parameters, our problem fits the iterative multi-
attribute combinatorial auction framework. Parker [10] notes such kind of prob-
lems are hard to solve analytically, and suggest the use of experimental mecha-
nism designs.

This is one of the reasons why we have chosen an available tool, CASS (Com-
binatorial Auction Structured Search [12]) to have a first approximation to our
problem.



5 Results

We have implemented a first prototype of the system in JADE (see [13] for
details) and we have performed several experimental tests with real data coming
from a inter-urban transport company, that for confidential reasons we cannot
mention here. There were 70 drivers and in average 40 services per day should be
scheduled. In each experiment different parameters have been changed : amount
of bids per driver, amount of services per bid, and rate between drivers and
services. That is, when both, the amount of drivers and services is huge (close
to the maximum), the response time of the system is too high. So, we have
established a tradeoff between both concepts: when there are few number of
drivers, a higher amount of bids per driver are allowed; otherwise, a lower amount
of bids per driver are generated. Then, due to the constraint on the number
of bids allowed to the drivers, not all the services are covered by the system.
Currently, we are working on improving the auctioning process, so we can iterate
the process with the non-allocated services.

6 Discussion and conclusions

In this paper we have presented the road passenger transportation problem, and
an auction frameworks to approach a solution by means of multi-agent resource
allocation. Several auction parameters are analyzed, namely: resources, market
structure, preference structure, bid structure, winner determination, information
feedback.

The allocation process is decentralized because each agent computes the util-
ity of its bids regarding private information that is not explicitly known by
the decision maker. This is the key difference from previous centralization ap-
proaches.

The preliminary results shown on this paper point out the computational
complexity of the the multi-agent system when dealing with real problems. Fur-
ther improvements and research effort is required. Mainly, we are interesting on
researching on iterative combinatorial auctions, so probably new winner deter-
mination algorithm other than CASS should be explored.

References

1. Klugl, F., Bazzan, A., Ossowski, S., eds.: Applications of Agent Technology in
Traffic and Transportation. A Birkhuser book (2005)

2. Sousa, P., Ramons, C., Neves, J.: The fabricaire scheduling prototype suite: Agent
interaction and knowledge base. Jorunal of Intelligent Manufacturing 14 (2003)
441–455

3. Tomas, V., Garcia, F.: A cooperative multiagent system for traffic management
and control. In: AAMAS Industry Track. (2005)

4. Cantillon, E., Pesendorfer, M. In: Auctioning bus routes: The London experience.
MIT Press (2006) To appear.



5. Yokoo, M.: Distributed Cosntraint Satisfaction. Springer (2001)
6. Chevaleyre, Y., Dunne, P., Endris, U., Lang, J., Lemâıtre, M., Maudet, N., Padget,
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