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Abstract 
This work concerns allocating tasks to rescue agent teams in 
a disaster environment in order to mitigate the damage 
caused by an earthquake. Effective task allocation in this 
environment is a challenging problem due to several 
aspects. For instance, its dynamic nature, as in rescue 
environments tasks arrive in an unpredictable way, and the 
environment constraints, such as communication flow 
constraints, as messages can be lost. In addition, agents’ 
capabilities and properties can be diminished due to the 
damage caused as a consequence of the disaster. In order to 
tackle task allocation, we use the MAGNET system [1] 
which provides an interesting allocation framework based 
on combinatorial auctions. In addition, we have designed 
and implemented a model for re-scheduling of tasks for 
agents who are interacting in dynamical and distributed 
environments. Our experimental framework is the 
RoboCupRescue simulator [2]. 

1. Introduction  

Rescue operations in disaster situations is one of the most 
serious social issues, and involves very large numbers of 
heterogeneous rescue teams. In order to provide new 
technology for giving support in such hostile 
environments, it is unfeasible to carry out experiments in 
real-life situations. Therefore, computer simulations offer a 
valuable platform for testing strategies in advance. One 
well known simulator is provided by RoboCup-Rescue [2]. 
Our research is concerned with this simulator. We are 
specifically interested in allocating tasks to rescue agent 
teams in a disaster environment in order to mitigate the 
damage caused by an earthquake.  
 
In Artificial Intelligence (AI) there is a growing interest in 
using auction mechanisms to solve task and resource 
allocation problems in cooperative and competitive multi-
agent systems. Several systems and frameworks have been 
developed and applied to different domains and 
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environments in order to deal with this problem. For 
example, auctions are used in automated negotiation and 
contracting [3], network bandwidth allocation [4], 
distributed configuration design, factory scheduling [5], 
operating system memory allocation [6, 7] and role 
allocation [8]. Among them we distinguish the MAGNET 
framework, which tackles industrial procurement, and 
manufacturing or scheduling areas in a market architecture 
where the agents are interacting and looking for increase 
his individual utility as a result of the negotiation of tasks 
that they are requiring to be performed.  
 
In this paper we test the viability of the MAGNET 
mechanisms for task allocation in the rescue scenario and 
present a re-scheduling mechanism required to deal with 
dynamics characteristic of the environment. 
 
This paper is organized as follows. First, some related 
work is introduced in section 2. Then, in section 3, we 
present the description of both MAGNET and the Rescue 
framework and the communication flow strategy develop 
for rescue agents. In section 4, the Integration of both 
systems is explained. In section 5, results are presented and 
finally, we end with some conclusions and future work. 
 
2. Related work. 
 
There are several computational approximations to 
resource allocation, from the traditional approaches [9] to 
the ones coming from the more recent advances in the 
multi-agent paradigm [10]. In the latter, the allocation 
problem is defined as the distribution of  a number of 
resources amongst a number of agents in order to obtain 
the maximum benefit either by each agent (competitive 
scenario) or for the global system (cooperative scenario) 
[10]. In the rescue domain, the problem concerns task 
allocation instead of resource allocation, but the same 
methods can be applied when tasks can be seen as 
resources associated with a cost rather than a benefit.  
 
Regarding multi-agent approaches, several efforts have 
been focussed on using economical models to distribute 



tasks [11].  Then, new terminology has arisen. Particularly, 
the terms “item”, “good” or “offer” are used to name the 
tasks to be allocated; the terms “buyer” or “supplier” are 
used as the agents that actively participate in the allocation 
process, and the term “seller” or “customer” is used as the 
agent that performs the allocation. Whatever terminology 
is chosen, the methods developed can be applied to task or 
resource allocation in many application areas. Particularly, 
we use the terms tasks (as item, offer or good), rescue 
agents (as the buyer or supplier), and central agent (as the 
seller or customer). 
 
For example, regarding the area of industrial procurement, 
iBundler [12] is a system focused on e-commerce based on 
agents. It uses combinatorial auctions to choose among 
several offers in order to optimize the benefit of the buying 
process. On the other hand, iAuctionMaker [13] is a 
system which conforms bundles from a set of items. These 
bundles have to accomplish some properties which are 
defined based on the knowledge of the experts in a given 
domain. These properties are characterized as constraints 
that are used by an optimization algorithm to find the set of 
bundles that maximize the benefit. Constraints among 
items are not taking into account in these approaches, 
while in the rescue domain it is important to take into 
account precedence relationships. For example, the task of 
extinguishing a fire is required before the task of rescuing 
a victim.  
 
One area in which precedence relationships are taken into 
account is manufacturing in which the term allocation is 
related to task scheduling. A main issue is the sequentially 
property characterised in this domain: Each task or process 
must be done in a given order.  One example of this kind 
of systems is the Fabricare scheduling prototype [5] which 
presents a multi-agent system for dynamic scheduling of 
manufacturing orders. Each order represents the set of 
tasks to be performed, together with the resources they 
need. Then, tasks agents negotiate with resource agents 
over deployment of the order, taking into account their 
agendas, behaviours and due dates. The process followed 
is centralized and based on demand and time constraints 
that cause a combinatorial explosion in the number of 
exchanged messages. The authors, being aware of such 
communication problem, have developed a protocol that 
reduces the communication complexity. Even so, in the 
rescue domain, communication issues are subjected to 
several constraints and we think that other alternative 
allocation procedures should be more appropriate.  
 
For example, MAGNET is a framework in which several 
alternative market allocation procedures can be achieved 
with three messages. In addition and conversely to other 
market approaches, MAGNET takes into account 
precedence relationships among tasks, as required in the 
rescue domain. Regarding to competitive/collaborative 
scenarios, MAGNET system is designed to be a multi-

agent system of self interested agents who look for his 
utility. Particularly, MAGNET use combinatorial auctions 
for task allocation that always finds the best allocation 
regarding the benefit of the whole system. That is, the total 
amount of items submitted to the auction appears in the 
solution. This is an important feature of MAGNET and 
different from other e-commerce approaches (as for 
example [14]), and this characteristic is important for the 
rescue environment due to all the tasks have to be 
allocated.  
 
Taking into account the previous considerations, and 
regarding to the rescue scenario we have chosen 
MAGNET as the framework to deal with the tasks 
allocation in our domain. 
 
 
3. Systems description. 
 
In this section, basic concepts of the systems involved in 
our work are provided. Namely, the RoboCupRescue 
simulator, the communication strategy developed due to 
the simulator constraints and the MAGNET system. 
 
3.1 The RoboCup Rescue system  
 
In any research area it is important to have an 
experimentation testbed for making tests about the new 
theories and techniques which are being developed. In this 
sense, we have been working with the RoboCup Rescue 
simulator which simulates a disaster environment caused 
by an earthquake (see Figure 1). The RoboCup Rescue 
Simulation Project [2] is an international initiative for 
providing emergency decision support by integrating 
disaster information, prediction, planning, and the human 
interface. In this simulated scenario, there are collapsed 
buildings, fires, blocked highways, people in a state of 
panic looking for a safe place and rescue agents helping 
victims. Fire brigade agents, police forces and ambulance 
teams make up the rescue agents, as well as the central 
agents: the fire, police and ambulance stations. All the 
rescue agents have to decide on their actions in order to 
minimize the disaster damage. 
 
The activities that each agent can carry out are fixed. 
Ambulance teams are able to rescue civilians (load, rescue, 
unload commands). Fire Brigades can extinguish fires 
(extinguish command) and police forces can clear roads 
(clear command) so that other agents can move. 
 
 
 
 
 
 
 



 

 
Figure 1. Viewer of RoboCup Rescue Simulator (Kobe 

Map). 
 

 
As in a real scenario, the agents have some capabilities 
constraints. For example, the agents only can see victims 
located in a 10 meters area (perception constraints). In 
addition, the agents can send two kinds of messages: 
either, by voice or by telecommunication, each kind of 
communication is submitted to several constraints. 
Regarding voice, agents can hear messages from other 
agents located in a 30 meters area. Regarding 
telecommunication , agents can be heard by central agents 
and rescue agents of the same type as the speaker, it 
doesn’t matter the distance that they are. 
 
One simulation cycle takes one second of computer time, 
and corresponds to one minute of the real world time. As 
time passes, the damage increases unless rescue agents 
actuate. For example, at time n, a fire has a burning degree 
of k, and at time n+1, the burning degree is k+k’ being 
k’>0, if no fire brigade has extinguished it. In the 
beginning, rescue agents explore the rescue scenario 
looking for tasks to carry out (rescue victims, extinguish 
fires and unblock roads). Once tasks are found, the agents 
try to solve them and coordination of the agents is 
necessary. In this sense, the central agents have an 
important role on the coordination of their rescue team. 
 
Taking into account that coordination is performed by 
means of direct communication, and that communication is 
constrained in the rescue scenario, it is necessary to design 
a communication strategy to facilitate message exchanges. 
This strategy is explained in the following section. 
 
3.2 The RoboCup Rescue communication flow. 
 

Two main kind of communication flow is distinguished: 
communication for task gathering and communication for 
task allocation. 
 
3.2.1 Communication for task gathering. 
 
The communication flow presented in figure 2 supports the 
communication and messages transference between rescue 
agents and central agents. Every simulation time the 
central agents are gathering the tasks from the rescue 
agents. That way, central agents have knowledge about the 
entire list of tasks inside the scenario, related to their 
correspondently rescue team.  
 
On the other hand, in the development of their tasks, 
agents can find new tasks. For example, fire brigades and 
ambulance team agents find roads that they need be 
cleared in order to get to the place at which to accomplish 
their allocated tasks. Then, tasks of police agents are also 
provided by the fire brigade and ambulance agents by 
means of the ambulance central and the fire station 
correspondently (see figure 3). 
 

Figure 2. Messages flow about tasks among rescue teams 
and central agents 
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Figure 3. Messages flow about unblocking road tasks from 

ambulance team and fire brigades to police forces. 
 
 
3.2.2 Communication for task allocation. 
 
At the beginning of the simulation, all the rescue agents 
are exploring the scenario looking for tasks. Once agents 
find a task that agrees with their capabilities, they start to 
perform it. Otherwise, central agents can assign task to 
them. 
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Figure 4. Timeline of the task allocation process for fire brigades and fire station agents. 
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Central agents are responsible of the task allocation 
process. In this sense, three parallel allocation processes 
are being developed, one per each central agents. The 
ambulance central allocated tasks (rescue victims) to 
ambulance teams; the fire station allocate tasks (extinguish 
fires) to fire brigades, and the police office allocate tasks 
(unblock roads) to police forces. The allocation method 
chosen is combinatorial auctions [15] (as provide by 
MAGNET), which requires a communication flow as 
follows. 
 

1. Agents send the partial list of tasks to central 
agents (tasks from his perception scope). 

2. Central agents send the complete list of tasks to 
the agents. 

3. Agents send bids to the central agents for bundles 
of tasks. These bids express preferences of the 
agents by task packages. 

4. The central agent selects the winner combination 
of bids and sends them back to the agents. 

 
According to this communication flow, the task allocation 
process requires four simulation cycles. In figure 4, an 
example about a timeline of the process for cycles 10 – 13 
and fires extinguishing tasks is presented. 
 
3.3 MAGNET System 
 
The MAGNET system is a testbed designed to support 
multiple agents in negotiating contracts for tasks with 
temporal and precedence constraints. MAGNET has two 
main modules, the contracting and the execution module. 
In the contracting part it is possible to find two kinds of 
agent roles: the customer and the supplier. The customer 
needs resources from suppliers in order to carry out their 
plans. The customer issues Request for Quotations (RFQ) 
which includes a specification of each task, and a set of 
precedence relations between tasks. For each task, a time 
window is specified giving the earliest time that the task 
can be started and the latest time that the task can be 
finished. Suppliers submit bids for needed resources in 
order to do the tasks. Each bid consists of a subset of the 
tasks specified in the corresponding RFQ, a set of time 
windows, and an overall cost of the bid. The customer 
decides which bids to accept by means of combinatorial 
auction techniques. Each task needs to be covered by at 
least one bid which is called the Check Coverage 
constraint. The customer awards the chosen bid 
combination and specifies the work schedule for the 
suppliers. Each supplier tries to execute the tasks awarded 
in the specified time frame.  
 
Next, the process is controlled by the execution module of 
MAGNET, who takes care of the complexion of the 
scheduled work. It permits re-scheduling in the case that 
some provider can not accomplish with his commitments. 

 
Summarizing, for carry out the application of MAGNET 
framework, the following elements have to be provided: 
 

1. The RFQ’s: it specifies a list of tasks and a 
precedence network among tasks which specifies 
the order in which the tasks must be executed. 

2. The bids from the agents. 
 
4. Integrating MAGNET and RoboCup 
Rescue 
 
The task allocation for rescue scenario is carried out by the 
central agents. In order to use MAGNET as the mechanism 
for task allocation, the rescue task allocation problem 
should be seen as an optimization problem in which the 
goal is to minimize the damage. Then, the auction 
mechanism provided by MAGNET can be used, so that 
central agents are the auctioneers (sellers) and the rescue 
agents the bidders. The latter submits bids according to the 
cost of deploying tasks, so the goal of the auctioneer is to 
find the bid combination that minimizes costs. Then, the 
information structure required by MAGNET, that is the 
RFQs and bids, is generated consistently. 
 

RFQ and Bids 

Task-Bid Plan 
(winner bids) 

MAGNET Rescue 
Centrals 

  
Figure 5. Connection among Rescue-MAGNET systems 

 
 
The RFQ and Bids are passed from the central agents to 
MAGNET and his output is a combination of winner bids 
(see figure 5). The application of MAGNET framework, 
however, has not been straightforward. We have required 
to implement a re-scheduling mechanism and to use 
dummy bids. 
 
4.1 RFQ’s in Rescue 
 
The RFQ’s in the rescue domain are the tasks to be 
developed which have been gathered by the central agents 
following the communication strategy presented in section 
3.2. For instance, a RFQ would be a list of IDs of burned 
buildings as follows: [167682284, 249558638, 214940734, 
260987697]; we have used dummy time windows for 
them. In this sense, the dummy time windows express first, 
that tasks are to be done as soon as possible, and second, 



that there are no temporal constraints on the start or 
completion of those tasks. 
 
Regarding, the precedence network for rescue it is 
presented in figure 6, which is designed for a unique 
auction process. However, in the RoboCupRescue 
environment, there is not one central agent with a global 
view of the entire scenario. Each central agent has to 
manage his own resources (the rescue agents). Managing 
just one central agent in charged of the whole allocation 
leads to increasing entropy in the communication process. 
Then, three concurrent auctions are required at a time, one 
per central agent. 
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Figure 6. Precedence Network among tasks for Rescue 
 
Tacking into account the reasons exposed above and 
regarding MAGNET, we are required to send three RFQs, 
one for each allocation process, and each RFQ only 
contains part of the tasks network. In this sense, MAGNET 
doesn’t deal with 3 RFQs and 1 tasks network in the same 
concurrent process. Then, in order to cope with precedence 
relationships in our domain, a re-scheduling mechanism is 
required.  
 
4.2 Bid Generation 
 
The rescue agents generate bids corresponding to 
combinations of tasks to be performed in sequential order. 
Bids are composed by a list of tasks and the cost that the 
agent has to assume for carry out this list of tasks. 
Formally, 
 

bi = [Li, ci] (1) 
 
 
In order to select tasks for bids, agents take into account 
that each task should be located in a distance inside a given 
horizon measure. Only the tasks which are in this horizon 
are accepted to conform the bids. In our current 
implementation this horizon measure is 100 meters. 
 
Then, the cost of the bid is related to the distance from the 
agent ai to the itinerary that the selected tasks establish. 

Given, the selected tasks Li= [ti
1,…, ti

n]; the following 
distances are computed di= [di

1,…, di
n], where di

j is the 
distance between the place of task ti

j-1 and ti
j. The first 

distance di
1 corresponds to the distance from the agent to 

the first task ti
1. Finally, the cost is computed as the sum of 

distances. 
 

∑
=

n

j

i
jd

1

 (2) 

 

The cost based on the distance was defined as a first 
approach. Other factors as size of the burning area and the 
time fire spread started [16] could be studied in order to 
calculate the cost of the bid in future work. All bids 
received by the central agent are processed using the 
winner determination algorithms of MAGNET. In this 
sense, the cost of carrying out the rescue tasks is being 
minimized as result of solving the combinatorial auction 
[1, 17, 18]. 
 
To illustrate with an example the bid generation, let's 
assume that at time 11, fire brigade ID 268415620 has 
knowledge about four tasks to develop, For instance, 
buildings on fire which have to be extinguished. The list of 
IDs of these buildings is as follows: [167682284, 
249558638, 214940734, 260987697]. 
 
Then, the fire brigade calculates the distance from him self 
to each building and selects only these that are not more 
than 100 meters from his location. So, the selected tasks 
are: building ID 214940734 with a distance of 40.566 from 
the agent and building ID 167682284 with a distance of 
83.890 meters from the agent. 
 
Now, we calculate the cost of the bid as distance from the 
agent to task 214940734 plus distance from task 
214940734 to task 167682284 which is: 40.566 + 60.433 = 
100.999. Then, the bid submitted by the agent is the 
following: 
 
BidAgent ID 268415620 = [(214940734, 167682284), 100.999]. 
 
 
4.3. Re-scheduling of tasks.  
 
Once tasks are allocated to agents, they try to perform 
them. There exist several factors that make the agents be 
unable to execute their tasks, for example, obstructed 
roads. At this moment a re-scheduling method is needed.  
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Figure 7. Mechanism for re-scheduling of tasks 
 
 

For example, suppose that the agent FB have the F1 task in 
his scheduling of allocated tasks (see figure 7). However, 
when the agent tries to get until F1, it finds the R1 Road 
blocked. In this case the agent tries to look for another way 
to get until his goal. When it is not possible, the agent 
finds him-self blocked. In order to re-scheduling his tasks, 
the agent temporally “forget” F1 keeping it in a list of 
delayed tasks. Next, it sends R1 to the police force as a 
task to be developed. Then, FB continues with the 
development of the next task in his schedule. In successive 
cycles, once R1 is cleared, the agent is informed about 
that, by the central agent. Then, it re-schedules F1, 
introducing F1 in his list of pending tasks. Previously, the 
agent verifies that F1 is realizable, for example, if F1 has 
grown so much that currently is in-extinguishable, it is not 
included in the tasks list again and it is forgotten for ever. 
 
The re-scheduling algorithm developed is presented in 
figure 8. Agents are noted as Ai. Each agent has a list of 
tasks, Ta= (T1, T2, … Tn) pending to be performed. If the 
list is empty, the agent explores the environment looking 
for new tasks. In addition, each agent have a list PTL= 
(PT1-Td1, PT2-Td2, … PTn-Tdn). This list maps 
precedence among pair of tasks PTi – Tdi, where PT is the 
task which precedes the delayed Td task. For example, PT 
represents the Road’s Id to be cleared and Td a Fire’s Id 
which has been delayed in the process previously 
explained. 
 

 
While Ta is not empty 
 

If Ai is notified about PT cleared from central 
Ai look for Td correspondent to  PT in the PTL list 

              If  Td is found 
                  If Td is realizable 
                     Add Td again to his list Ta 
                  End If 
               End If. 
End If 

         
        Select first task in Ta (T1) 
        Get T1 
            If not Get T1: 
                   If Ai is blocked in a road Ri 
                          If there’s not other way 

Add pair R1-T1 inside PTL list 
 Forget Ti (Remove T1 from Ta) 

                                    Send R1 to be cleared 
              End If 
                   End If 
            Else 
                Do T1 
                Remove T1 from Ta. 
            End If 
         Next Task in Ta. 
 
  End while    

 
 

Figure 8. Algorithm for re-scheduling of tasks 
 

 
4.4 Some implementation issues. Dummy bids 
 
In the Rescue system, after the first auction when some 
agents are busy (because tasks have been allocated to 
them) the bids sent by free agents couldn’t contain all the 
tasks. Therefore, the Check Coverage constraint of 
MAGNET is not fulfilled and the mechanism doesn’t 
work.  
 
In order to solve this problem, we issue dummy bids [19] 
one for each task. Each dummy bid must have a much 
higher price than any “real” bid. Dummy bids could be 
part of the solution but just if some rescue agent doesn’t 
send any real bid for some task. In this sense, when 
dummy bids are awarded, the tasks corresponding to these 
dummy bids remain unassigned for the next round in the 
allocation process. 
 
5. Results 
 
We have developed some experiments to evaluate the 
performance of the task allocation and re-scheduling 
mechanism developed. Our methods have been applied for 
the three kinds of agents of the RoboCup simulator 
(ambulance team, police forces and fire brigades agents). 
 
The RoboCup Rescue simulator configuration used is the 
following: 
 
Number of agents: 25 
Number of fire brigade: 10 



Team 
number 

V 
value 

Team name Technique description 

 Police Force Fire Brigade Ambulance Team 
1 83 Kshitij ------ ------ ------ 
2 79 Caspian Priority assignment 

for blocked roads. 
Map division on 
actuation zones to 
inform about victims 

Priority assignment 
for buildings on fire. 
(centralized 
coordination, there is 
a leader agent) 

Priority assignment 
for civilians. 
Centralized 
coordination in a 
leader agent. 

Reinforcement 
learning: For setting 
the priority of roads 

Auctions: Seller-> 
FireBrigade, 
Bidders-> Buildings 
on fire. 

------ 

3 69 Impossibles 

Off line learning of the world model 
4 62 Our approach Combinatorial auctions and re-scheduling of tasks 
5 58 MRL Not available 

 
 
Number of police force: 10 
Number of ambulance: 5 
Number of civilian: 70 
Number of fire brigade center: 1 
Number of police force center: 1 
Number of ambulance center: 1 
Number of Refuge: 7 
Initial point of ignition: 4 
Map: Kobe map. 
 
The experiments have been done in the RoboCup Rescue 
simulator kernel 0.44 version with the new versions of the 
sub-simulators. We performed 10 simulations and we 
record the results according to the V score defined in the 
competition; that is the following: 
 

V=(P + S/Sint) * sqrt(B/Bint)       (3) 
 
Where: 
 
P: number of living agents, 
Sint: total HP of all agents at start, 
S: remaing HP of all agents, 
Bint: total area at start, 
B: area of houses that are undestroyed, 
 
Where HP is the value related to the damage of the agent, 
for example, when the civilian is in the collapsed house or 
it suffers from fire this value is set. Then, hp= damage x T 
+ 10000, where damage coefficient are -100 (in house 
collapsed) and -1000 (fire), T is elapsed time. When the 
civilian goes to the refuge, its damage is set 0.   
 
Our scores obtained are: 63.18; 60.25; 59.79; 65.03; 65.78; 
62.06, 62.80, 60.15, 65.10, 63.19 respectively for each 
simulation test. The higher V value for a map, the better 
rescue operation (maximum V value is 97). 
 
 

 
 
Then, our average is 62.73. As a reference frame the scores 
of the four first teams in the final of the latest RoboCup 
Rescue competition (2005) for the Kobe scenario map are: 
83, 79, 69 and 58. So, our agents have obtained a good 
score in this frame. 
 
In table above, the AI techniques used for the four first 
teams in RoboCupRescue competition 2005 are presented. 
 
The task allocation mechanism presented is a good 
alternative to coordination of agents for the rescue 
operation such as the results showed. It places our team in 
the fourth position without the use of other strategies as 
path finding and priority learning that other teams do. So, 
if in the future we add such strategies, we think that we can 
improve the result of the operation of our agents. 
 
 
 6. Discussion and Future Work 
 
The use of new technologies in rescue operations is a key 
issue in order to minimize the effects of a disaster. One of 
these testbed for such technologies is the RoboCup Rescue 
simulator in which our work is concerned. In this 
simulator, rescue task should be allocated to rescue agents. 
In this paper we applied tasks allocation of MAGNET [1] 
to the rescue domain and we designed and implemented a 
re-scheduling mechanism. On one hand, MAGNET 
provides support for task allocation in a market 
architecture using combinatorial auction techniques. In this 
framework we have generated a bid generation method for 
allocating rescue task. On the other hand, our re-
scheduling mechanism implements re-allocation of tasks 
for agents who are interacting in a rescue scenario. It deals 
with the dynamicity and constraints presented by the 
environment. Such mechanism permits agents to 
temporally forget tasks which are not reachable and 
continue them when the conditions of the environment 
permit it. Experimental results conclude that our 



mechanism has a good performance as it is showed for the 
comparison of our score with the scores in the competition 
of the RoboCup Rescue of 2005. As a future work, we will 
tackle bid generation. We are thinking on designing new 
methods and techniques of bid generation for improving 
the decision process of our agents when they issue bids. 
Babanov’s works [20] which proposes an approach for 
soliciting desirable bid combinations to cover tasks, could 
be useful for reach this goal. The proposed approach finds 
schedules that maximize the agent’s expected utility.  
 
Future research will also include the study of pre-emption 
mechanisms for tasks that have been assigned to damaged 
or injured agents in the rescue operation.  
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