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{armangue,qsalvi}@eia.udg.es

∗Corresponding Author

1



Corresponding Author

Joaquim Salvi.

Computer Vision and Robotics.

Institute of Informatics and Applications.

University of Girona.

Avda. Lluı́s Santalo s/n.

E-17071 GIRONA (SPAIN)

Ph: +34 972 41 8483

FAX: +34 972 41 8098

e-mail: qsalvi@eia.udg.es



Summary

In this article we present a comparative study of the most commonly used fundamental matrix estimation meth-

ods of the last few decades. The techniques cover a wide range of methods from the classical linear estimation such

as 7-points, least squares and Eigen analysis up to some of the most used robust methods such as M-Estimators,

Least Median of Squares and Random Sampling. Hence, this study is presented describing a total of 10 methods

and up to 15 different implementations. The different methods have been programmed and their accuracy analysed

with both synthetic and real images. The code is available in Internet and the whole application can be download

from http://eia.udg.es/˜armangue/research.

Experimental results prove that: a) Linear methods are quite good if the points are well located in the image

and the corresponding problem previously solved. Moreover, they require a reduced computation time. b) Iterative

methods can cope with some gaussian noise in the localisation of image points due to both image blurring and

segmentation. However, they became really inefficient in the presence of outliers given by false matching. c)

Robust methods can cope with both gaussian noise in point localisation and outliers but they usually require a high

computation time. Moreover, experimental results show that eigen analysis gives better result than a classic least-

squares minimisation both in linear or iterative methods. We have also pointed out that data have to be normalised

and the best results have been obtained by using the method proposed by Hartley in his book published last year.

Finally, a rank-2 matrix is preferred because it models the epipolar geometry with a single epipole defined by the

intersection of all the epipolar lines. The article describes every surveyed method in detail and its accuracy is

compared with the others, giving a fresh look that may be useful for any reader who want to be introduced in the

field or either is searching a sort of method for his application.

Fundamental matrix estimation is a key point in computer vision because an accurate estimation is required

in order to compute the epipolar geometry of a stereoscopic system. Some applications of the epipolar geometry

are: a) the simplification of the image matching which it is reduced to a searching along the epipolar line; b)

the estimation of the camera motion mounted either to a robotic arm or a mobile robot with useful application

in grasping and mobile navigation; and c) scene reconstruction with several applications in industrial inspection,

prototyping and mould generation.



Overall View Regarding Fundamental Matrix Estimation1

Abstract

Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the

only way to compute it. This article surveys several methods of fundamental matrix estimation which

have been classified into linear methods, iterative methods and robust methods. All of these methods

have been programmed and their accuracy analysed using real images. A summary, accompanied with

experimental results, is given and the code is available in Internet:

http://eia.udg.es/˜armangue/research.

Keywords: Epipolar Geometry, Fundamental Matrix, Performance Evaluation.

1 Introduction

The estimation of three-dimensional information is a crucial problem in computer vision. At present, there are

two approaches to accomplish this task. The first approach is based on a previous camera calibration, which is the

computation of the model of the imaging sensors relating 3D object points to their 2D projections on the image

plane. A thorough survey on camera modelling and calibration was presented by Ito in 1991 [21] and this subject

has been widely studied during the past decades. Actually, basic methods model the imaging sensor through a

single transformation matrix [2, 11]. Other methods fix geometrical constraints in such matrix introducing a set

of intrinsic and extrinsic camera parameters [10]. Moreover, lens distortion introduces two non-linear equations

which model the image curvature obtaining a more accurate model. Some authors have considered only radial

lens distortion [37], while others considered tangential distortion [38]. Finally, once the system is calibrated, the

camera model can be used either to estimate the 2D projection of an object point or to compute the 3D optical ray

passing through a given 2D image projection and onto the scene. Therefore, at least two optical rays are needed to

compute the 3D position of the object point by means of triangulation.

Calibration can not be used in active systems due to its lack of flexibility. Note that in active systems, the

optical and geometrical characteristics of the cameras might change dynamically depending on the imaging scene

and camera motion. The second approach then is based on computing either the epipolar geometry between both

imaging sensors [8] or an Euclidean reconstruction [16]. Euclidean reconstruction is achieved through previous

knowledge of the scene [29] such as projective basis and invariants. However, this assumption is difficult to inte-

grate into many computer vision applications, while epipolar geometry is based only on image correspondences.

1Work funded by Spanish project CICYT TAP99-0443-C05-01
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An application of scene reconstruction using Epipolar geometry was first published by Longuet-Higgins in

1981 [25]. Since that time, a great deal of effort has been put into increasing the knowledge [8, 19]. Many articles

have been presented on self-calibrated and uncalibrated systems as a result of the boom in the 1990’s. For instance,

in 1992 Faugeras published a brief survey on self-calibration and the derived Kruppa equations which are used to

estimate the camera parameters from the epipolar geometry [9]. Basically, intrinsic parameters of both cameras

and the position and orientation of one camera related to the other can be extracted by using Kruppa equations [18].

In the same year, Faugeras also gave an answer to the question ”What can be seen in three dimensions with an

uncalibrated stereo rig?” [7]. Hartley also did a lot of work with geometry and how it is contained in the essential

and the fundamental matrix [13] as well as the estimation of the camera pose [15]. Two years later, Deriche et

al. presented a robust method for recovering epipolar geometry based on a matching by correlation and detecting

the outliers [6]. As a result, Hartley studied the geometry involved in a rotating camera [17] while Li studied the

geometry of a head-eye system [24] and Luong et al. introduced a Canonic representation [28]. Also, in 1994,

Luong and Faugeras published an interesting article on analyzing the stability of the Fundamental matrix due to

uncertainty in the epipole computation, noise in the image point localization, camera motion, and so on [26].

Some applications of epipolar geometry are the simplification of the image matching in stereoscopic sys-

tems [4], the estimation of camera motion [22] and scene reconstruction [43]. It is important, therefore, to develop

accurate techniques to compute it. Classic linear methods are mainly based on least-squares minimization [40]

and eigen values minimization [34]. Other methods are based on optimizing linear methods by means of iter-

ation [23]. Robust methods are based on computing a more accurate geometry detection and removing false

matchings [31, 40]. Robust computation is still a subject for wide research focusing mainly on proposing new

estimators to improve the accuracy of the fundamental matrix and on reducing computation expenses [3, 33, 36].

This article surveys up to fifteen of the most widely used techniques in computing the fundamental matrix

such as the 7-point, least-squares and eigen analysis linear techniques among others and robust techniques such

as M-estimators, LMedS, RANSAC and so on. All these techniques have been programmed and their accuracy

analyzed in synthetic and real scenarios. This article is divided as follows. First, a brief introduction to epipolar

geometry is presented. Then, all the surveyed methods are described in section 3 analyzing their advantages and

drawbacks with respect to the previous methods. Section 4 deals with the experimental results obtained with both

synthetic and real images. Finally, the article ends with conclusions.

2 Epipolar Geometry

Given a 3D object point M = (W X, W Y, W Z, 1)T expressed with respect to a world coordinate system {W},

and its 2D projection on the image plane in pixels m = (IX, IY )T, both points are related to a projective trans-

formation matrix as shown in equation (1),

s m = IPW M (1)
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Figure 1: The geometric relation between two pinhole cameras.

in which s is a scale factor and IPW is a 3 × 4 matrix, which can be decomposed as

IPW = IAC
CKW (2)

in which IAC is a 3 × 4 matrix relating the metric camera coordinate system located at the focal point OC to the

image coordinate system located at the top-left corner of the image plane in pixels, that is the optical and internal

geometry of the camera. Moreover, CKW is a 4 × 4 matrix which relates the camera coordinate system {C} to

the world coordinate system {W}, that is the position and orientation of the camera in the scene.

CKW =
(

CRW
CtW

01x3 1

)
(3)

Then, epipolar geometry defines the geometry between the two cameras creating a stereoscopic system or geometry

between two different positions of a mobile camera. Given an object point M and its 2D projections m and m′

on both image planes, the 3 points define a plane Π, which intersects both image planes at the epipolar lines lm′

and l′m respectively, as shown in Figure 1. Note that the same plane Π can be computed using both focal points

OC and OC′ and a single 2D projection, which is the principle to reduce the correspondence problem to a single

scanning along the epipolar line. Moreover, the intersection of all the epipolar lines defines an epipole on both

image planes, which can also be obtained by intersecting the line defined by both focal points OC and OC′ with

both image planes.

All the epipolar geometry is contained in the so called fundamental matrix as shown in equation (4).

mTFm′ = 0 (4)

The fundamental matrix contains the intrinsic parameters of both cameras and the rigid transformation of one

camera related to the other, which depends on which camera has been considered as the origin of the world
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coordinate system. In equation (5), the origin of the world coordinate system coincides with the coordinate system

of the second camera, located at OC′ .

F = IAC
−T

[ CtC′ ]×CRC′ I′
AC′

−1
(5)

A particular case of the fundamental matrix is the essential matrix. When the intrinsic camera parameters are

known, it is possible to simplify equations (4) and (5) obtaining

qTE q′ = 0 (6)

where,

q = IAC
−1

m, E = [ CtC′ ]×CRC′ , q′ = I′
AC′

−1
m′ (7)

The matrix E is called essential [19].

3 Estimating the Fundamental Matrix

In the last few years, several methods to estimate the fundamental matrix have been proposed, which can be classi-

fied into lineal, iterative and robust methods. Lineal and iterative methods can cope with bad point localization in

the image plane due to noise in image segmentation. Robust methods can cope with both image noise and outliers,

i.e. wrong matching between point correspondences in both image planes. All of these methods are based on

solving a homogeneous system of equations which can be deduced from equation (4) rewriting it in the following

way:

Uf = 0 (8)

where,

f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)T (9)

U =




IX1
IX ′

1
IX1
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1
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IY1
IX ′

1
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n

IYn
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n
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 (10)

It is important to note that there are only 7 independent parameters and 9 unknowns. The 7 independent parameters

are given by two independent columns and the scale factor forcing the fundamental matrix to be rank-2 [40].

3.1 Linear Methods

The linear method of the seven points is based on computing the fundamental matrix by using only seven point

correspondences [40]. Due to the homogeneity of the equations, the solution is a set of matrices of the form

F = αF1 + (1 − α)F2 (11)

By forcing the rank of the matrix to be equal to 2 and using the expression det [αF1 + (1 − α)F2], a cubic

polynomial is obtained which has to be solved to obtain α and then F. The main advantage of this method is that
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Figure 2: (a) Classical least-squares. (b) Orthogonal least-squares.

a fundamental matrix can be estimated by using only seven points. However this fact becomes a drawback when

some points are poorly located. Moreover, the 7-points method cannot be applied in the presence of redundancy.

Hence, it can not be applied using n points where n > 7.

Another interesting method is the 8-points method, in which the redundancy of points permits minimizing the

error in estimating F. The equation to minimize in the 8-points method is the residual of equation (4), that is:

min
F

∑
i

(
mT

i Fm′
i

)2
(12)

The classical method to solve such an equation is the least-squares technique of forcing one of the components of

F to be the unity [27]. This simplification can be assumed because F is always defined up to a scale factor. Then,

the equation to solve is

f ′ =
(
U′TU′

)−1

U′Tc9 (13)

in which U′ is a matrix containing the first eight columns of U, c9 is the last column of U (see also equation (10))

and f ′ is a vector containing the first eight elements of f . Note that the last element of f is 1.

A variant of the 8-points method can be applied if equation 12 is solved by using eigen analysis, also called

orthogonal least-squares technique [34]. In this case F can be determined from the eigen vector corresponding

to the smallest eigen value of UTU. The difference between this method and the classical least-squares resides

in the form of calculating the error between correspondences and epipolar lines, as shown in Figure 2, where an

orthogonal minimization is much more realistic.

The last linear method we surveyed is the analytic method with rank-2 constraint which imposes the rank-2

constraint in minimization [40]. Then, the matrix U′ is defined as the composition of the first seven columns of U

and c8 and c9 are defined as the eighth and ninth columns of U respectively, so that F can be computed as

f ′ = −f8

(
U′TU′)−1

U′Tc8 − f9

(
U′TU′

)−1

U′Tc9 (14)

in which f ′ is the vector containing the first seven elements of f , and f8 and f9 are the eighth and ninth elements

of f . In order to obtain the values of f8 and f9, F is computed by using the seven points algorithm. Then, f is

computed by selecting from any choice of pairs of F, the one which minimizes ‖f‖ = 1. Although the analytic
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method with rank-2 constraint obtains a rank-2 matrix, it does not greatly improve the results of the previously

explained methods.

Concluding, the linear methods present an interesting reduced computing time but their accuracy is rather poor

in the presence of false matching or if the points are only badly located due to image noise. In order to obtain

better results, iterative algorithms have to be considered.

3.2 Iterative Methods

Iterative methods can be classified into two groups: those that minimize the distances between points and epipolar

lines and those that are based on the gradient.

In the first classification, the iterative methods minimizing the distances between points and epipolar lines are

based on solving the following equation

min
F

∑
i

(
d2(mi,Fm′

i) + d2(m′
i,Fmi)

)
(15)

A first approach consists of directly applying an iterative method as Newton-Raphson or Levenberg-Marquardt

in the equation (15) [32]. Another possibility consists of applying an iterative linear method [40], in which

equation (15) has to be rewritten as

min
F

∑
i

w2
i

(
mT

i Fm′
i

)2
, where wi =

(
1

l1
2 + l2

2 +
1

l′1
2 + l′2

2

)1/2

(16)

The iterative linear method is based on computing the weight value wi equivalent to the epipolar distances by using

the previous F (in the first iteration wi = 1) and then minimize by using least-squares in each iteration. Neither

approach imposes the rank-2 constraint. However, the nonlinear minimization in parameter space [40] can solve

this situation. This method is based on parameterizing the fundamental matrix, keeping in mind that it has a rank-2

in the following way,

F =


 a b −axe − bye

c d −cxe − dye

−axe′ − cye′ −bxe′ − dye′ (axe + bye)xe′ + (cxe + dye)ye′


 (17)

in whitch (xe, ye) and (xe′ , ye′) are the coordinates of the epipole in the first image plane and second image plane,

respectively. Equation (17) is just one of the multiple parameterizations of F which must be computed. Finally,

the estimated F becomes the parameterization which maximizes the following equation,

(ad − bc)2
√

xe
2 + ye

2 + 1
√

xe′2 + ye′2 + 1 (18)

The iteration of this method allows computing better rank-2 F.

Besides, the minimization of equation (12) is not accurate enough to obtain a good estimation because the

variance of points is not analogous and the least-square technique assumes they are comparable. In order to

overcome this drawback, the second group of methods has to be considered.
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The second group of methods is based on the gradient-based [14]. In this case, the equation to solve is

min
F

∑
i

(
mT

i Fm′
i

)2
/g2

i (19)

where gi =
√

l1
2 + l2

2 + l′1
2 + l′2

2.

The gradient-based technique obtains better results when compared with linear methods and iterative methods

which minimize the distance between points and epipolar lines. Although iterative methods are more accurate than

linear methods, they compute intensively and can not cope with potential outliers.

3.3 Robust Methods

In this section we present three robust methods: M-Estimators, Least-Median-Squares (LMedS) and Random

Sampling (RANSAC), which can be used both in the presence of outliers and in bad point localization.

M-estimators [14] reduces the effect of outliers weighting the residual of each point. Consider ri the residual

of mT
i Fm′

i. Then, M-estimators are based on solving the following expression

min
F

∑
i

wi

(
mT

i Fm′
i

)2
(20)

in which wi is a weight function. A lot of different weight functions have been proposed so a new M-estimator is

obtained for each one. A common weight function proposed by Huber [20] is the following

wi =




1 |ri| ≤ σ
σ/|ri| σ < |ri| ≤ 3σ
0 3σ < |ri|

(21)

Another interesting weight function is proposed by Tukey [30],

wi =

{ (
1 − ( ri

4.6851

)2)2

|ri| ≤ 4.6851σ

0 otherwise
(22)

In order to obtain σ, the robust standard deviation can be used (see [40]).

σ = 1.4826 (1 + 5/(n − 7)) mediani |ri| (23)

There are a lot of weight functions and for each one we obtained different results. The results given by this

method are quite good in the presence of gaussian noise in image point localization, but they are rather limited in

outlier detection.

LMedS [40] and RANSAC [34] techniques are quite similar. Both techniques are based on randomly selecting

the set of points used to compute an approximation of F by using a linear method. The difference between both

techniques is in the way they determine the chosen F. LMedS calculates for each F the median distance between

the points and epipolar lines, in which the chosen fundamental matrix has to minimize this median. RANSAC

calculates for each F the number of inliers, in which the chosen F is the one that maximizes it. Once the outliers

are removed, F is recalculated with the aim of obtaining a better approach.
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Another difference between both methods is that LMedS is more restrictive than RANSAC, in that LMedS

removes more points than RANSAC. However, the principal constraints of both techniques is their lack of repeti-

tivity due to the aleatory way of selecting the points. Although experimental results show that LMedS gives better

results in terms of accuracy, it does not always model the epipolar geometry properly.

3.4 Considerations in F Estimation

3.4.1 Normalizing data

Data normalization is a key point in fundamental matrix estimation. It has been proved that the computation should

not be applied directly to raw data in pixels due to potential uncertainties given by huge numbers. The process of

normalization consists of scaling and translating the data so that points mi and m′
i are transformed to (m̂i = Tmi

and m̂′
i = T′m′

i) by using two transformation matrices T and T′ respectively. Then, the F̂ matrix is estimated

from the normalized points and, finally, it has to be restored to obtain F using the following equation

F = TTF̂T′ (24)

Basically there are two different methods of data normalization. The first method [40] normalizes the data between

[-1,1]. The second was proposed by Hartley [12] and is based on two transformations. First, the points are

translated so that their centroid is placed at the origin. Then, the points are scaled so that the mean of the distances

of the points to the origin is
√

2. It has been proved that Hartley’s method gives more accurate results than

normalizing between [-1,1].

3.4.2 Rank-2 constraint

In most circumstances, the estimated F should be a rank-2 matrix in order to model the epipolar geometry with

all the epipolar lines intersecting in a unique epipole. Although the rank-2 constraint is not imposed in most of

the surveyed methods, there is a mathematical method which transforms a rank-n square matrix to the closest

rank-(n − 1) matrix [14]. The F is decomposed in

F = USVT (25)

by using singular value decomposition, where Ŝ = diag(
√

λ1,
√

λ2,
√

λ3). The component with the smallest

weight is removed obtaining

Ŝ = diag(
√

λ1,
√

λ2, 0). Then, F is recalculated in the following way:

F̂ = UŜVT (26)

However, transforming the obtained F to a rank-2 matrix will give worse results because it has not been optimized.

Then, we suggest using any method which imposes a rank-2 matrix in the computation of F.
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(a) (b)

Figure 3: Two views of an underwater scene: (a) left image; (b) right image.

(a) (b)

Figure 4: Urban scene courtesy of Zhengyou Zhang2: (a) left image; (b) right image.

4 Experimental Results

The surveyed methods have been programmed and their accuracy analyzed with synthetic images varying the gaus-

sian noise and the number of outliers. Moreover, these methods have been tested in real images such as underwater

images from the seabed (see Figure 3) grabbed by our underwater robot GARBI [1] and images obtained from

public databases (see Figure 4). The corresponding points have been normalized by using the method proposed by

Hartley [12] explained in the last section.

Table 1 shows the accuracy of each method computed as the mean and standard deviation of the distances

between points and epipolar lines.

The seven points algorithm obtains a solution using only seven points. However, the accuracy depends greatly

on the points used. The least-squares technique is based on using at least 8 points and its accuracy depends on the

amount of badly located points used, usually obtaining better results by increasing the amount of points. The eigen

analysis is the linear method that obtains the best results because an orthogonal least-squares minimization is more

realistic than the classic one. However, all these methods obtain a rank-3 fundamental matrix, which means that

the epipolar geometry is not properly modeled.

The analytic method with rank-2 constraint obtains a rank-2 fundamental matrix in which distances between

2Available at http://www-sop.inria.fr/robotvis/demo/f-http/html
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Table 1: Methods Implemented with mean and std. of error: 1.- seven points; 2.- least-squares (LS) 3.- orthogonal LS; 4.- rank-2
constraint; 5.- iterative lineal using LS; 6.- iterative Newton-Raphson using LS; 7.- minimization in parameter space using eigen; 8.- gradient
using LS; 9.- gradient using eigen; 10.- M-Estimator using LS; 11.- M-Estimator using eigen; 12.- M-Estimator proposed by Torr; 13.- LMedS
using LS; 14.- LMedS using eigen; 15.- RANSAC using eigen.

Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ = 0.0 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

outliers 0% 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.0 22.125 339.562 17.124 30.027 161.684 27.035 17.871 187.474 18.224 73.403 4.909 4.714 0.000 0.000 9.449

outliers 10% 57.007 433.013 31.204 59.471 117.494 59.117 31.225 197.049 36.141 60.443 4.493 2.994 0.000 0.000 8.387
σ = 0.1 15.048 1.331 0.107 0.120 1.328 0.108 0.112 1.328 0.112 0.355 0.062 0.062 1.331 0.107 0.107

outliers 0% 14.498 0.788 0.088 0.091 0.786 0.088 0.092 0.786 0.092 0.257 0.042 0.041 0.788 0.088 0.088
σ = 0.1 26.136 476.841 19.675 50.053 158.671 70.530 19.549 183.961 15.807 73.354 4.876 4.130 0.449 0.098 9.148

outliers 10% 66.095 762.756 46.505 53.974 124.086 91.194 46.537 137.294 40.301 59.072 4.808 2.997 0.271 0.077 8.564
σ = 0.5 15.783 5.548 0.538 0.642 5.599 0.538 0.554 5.590 0.554 2.062 0.392 0.367 5.548 0.538 0.538

outliers 0% 14.837 3.386 0.362 0.528 3.416 0.366 0.361 3.410 0.361 1.466 0.237 0.207 3.386 0.362 0.362
σ = 0.5 117.534 507.653 19.262 26.475 161.210 47.884 18.933 217.577 19.409 143.442 3.887 3.147 47.418 0.586 10.723

outliers 10% 94.987 940.808 49.243 54.067 136.828 65.975 49.204 368.061 51.154 111.694 3.969 2.883 29.912 0.434 12.972
σ = 1.0 19.885 21.275 1.065 1.319 20.757 1.064 1.071 21.234 1.071 8.538 0.794 0.814 21.275 1.065 1.065

outliers 0% 16.485 12.747 0.744 0.912 12.467 0.747 0.745 12.719 0.745 6.306 0.463 0.463 12.747 0.744 0.744
σ = 1.0 138.554 629.326 21.264 61.206 158.849 79.323 20.277 152.906 18.730 120.012 3.921 4.089 25.759 1.052 8.657

outliers 10% 96.671 833.019 53.481 64.583 120.461 80.100 49.476 120.827 38.644 122.436 3.752 4.326 15.217 0.803 17.410
Underwater 3.833 4.683 1.725 5.242 3.068 2.584 1.643 2.949 1.581 0.557 0.650 0.475 1.485 1.039 1.725

Scene 4.440 3.941 2.138 4.286 2.804 4.768 2.109 2.798 2.056 0.441 0.629 0.368 1.134 0.821 2.138
Urban 4.9146 1.7238 0.4396 1.0227 0.4676 1.1020 2.9740 1.1088 0.4463 1.6678 0.3089 0.2790 0.9037 0.3193 0.4396
Scene 4.6250 1.1592 0.3343 1.0124 0.3414 0.7963 3.0658 0.8026 0.3675 0.9349 0.2280 0.1885 0.6171 0.2690 0.3343

points and epipolar lines are worse than in the linear methods. The iterative linear method improves considerably

the least-squares technique but can not cope with outliers. The iterative Newton-Raphson algorithm gets even better

results than the previous method if the presence of outliers is not considered. Although the nonlinear minimization

in parameter space also obtains a rank-2 matrix, the distances of points to epipolar lines are the worst. The eighth

and ninth methods are two diferent versions of the gradient-based method using least-squares and orthogonal least-

squares, respectively. Both methods obtain better results than their equivalent linear methods. Nevertheless, the

eigen analysis once more obtains better results than the other linear methods. Some of these methods obtain a

rank-2 matrix but can not cope with outliers.

The last surveyed methods are classified into robust, which means that they might detect and remove potential

outliers and compute the fundamental matrix by using only inliers. Three versions of the M-estimators based

on the Huber weight function have been programmed: least-squares, eigen analysis and the method proposed by

Torr [34]. The three methods start from a linear initial guess and become fully dependent on the linear method used

to estimate it. Moreover, least-squares and eigen values get a rank-3 matrix, while Torr forces a rank-2 matrix in

each iteration giving a more accurate geometry. Besides, two different versions of LMedS using again least-squares

and eigen analysis have been studied. Although the accuracy of LMedS seems worse compared to M-estimators,

LMedS removes the outliers more efficiently so that the epipolar geometry is properly obtained. RANSAC is the

last surveyed method. However, RANSAC does not obtains any better results than LMedS with eigen analysis due

to the method used to select the outliers which is quite permissive.

The last two rows of Table 1 show the results obtained from real images, i.e. an underwater scene grabbed
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Figure 5: Experimental results obtained in the underwater scene and the urban scene3.

from our underwater robot and a well-known urban view taken from a public database. Figure 5 shows the results

obtained by using every programmed method in the underwater and urban case. Note that accuracy is slightly

worse in the underwater case because of image blurring due to water scattering which increases the noise in point

localization and the number of outliers. Results take out the weakness of every method in such conditions.

Figures 6a and 7a show the matchings obtained by using the method proposed by Zhengyou Zhang [39, 42].

First, a Harris corner detector is applied to get a list of interesting points. Then the matching between both images

is computed by using a pixel-based correlation. Note that matches might not be unique. Finally, a relaxation

method is used to improve the local consistency of matches, reducing their ambiguity.

Figures 6b and 7b show the list of matchings kept by M-estimator based on eigen values. Depending on the

weighting function, the removed matchings vary due to both noise and outliers. Note that some good matchings are

also removed while potential outliers are kept as inliers. Figures 6c and 7c show the results obtained by LMedS,

while Figures 6d and 7d show the results obtained by RANSAC. In both cases, every single outlier is detected and

removed, obtaining comparatively the same results.

Also, the geometry modeled by every robust method is quite different. Figures 8a and 8b show the epipolar

3Methods: 1.- seven points; 2.- least-squares (LS) 3.- orthogonal LS; 4.- rank-2 constraint; 5.- iterative lineal; 6.- iterative Newton-Raphson; 7.- minimization
in parameter space; 8.- gradient using LS; 9.- gradient using eigen; 10.- M-Estimator using LS; 11.- M-Estimator using eigen; 12.- M-Estimator proposed by Torr;
13.- LMedS using LS; 14.- LMedS using eigen; 15.- RANSAC
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(a) (b)

(c) (d)

Figure 6: Underwater scene and matchings: (a) set of initial correspondences; and the matchings kept by: (b)
M-Estimators; (c) LMedS; (d) RANSAC.

geometry given by M-Estimator based on eigen values, wherein it is shown how the epipolar lines do not cross

in a single epipole due to the rank-3 matrix obtained. LMedS obtains a completely different geometry in which

epipoles have been located outside the image plane, but they are unique (see Figure 8c and Figure 8d). RANSAC

obtains a geometry with the epipole located near the image centre. Comparing the obtained geometries related to

the position of the camera and its motion, the geometry modelled by RANSAC is the closest to reality.

The same study has been done considering the urban scene showing that the obtained results are a bit different.

The reader can see these results in Figure 9, Figure 10 and Figure 11. The number of potential outliers is fewer

than in the underwater scene and the location of image points is more accurate because of better image quality

(see Figure 9a and Figure 10a). Figure 9b and Figure 10b show the poor results obtained by the eigen value M-

Estimator, in which a lot of matchings are removed while some of the outliers are kept. In this case, LMedS is the

only method which detects the set of outliers located in the right side of the image (see Figure 9c and Figure 10c).

Besides, RANSAC does not detect any outlier so results are not accurate enough.

The geometry obtained in the urban scene largely depends on the method utilized. Figure 11 shows the three

different geometries given by M-Estimator, LMedS and RANSAC. In this case, M-Estimator and RANSAC model

a similar geometry in which the epipoles are located outside the image near the top-right corner, which is not the
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(a) (b)

(c) (d)

Figure 7: Matchings in the underwater scene: (a) set of initial correspondences; and the matchings kept by: (b)
M-Estimators; (c) LMedS; (d) RANSAC.

right situation. LMedS obtains the right geometry with the epipoles located in the left side of the image.

5 Conclusions

This article surveys up to fifteen of the most used methods in fundamental matrix estimation. The different methods

have been programmed and their accuracy analyzed with real images. Experimental results show that: a) linear

methods are quite good if the points are well located in the image and the corresponding problem previously

solved; b) iterative methods can cope with some gaussian noise in the localization of points, but they become really

inefficient in the presence of outliers; and c) robust methods can cope with both discrepancy in the localization of

points and false matchings.

Experimental results show that the orthogonal least-squares using eigen analysis gives better results than the

classic least-squares technique of minimization. Moreover, a rank-2 method is preferred because it models the

epipolar geometry with all the epipolar lines intersecting at the epipole. Moreover, experimental results show

that the corresponding points have to be normalized and the best results have been obtained by using the method

proposed by Hartley [14].

Summarizing, the best results are either obtained by using LMedS or RANSAC robust estimators, but their
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accuracy depends on noise, the number of outliers and camera position and motion. The uncertainty in fundamental

matrix computation was studied in detail by Csurka et al. [5] and Torr and Zisserman [35]. The surveyed methods

model the epipolar geometry without considering lens distortion which considerably influences their discrepancy.

Thus, some efforts have been made recently in presence of radial lens distortion [41]. In all, LMedS is the most

appropriate for outlier detection and removal. However, with the aim of obtaining an accurate geometry, it is better

to combine it with M-Estimator, which in our case has modelled a proper geometry in synthetic data, either in the

presence of noise or outliers.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Points and epipolar lines in the underwater scene: (a) left and (b) right views obtained by M-Estimator;
(c) left and (d) right views obtained by LMedS; (e) left and (f) right views obtained by RANSAC.
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(a) (b)

(c) (d)

Figure 9: Urban scene and matchings: (a) set of initial correspondences; and the matchings kept by: (b) M-
Estimators; (c) LMedS; (d) RANSAC.

(a) (b)

(c) (d)

Figure 10: Matchings in the urban scene: (a) set of initial correspondences; and the matchings kept by: (b) M-
Estimators; (c) LMedS; (d) RANSAC.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Points and epipolar lines in the urban scene: (a) left and (b) right views obtained by M-Estimator; (c)
left and (d) right views obtained by LMedS; (e) left and (f) right views obtained by RANSAC.
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Summary

In this article, we present a comparative study of the most commonly used camera calibrating methods of the

last few decades. These techniques cover a wide range of the classical hard calibration of image sensors which

begin from a previous knowledge of a set of 3D points and their corresponding 2D projections on an image plane

in order to estimate the camera parameters. Hence, this study is presented describing a total of 5 different camera

calibrating techniques which include implicit vs. explicit calibration and linear vs. non-linear calibration.

A great deal of attention has been paid to use the same nomenclature and a standardized notation in the pre-

sentation of all the techniques. Actually, this is one of the greatest difficulties which appears when going into the

details of any calibrating technique. This problem usually arises because each method defines a different set of

coordinate systems and camera parameters. Therefore, all the techniques have been re-arranged so as to allow a

comparative presentation. The reader is introduced to calibration with the implicit linear technique of the pseudo-

inverse presented by Hall, afterwards the explicit linear calibration of Faugeras-Toscani is presented. Furthermore,

the article describes an easy modification of the Faugeras method in order to include radial lens distortion, the

well-known method of Tsai and Tsai optimized, and finally the complete method of Weng which models up to

three different kinds of lens distortion.

In order to compare the accuracy provided by each technique surveyed, a brief description of accuracy evalu-

ation is presented. Each calibrating technique has been implemented and its accuracy evaluated. The same set of

test points has been used for all the techniques, which allows the results to be reliably compared. Hence, the reader

can choose one or another method depending on the required accuracy. Moreover, once the calibrating method is

chosen, the reader can take the equations directly from this article and easily use them in the desired calibrating

algorithm.

There are numerous advantages thanks to an accurate calibration. For instance, dense reconstruction of 3D

objects and surfaces has applications in visual inspection and medical imaging, such as quality control in industrial

manufacturing and reconstruction of human backs and skulls for the detection of deformations or surgery. Another

problem is the 3D pose estimation of an object in a scene, which has many applications such as obstacle avoidance,

landmark detection and industrial part assembly, among others.



A Comparative Review of Camera Calibrating

Methods with Accuracy Evaluation1

Abstract

Camera calibrating is a crucial problem for further metric scene measurement. Many techniques

and some studies concerning calibration have been presented in the last few years. However, it is still

difficult to go into details of a determined calibrating technique and compare its accuracy with respect

to other methods. Principally, this problem emerges from the lack of a standardized notation and the

existence of various methods of accuracy evaluation to choose from. This article presents a detailed

review of some of the most used calibrating techniques in which the principal idea has been to present

them all with the same notation. Furthermore, the techniques surveyed have been tested and their

accuracy evaluated. Comparative results are shown and discussed in the article. Moreover, code and

results are available in internet.

Keywords: Camera Calibration, lens distortion, parameter estimation, optimization, camera mod-

elling, accuracy evaluation, 3D Reconstruction, Computer Vision.

1 Introduction

Camera calibration is the first step towards computational computer vision. Although some information concerning

the measuring of scenes can be obtained by using uncalibrated cameras [1], calibration is essential when metric

information is required. The use of precisely calibrated cameras makes the measurement of distances in a real

world from their projections on the image plane possible [2, 3]. Some applications of this capability include:

1. Dense reconstruction: Each image point determines an optical ray passing through the focal point of the

camera towards the scene. The use of more than a single view of a motionless scene (taken from a stereo-

scopic system, a single moving camera, or even a structured light emitter) permits crossing both optical

rays to get the metric position of the 3D points [4, 5, 6]. Obviously, the correspondence problem has to be

previously solved [7].

2. Visual inspection: Once a dense reconstruction of a measuring object is obtained, the reconstructed object

can be compared with a stored model in order to detect any manufacturing imperfections such as bumps,

dents or cracks. One potential application is visual inspection for quality control. Computerized visual in-

1This work has been supported by Spanish project CICYT TAP99-0443-CO5-01
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spection allows automatic and exhaustive examination of products, as opposed to the slow human inspection

which usually implies a statistical approach [8].

3. Object localization: When considering various image points from different objects, the relative position

among these objects can be easily determined. This has many possible applications such as in industrial part

assembly [9] and obstacle avoidance in robot navigation [10, 11], among others.

4. Camera localization: When a camera is placed in the hand of a robot arm or on a mobile robot, the position

and orientation of the camera can be computed by locating some known landmarks in the scene. If these

measurements are stored, a temporal analysis allows the handler to determine the trajectory of the robot.

This information can be used in robot control and path planning [12, 13, 14].

Camera calibration is divided into two phases. First, camera modelling deals with the mathematical approxi-

mation of the physical and optical behavior of the sensor by using a set of parameters. The second phase of camera

calibration deals with the use of direct or iterative methods to estimate the values of these parameters. There are

two kinds of parameters in the model which have to be considered. On the one hand, the intrinsic parameter set,

which models the internal geometry and optical characteristics of the image sensor. Basically, intrinsic parameters

determine how light is projected through the lens onto the image plane of the sensor. The other set of parameters

are the extrinsic ones. The extrinsic parameters measure the position and orientation of the camera with respect

to a world coordinate system, which, in turn, provides metric information with respect to a user-fixed coordinate

system instead of the camera coordinate system.

Camera calibration can be classified according to several different criteria. For instance, 1) Linear versus

nonlinear camera calibration (usually differentiated depending on the modelling of lens distortion) [15]. 2) Intrinsic

versus extrinsic camera calibration. Intrinsic calibration is concerned only with obtaining the physical and optical

parameters of the camera [16, 17]. Besides, extrinsic calibration concerns the measurement of the position and

orientation of the camera in the scene [18, 19]. 3) Implicit [20] versus explicit [21] calibration. Implicit calibration

is the process of calibrating a camera without explicitly computing its physical parameters. Although, the results

can be used for 3D measurement and the generation of image coordinates, they are useless for camera modelling

as the obtained parameters do not correspond to the physical ones [22]. Finally, 4) the methods which use known

3D points as a calibrating pattern [23, 24] or even a reduced set of 3D points [25, 26], with respect to others which

use geometrical properties in the scene such as vanishing lines [27] or other line features [28, 29].

These different approaches can also be classified regarding the calibration method used to estimate the param-

eters of the camera model:

1. Non-linear optimization techniques. A calibrating technique becomes non-linear when any kind of lens

imperfection is included in the camera model. In that case, the camera parameters are usually obtained

through iteration with the constraint of minimizing a determined function. The minimizing function is
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usually the distance between the imaged points and the modelled projections obtained by iterating. The

advantage of these iterating techniques is that almost any model can be calibrated and accuracy usually

increases by increasing the number of iterations up to convergence. However, these techniques require a good

initial guess in order to guarantee convergence. Some examples are described in classic photogrammetry [30]

and Salvi [31].

2. Linear techniques which compute the transformation matrix. These techniques use the least squares method

to obtain a transformation matrix which relates 3D points with their 2D projections. The advantage here is

the simplicity of the model which consists in a simple and rapid calibration. One drawback is that linear

techniques are useless for lens distortion modelling, entailing a rough accuracy of the system. Moreover, it

is sometimes difficult to extract the parameters from the matrix due to the implicit calibration used. Some

references related to linear calibration can be found in Hall [20], Toscani-Faugeras [23, 32] and Ito [15].

3. Two-step techniques. These techniques use a linear optimization to compute some of the parameters and, as

a second step, the rest of the parameters are computed iteratively. These techniques permit a rapid calibration

considerably reducing the number of iterations. Moreover, the convergence is nearly guaranteed due to the

linear guess obtained in the first step. Two-step techniques make use of the advantages of the previously

described methods. Some references are Tsai [24], Weng [33] and Wei [22].

This article is a detailed survey of some of the most frequently used calibrating techniques. The first technique

was proposed by Hall in 1982 and is based on an implicit linear camera calibration by computing the 3x4 transfor-

mation matrix which relates 3D object points with their 2D image projections [20]. The latter work of Faugeras,

proposed in 1986, was based on extracting the physical parameters of the camera from such a transformation tech-

nique, thus it is explained as the second technique [23, 32]. The following methods are based on non-linear explicit

camera calibration, including the modelling of lens distortion. Hence, the first one is a simple adaptation of the

Faugeras linear method with the aim of including radial lens distortion [31, 34]. The widely used method proposed

by Tsai, which is based on a two-step technique modelling only radial lens distortion, is also detailed [24]. Finally,

the complete model of Weng, which was proposed in 1992, including three different types of lens distortion, is

explained as the last technique [33]. Note that one of the principal problems to understand a calibrating technique

in detail is the lack of notation standardization in mathematical equations and the use of different sets of coordinate

systems. Both limitations complicate the comparing of techniques, thus a great deal of effort has been made to

present the survey using the same notation. All five techniques are explained herein and their 2D and 3D accuracy

shown and discussed. A brief overview of camera accuracy evaluation [35] is included with the aim of using the

same tools to compare different calibrating techniques implemented.

This article is structured as follows. Section two deals with camera modelling and how the camera model is

gradually obtained by a sequence of geometrical transformations is explained. Section 3 describes the five different
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techniques of camera calibration, which estimate the parameters of the camera model. Then, a few methods for

accuracy evaluation of camera calibrating techniques are explained in section 4. Finally, both 2D and 3D accuracy

of each calibration technique have been measured and their results are shown and compared. The paper ends with

conclusions.

2 Camera Model

A model is a mathematical formulation which approximates the behavior of any physical device by using a set

of mathematical equations. Camera modelling is based on approximating the internal geometry along with the

position and orientation of the camera in the scene. There are several camera models to choose from depending on

the desired accuracy [15]. The simplest are based on linear transformations without modelling the lens distortion.

However, there are also some non-linear models which accurately model the lens. These are useful for some

applications where greater precision is required.

The simplest model is the one proposed by Hall [20]. The goal is to find a linear relationship among the 3D

points of the scene with their 2D projecting points on the image plane. This relationship is approximated by means

of a transformation matrix2, as shown in equation (1).


 sIXd

sIYd

s


 =


 A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34






W Xw
W Yw
W Zw

1


 (1)

Then, given a 3D point Pw, expressed with respect to the metric world coordinate system (i.e. W Pw), and

applying the transformation matrix proposed by Hall, the 2D point Pd in pixels with respect to the image coordinate

system is obtained, i.e. IPd = (IXd,
I Yd).

However, camera modelling is usually broken down into 4 steps, as is detailed in the following list (see also

figure 1).

1. The first step consists of relating point W Pw from the world coordinate system to the camera coordinate

system, obtaining CPw. This transformation is performed by using a rotation matrix and a translation vector.

2. Next, it is necessary to carry out the projection of point CPw on the image plane obtaining point CPu, by

using a projective transformation.

3. The third step models the lens distortion, based on a disparity with the real projection. Then, point CPu is

transformed to the real projection of CPd (which should coincide with the points captured by the camera).

4. Finally, the last step consists of carrying out another coordinate system transformation in order to change

from the metric coordinate system of the camera to the image coordinate system of the computer in pixels,

obtaining IPd.

2The appendix at the end of the paper details the used nomenclature.
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Figure 1: The geometric relation between a 3D object point and its 2D image projection.

In the following, the different camera models of Faugeras-Toscani [32], Faugeras-Toscani with distortion [34],

Tsai [24] and Weng [33] are explained in detail with attention on how they carry out the above four steps.

2.1 Changing from the world to the camera coordinate system

Changing the world coordinate system to the camera coordinate system is carried out in the same way in all the

surveyed models. This transformation is modelled using a translation vector and a rotation matrix, as shown in

equation (2). 
 CXw

CYw
CZw


 = CRW


 W Xw

W Yw
W Zw


+ CTW (2)

Then, given a point W Pw related to the world coordinate system, and applying equation (2), the point CPw

in relation to the camera coordinate system is obtained. Note that CRW expresses the orientation of the world

coordinate system {W} with respect to the axis of the camera coordinate system {C}, and that CTW expresses the

position of the origin of the world coordinate system measured with respect to {C}.

2.2 Projection of the 3D point on the image plane

Consider that any optical sensor can be modelled as a pinhole camera [2]. That is, the image plane is located at

a distance f from the optical center OC , and is parallel to the plane defined by the coordinate axis XC and YC .

Moreover, given an object point (CPw) related to the camera coordinate system, if it is projected through the focal

point (OC), the optical ray intercepts the image plane at the 2D image point (CPu). This relation is shown in

equation (3).

CXu = f
CXw
CZw

CYu = f
CYw
CZw

(3)
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All the various models reviewed solved the projective transformation by using the same equation (3).

2.3 Lens distortion

The third step is based on modelling the distortion of the lenses. However, each model surveyed required a different

approach. Equations (4) transform the undistorted point CPu to the distorted point CPd, where δx and δy represent

the distortion involved.

CXu = CXd + δx
CYu = CYd + δy (4)

The camera model proposed by Faugeras and Toscani [32] does not model the lens distortion, therefore, CPu

and CPd are the same point. In this case δx and δy are zero, as shown in equation (5).

δx = 0 δy = 0 (5)

The Faugeras-Toscani model however can be improved by modelling the radial lens distortion [34]. Tsai [24]

has modelled distortion in the same way. As shown in equations (6), δx and δy represent the radial distortion [30].

This type of distortion is mainly caused by flawed radial curvature of the lens. See also [33].

δx = δxr δy = δyr (6)

The displacement given by the radial distortion dr can be modelled by equations (7), which consider only k1

the first term of the radial distortion series. It has been proven that the first term of this series is sufficient to model

the radial distortion in most of the applications [24].

δxr = k1
CXd

(
CXd

2 + CYd
2
)

δyr = k1
CYd

(
CXd

2 + CYd
2
)

(7)

The model of Weng [33] considers three types of distortion: radial distortion, decentering distortion and thin

prism distortion. The total distortion will be the sum of these three distortions.

δx = δxr + δxd + δxp δy = δyr + δyd + δyp (8)

However, Weng proposed to model the lens distortion from the undistorted image point (CXu,CYu) instead of

the distorted one (CXd,CYd). Although both approaches can be considered, it also has to be taken into account

that the calibrating parameters will be different. Hence, equations (4) have to be substituted by equations (9).

CXd = CXu + δx
CYd = CYu + δy (9)

The radial distortion is modelled in the same manner Tsai proposed, except that Weng used the undistorted

points.

δxr = k1
CXu

(
CXu

2 + CYu
2
)

δyr = k1
CYu

(
CXu

2 + CYu
2
)

(10)
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The decentering distortion is due to the fact that the optical center of the lens is not correctly aligned with the

center of the camera [33]. This type of distortion introduces a radial and tangential distortion [30], which can be

described by the following equations,

δxd = p1

(
3 CXu

2 + CYu
2
)

+ 2p2
CXu

CYu δyd = 2p1
CXu

CYu + p2

(
CXu

2 + 3 CYu
2
)
(11)

The thin prism distortion arises from imperfection in lens design and manufacturing as well as camera as-

sembly. This type of distortion can be modelled by adding a thin prism to the optic system, causing radial and

tangential distortions [33]. This distortion is modelled by,

δxp = s1

(
CXu

2 + CYu
2
)

δyp = s2

(
CXu

2 + CYu
2
)

(12)

By adding the three equations (7), (11) and (12), and carrying out the following variable replacement: g1 =

s1 + p1, g2 = s2 + p2, g3 = 2p1 and g4 = 2p2, equations (13) are obtained,

δx = (g1 + g3) CXu
2 + g4

CXu
CYu + g1

CYu
2 + k1

CXu

(
CXu

2 + CYu
2
)

δy = g2
CXu

2 + g3
CXu

CYu + (g2 + g4) CYu
2 + k1

CYu

(
CXu

2 + CYu
2
) (13)

2.4 Changing from the camera image to the computer image coordinate system

This final step deals with expressing the CPd point with respect to the computer image plane in pixels {I}. This

change of coordinates can be made in two different ways according to the camera models surveyed.

The camera models proposed by Faugeras-Toscani, Faugeras-Toscani with distortion and by Weng use the

following equations to carry out such a transformation:

IXd = −ku
CXd + u0

IYd = −kv
CYd + v0 (14)

where: (ku,kv) are the parameters that transform from metric measures with respect to the camera coordinate

system to pixels with respect to the computer image coordinate system; and (u0, v0) are the components that

define the projection of the focal point in the plane image in pixels, i.e. the principal point. They are used to

determine the translation between both coordinate systems.

The camera model of Tsai proposed other equations to carry out the same transformation. These equations are

the following,

IXd = −sxd′x
−1CXd + u0

IYd = −dy
−1CYd + v0 (15)

where: (u0, v0) are the components of the principal point in pixels; sx is the image scale factor; d′x = dx
Ncx

Nfx
; dx is

the center to center distance between adjacent sensor elements in the X direction; dy is the center to center distance

between adjacent sensor elements in the Y direction; Ncx is the number of sensor elements in the X direction; and

Nfx is the number of pixels in an image row as sampled by the computer.
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3 Calibrating Methods

The calibrating method depends on the model used to approximate the behavior of the camera. The linear models,

i.e. Hall and Faugeras-Toscani, use a least-squares technique to obtain the parameters of the model. However, non-

linear calibrating methods, as with Faugeras-Toscani with distortion, Tsai and Weng, use a two-stage technique.

As a first stage, they carry out a linear approximation with the aim of obtaining an initial guess and then a further

iterative algorithm is used to optimize the parameters. In this section, each calibrating method is explained detailing

the equations and the algorithm used to calibrate the camera parameters.

3.1 The method of Hall

The method used to calibrate the model of Hall is based on expressing equation (1) in the following form,

IXu =
A11

W Xw + A12
W Yw + A13

W Zw + A14

A31
W Xw + A32

W Yw + A33
W Zw + A34

(16)

IYu =
A21

W Xw + A22
W Yw + A23

W Zw + A24

A31
W Xw + A32

W Yw + A33
W Zw + A34

By arranging the variables, the following expressions are obtained,

0 = A11
W Xw − A31

IXu
W Xw + A12

W Yw

−A32
IXu

W Yw + A13
W Zw − A33

IXu
W Zw + A14 − A34

IXu

0 = A21
W Xw − A31

IYu
W Xw + A22

W Yw

−A32
IYu

W Yw + A23
W Zw − A33

IYu
W Zw + A24 − A34

IYu

(17)

Finally, the unknowns Aij are arranged in a 12-parameter vector (A), obtaining the following equation:

QA = 0 (18)

where A is the vector of 12 unknowns of the equation (19). Q is a matrix of 2n× 12 where n is the number of pair

points used to calibrate the camera. A pair of points is formed by a 3D point expressed with respect to the world

coordinate system {W} and its 2D projection expressed in coordinates from the image plane {I}.

A =
(

A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 A34

)T
(19)

Each pair of points adds to the Q matrix the two following rows,

Q2i−1 =




W Xui
W Yui
W Zui

1
0
0
0
0

−IXui
W Xwi

−IXui
W Ywi

−IXui
W Zwi

−IXui




T

Q2i =




0
0
0
0

W Xui
W Yui
W Zui

1
−IYui

W Xwi

−IYui
W Ywi

−IYui
W Zwi

−IYui




T

(20)
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Consider then that the 3D position of a set of n calibrating points and their corresponding 2D projection in the

image are known (n should be bigger or equal to 6). Moreover, consider without loss of generality that A34 = 1.

This approximation can be assumed since the transformation matrix is defined up to a scale factor [2]. Then, all the

elements of the A vector can be obtained by using a linear least-squares technique as the pseudo-inverse [20]. With

the aim of applying the pseudo-inverse, it becomes necessary to modify equation (18) considering that A34 = 1,

obtaining:

Q′ A′ = B′ (21)

where,

A′ =
(

A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33

)T
(22)

and,

Q′
2i−1 =




W Xui
W Yui
W Zui

1
0
0
0
0

−IXui
W Xwi

−IXui
W Ywi

−IXui
W Zwi




T

Q′
2i =




0
0
0
0

W Xui
W Yui
W Zui

1
−IYui

W Xwi

−IYui
W Ywi

−IYui
W Zwi




T

(23)

B′
2i−1 =

(
IXui

)
B′

2i =
(
IYui

)
(24)

Finally, the vector of unknowns (A) is computed by applying the pseudo-inverse shown in the following equa-

tion (25).

A′ =
(
Q′TQ′ )−1

Q′TB′ (25)

3.2 The method of Faugeras

In order to obtain the complete model of the camera proposed by Faugeras and Toscani, it is necessary to combine

equations (2), (3), (4), (5) and (14), obtaining (26).

IXu = −kuf
r11

W Xw + r12
W Yw + r13

W Zw + tx
r31

W Xw + r32
W Yw + r33

W Zw + tz
+ u0

(26)

IYu = −kvf
r21

W Xw + r22
W Yw + r23

W Zw + ty
r31

W Xw + r32
W Yw + r33

W Zw + tz
+ v0

Note that equations (26) can be expressed in a matricial form in the following manner,


 sIXd

sIYd

s


 =


 αu 0 u0 0

0 αv v0 0
0 0 1 0






r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1






W Xw
W Yw
W Zw

1


 (27)
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where αu = −fku and αv = −fkv . Then, by computing the product of both matrices, the transformation matrix

A is obtained. 
 sIXd

sIYd

s


 =


 αur1 + u0r3 αutx + u0tz

αvr2 + v0r3 αvty + v0tz
r3 tz






W Xw
W Yw
W Zw

1


 (28)

A =


 αur1 + u0r3 αutx + u0tz

αvr2 + v0r3 αvty + v0tz
r3 tz


 (29)

The camera parameters can be extracted from the symbolic matrix (A) by equalling it to the numeric matrix

obtained by calibrating the camera with the technique of Hall. Note that the orientation of the vectors ri must be

orthogonal and that it is also known that the dot product between two vectors is equal to the multiplication of their

norms multiplied by the cosine of the angle they form. Using these relationships, the four intrinsic parameters (αu,

αv , u0, v0) and the six extrinsic ones (r1, r2, r3, tx, ty , tz) can be extracted from equation (29) in the following

manner,
u0 = A1A3

T v0 = A2A3
T

αu = − (A1A1
T − u2

0

)1/2
αv = − (A2A2

T − v2
0

)1/2
r1 = 1

αu
(A1 − u0A3) tx = 1

αu
(A14 − u0A34)

r2 = 1
αv

(A2 − v0A3) ty = 1
αv

(A24 − v0A34)
r3 = A3 tz = A34

(30)

where the numerical matrix A is:

A =


 A1 A14

A2 A24

A3 A34


 (31)

However, before estimating the camera parameters, the A matrix has to be calculated. Faugeras proposed a

slightly different method of estimating A from the one proposed by Hall. Hence, the terms of equation (1) have

been rearranged in the following way,

A1
W Pw + A14 − IXu

(
A3

W Pw + A34

)
= 0

A2
W Pw + A24 − IYu

(
A3

W Pw + A34

)
= 0 (32)

Both equations are then factorized with respect to the unknowns, obtaining,

IXu =
A1

A34

W Pw +
A14

A34
− A3

A34

W Pw
IXu

(33)

IYu =
A2

A34

W Pw +
A24

A34
− A3

A34

W Pw
IYu

At this point, a set of 5 parameters is considered X = (T1, T2, T3, C1, C2)T, which are T1 = A1
A34

, T2 = A3
A34

,

T3 = A2
A34

, C1 = A14
A34

and C2 = A24
A34

.

IXu = T1
W Pw + C1 − T2

W Pw
IXu

IYu = T3
W Pw + C2 − T2

W Pw
IYu

(34)

Then, the value of the vector X is obtained by using a linear least-squares technique.

B = QX (35)
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where,

Q =




· · ·
W Pw

T
i −IXui

W Pw
T
i 01x3 1 0

01x3 −IYui
W Pw

T
i

W Pw
T
i 0 1

· · ·


 B =




· · ·
IXui
IYui

· · ·


 (36)

Hence, vector X is computed using equation (35).

X =
(
QTQ

)−1
QTB (37)

Finally, the camera parameters are extracted from X by using equation (28).

T1 = r3
tz

u0 + r1
tz

αu C1 = u0 + tx

tz
αu

T2 = r3
tz

T3 = r3
tz

v0 + r2
tz

αv C2 = v0 + ty

tz
αv

(38)

At this point, it has to be considered that the norm of the three orientation vectors ri is equal to unity by

definition. By using equations (38), the parameter tz can then be computed. Hence, considering r3 = 1,

tz =
1

‖T2‖ (39)

The rest of the parameters can be obtained using the properties of the dot product and the cross product between

vectors, which are,

v1v2 = ‖v1‖ ‖v2‖ cos α v1 ∧ v2 = ‖v1‖ ‖v2‖ sinα (40)

so that,
rirj

T = 0 i �= j ri ∧ rj = 1 i �= j
rirj

T = 1 i = j ri ∧ rj = 0 i = j
(41)

The intrinsic parameters can then be obtained in the following way,

u0 = T1T2
T

‖T2‖2 v0 = T1T3
T

‖T2‖2

αu = −‖T1
T∧T2

T‖
‖T2‖2 αv = −‖T2

T∧T3
T‖

‖T2‖2

(42)

Moreover, the extrinsic parameters which model the orientation are the following,

r1 = − ‖T2‖∥∥T1
T ∧ T2

T
∥∥
(

T1 − T1T2
T

‖T2‖2 T2

)

r2 = − ‖T2‖∥∥T2
T ∧ T3

T
∥∥
(

T3 − T2T3
T

‖T2‖2 T2

)
(43)

r3 =
T2

‖T2‖

Finally, the extrinsic parameters that model the translation are also obtained from (38).

tx = − ‖T2‖∥∥T1
T ∧ T2

T
∥∥
(

C1 − T1T2
T

‖T2‖2

)

ty = − ‖T2‖∥∥T2
T ∧ T3

T
∥∥
(

C2 − T2T3
T

‖T2‖2

)
(44)

tz =
1

‖T2‖
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By using the ri vectors in equations (43), the rotation matrix CRW is directly obtained. The three angles

α, β and γ can then be computed by equalling the symbolic rotation matrix to the numeric matrix obtained by

calibration. At this point, all the parameters of the linear model of Faugeras are obtained. These parameters

determine the relationship between the 3D object points with their projections, as shown in equation (28). However,

the model of Faugeras can be more accurate if radial lens distortion is included.

3.3 The method of Faugeras with radial distortion

When a bright accuracy is necessary, the linear method of Faugeras becomes useless. However, it can be easily

modified by including the radial lens distortion as it has been shown in section 2.3. However, the equations become

non-linear, and the linear least-squares technique has to be replaced by an iterative algorithm.

Note that by combining equations (2), (3), (4), (6) and (7), the equations (45) are obtained.

CXd + CXdk1r
2 = f

r11
W Xw + r12

W Yw + r13
W Zw + tx

r31
W Xw + r32

W Yw + r33
W Zw + tz

CYd + CYdk1r
2 = f

r21
W Xw + r22

W Yw + r23
W Zw + ty

r31
W Xw + r32

W Yw + r33
W Zw + tz

(45)

r =
√

CXd
2 + CYd

2

Moreover, equations (14) have to be used to transform from metric coordinates to pixels. Then, equation (46)

defines the vector of unknowns which can be computed by using an iterative method as, for instance, the method

of Newton-Raphson or Levenberg-Marquardt, among others [36].

x = (α, β, γ, tx, ty, tz, ku, kv, u0, v0, k1)
T (46)

For example, the general method of Newton-Raphson minimizes the following equation,

G (xk) ≈ G (xk−1) + J∆xk (47)

where x is the unknown vector, G(x) is the minimization function, G(xk) is a value close to the solution, and J

represents the jacobian matrix of the function G(x). With the aim of finding a solution of ∆xk, it is necessary to

equal G(xk) to zero.

G (xk) = 0 (48)

Note that one of the problems of convergence in iterative algorithms is the initial guess. However, an initial

guess can be obtained by calibrating the linear method of Faugeras-Toscani without including lens distortion, and

assuming k1 = 0. Moreover, the difference between the initial value and the estimated parameters will be the error

of the function. For each iteration it is necessary to calculate the value of ∆xk to know the new value of x.

J∆xk = −G (xk−1) (49)
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By, applying the equations (45) and (14), and passing all the terms from the equality to the same side, functions

U(x) and V (x) are defined.

U (x) = f
r11

W Xw + r12
W Yw + r13

W Zw + tx
r31

W Xw + r32
W Yw + r33

W Zw + tz
−
(
IXd − u0

)
−ku

−k1


((IXd − u0

)
−ku

)2

+

((
IYd − v0

)
−kv

)2

 (IXd − u0

)
−ku

(50)

V (x) = f
r21

W Xw + r22
W Yw + r23

W Zw + ty
r31

W Xw + r32
W Yw + r33

W Zw + tz
−
(
IYd − v0

)
−kv

−k1


((IXd − u0

)
−ku

)2

+

((
IYd − v0

)
−kv

)2

 (IYd − v0

)
−kv

In continuation, with the aim of solving the system, it is necessary to apply equations (50) to the n calibrating

points. However, in order to apply equation (49), it is necessary to get the symbolic function G(x) and its partial

derivative matrix J , as it is shown in the following equations,

G(xk−1) =




U1 (xk−1)
V1 (xk−1)

...
Vn (xk−1)


 (51)

J =




∂U1(xk−1)
∂α

∂U1(xk−1)
∂β · · · ∂U1(xk−1)

∂k1
∂V1(xk−1)

∂α
∂V1(xk−1)

∂β · · · ∂V1(xk−1)
∂k1

...
...

. . .
...

∂Vn(xk−1)
∂α

∂Vn(xk−1)
∂β · · · ∂Vn(xk−1)

∂k1


 (52)

Finally, the parameters of the model are obtained by applying the pseudo-inverse of equations (53) in each

iteration. The more iterations done, the higher the accuracy obtained until convergence is achieved.

∆xk = − (JTJ
)−1

JTG (xk−1)
xk = xk−1 + ∆xk

(53)

3.4 The method of Tsai

The non-linear method of Faugeras was based on fixing the initial guess without considering lens distortion. More-

over, a large number of iterations are usually necessary to obtain an accurate value of the camera parameters. The

method of Tsai [24] also models the radial lens distortion but assumes that there are some parameters of the camera

which are provided by manufacturers. This fact reduces the number of calibrating parameters in the first step where

an initial guess is estimated. Moreover, although all the parameters are iteratively optimized in the last step, the

number of iterations is considerably reduced by using the calibrating algorithm proposed by Tsai.

Firstly, by combining equations (2), (3), (4), (6), and (7), the equations (45) are obtained. Note that at this point

model of Tsai is equivalent to the previous model of Faugeras with distortion (45).
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Figure 2: Illustration of the radial alignment constraint [24].

Once CX ′
d and CY ′

d are obtained in metric coordinates by using equation (15), they can be expressed in pixels

IXd and IYd and the following equations are obtained.

CX ′
di = − (IXdi − u0

)
d′x

CY ′
di = − (IYdi − v0

)
dy (54)

where,

CX ′
di = CXdisx

CY ′
di = CYdi (55)

It is necessary therefore to find a relationship between the image point Pd (in metric coordinates) with respect

to the object point Pw. Figure 2 shows how the radial distortion affects the camera model. It can be observed

that the segment ORPd is parallel to the segment PozPw. Considering this constraint, the following relationship is

established,

ORPd//PozPw ⇒ ORPd × PozPw = 0 (56)

By using equation (56), the following equations are obtained.

ORPd × PozPw = 0 (57)(
CXd,

CYd

)× (CXw, CYw

)
= 0 (58)

CXd
CYw − CYd

CXw = 0 (59)

Equation (59) can be arranged expressing the object point Pw with respect to the world coordinate system, instead

of expressing it with respect to the camera coordinate system.

CXd

(
r21

W Xw + r22
W Yw + r23

W Zw + ty
)

= CYd

(
r11

W Xw + r12
W Yw + r13

W Zw + tx
)

(60)

Operating equation (60) and arranging the terms,

CXd = CYd
W Xw

r11

ty
+ CYd

W Yw
r12

ty
+ CYd

W Zw
r13

ty
+ CYd

tx
ty

14



−CXd
W Xw

r21

ty
− CXd

W Yw
r22

ty
+ CXd

W Zw
r23

ty
(61)

In order to compute equation (61) for the n points obtained from equations (54), it is necessary to combine

equation (61) with the equations (55), obtaining,

CX ′
di = CY ′

di
W Xwi

sxr11

ty
+ CY ′

di
W Ywi

sxr12

ty
+ CY ′

di
W Zwi

sxr13

ty
+ CY ′

di

sxtx
ty

−CX ′
di

W Xwi

r21

ty
− CX ′

di
W Ywi

r22

ty
+ CX ′

di
W Zwi

r23

ty
(62)

At this point, a system with n equations and 7 unknowns is obtained, which can be expressed in the following

form, 


CY ′
di

W Xwi
CY ′

di
W Ywi

CY ′
di

W Zwi
CY ′

di−CX ′
di

W Xwi

−CX ′
di

W Ywi

−CX ′
di

W Zwi




T


t−1
y sxr11

t−1
y sxr12

t−1
y sxr13

t−1
y sxtx

t−1
y sxr21

t−1
y sxr22

t−1
y sxr23




= CX ′
di (63)

In order to simplify the notation, the 7 unknown components of the vector can be renamed ai.

a1 = t−1
y sxr11 a5 = t−1

y r21

a2 = t−1
y sxr12 a6 = t−1

y r22

a3 = t−1
y sxr13 a7 = t−1

y r23

a4 = t−1
y sxtx

(64)

Note that the ai components can be easily computed by using a least-squares technique. Therefore, the point

of interest is to extract the calibrating parameters of the camera from these ai components. First ty can be obtained

by using equations (64) in the following manner,

ty =
‖r2‖

‖a5,6,7‖ (65)

and equation (65) is simplified because the norm of the vector r2 is equal to the unity, obtaining the parameter

ty .

|ty| =
1√

a5
2 + a6

2 + a7
2

(66)

However, equation (66) is insufficient since it does not provide the sign of the ty component. In order to

determine this sign, a point (IXd,IYd) located at the periphery of the image, far from the center, is taken from the

set of test points (its corresponding 3D point is also kept). It is then supposed that the ty sign is positive, and the

following equations are computed.
r11 = a1ty/sx r21 = a5ty
r12 = a2ty/sx r22 = a6ty
r13 = a3ty/sx r23 = a7ty

tx = a4ty

(67)

By using the corresponding 3D point (W Xw,W Yw,W Zw), the linear projection of this 3D point on the image plane

(sans lens distortion) can be computed by using equations (68).

CXu = r11
W Xw + r12

W Yw + r13
W Zw + tx

CYu = r21
W Xw + r22

W Yw + r23
W Zw + ty

(68)
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At this point the ty sign can be verified. If both components of the point (CXu,CYu) have the same sign as

the point (IXd,IYd), it means that the ty sign was correctly chosen as positive. Otherwise, it has to be considered

negative.

The second parameter to be extracted is the scale factor (sx). Note that by arranging equations (64), the

following equation is obtained,

sx =
‖a1,2,3‖ ty

‖r1‖ (69)

where it is known that the norm of r1 is the unity and the scale factor is always positive. Then, sx is obtained by

using equation (70).

sx =
√

a1
2 + a2

2 + a3
2 |ty| (70)

Furthermore, the 2D points, with respect to the camera coordinate system (CXd,CYd), can be computed from the

same point with respect to the image coordinate system, that is (IXd,IYd), by using equations (55). Moreover,

by using equations (67) the r1 and r2 vectors of the rotation matrix CRW , and the first element of the translation

vector CYW , i.e. tx, can be calculated. Nevertheless, the third orientation vector (r3) can be computed by a cross

product between r1 and r2 because of the property of orthogonality, (note also that the determinant of any rotation

matrix is the unity, i.e. |CRW | = 1). At this point, the first three steps of the method of Tsai are completed, see

figure 3.

However, the following parameters are still unknown: the focal distance (f ), the radial lens distortion coeffi-

cient (k1), and the translation of the camera with respect to the Z axis (tz). In order to compute these last three

parameters, a linear approximation is first used without considering the k1 parameter. The linear approximation is

shown in equation (71), which was obtained from equations (45).

(
r21

W Xwi + r22
W Ywi + r23

W Zwi + ty −CYd

)( f
tz

)
=(

r31
W Xwi + r32

W Ywi + r33
W Zwi

)
CYd (71)

Equation (71) has now been applied to the whole set of test points, obtaining a system of n equations and two

unknowns. The linear approximation of both unknowns, f and tz , is obtained by using a pseudo-inverse. However,

in order to calculate a better approximation including the k1 parameter, it is necessary to iterate equations (45) by

using an optimization method considering the linear method with k1 = 0 as an initial solution.

Finally, all the parameters are optimized iteratively with the aim of obtaining an accurate solution. The entire

process is explained in figure 3.

3.5 The method of Weng

The method of Tsai is based on modelling radial lens distortion. The accuracy obtained by Tsai is sufficient for

most applications. However, in some cases where the camera lens needs to be accurately modelled, a simple
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Figure 3: Flowchart of the method of Tsai.

radial approximation is not sufficient. In such situations, Weng [33] modifies the model proposed by Faugeras-

Toscani [32] including up to three types of lens distortion, as has been explained in section 2.3. This fact increases

the number of steps needed to calibrate the camera. A flowchart of the entire process is detailed in figure 4.

The first step is to obtain the complete model of Weng. However, Weng proposes to simplify the equations by

introducing a variable substitution. Hence, equalling equations (9) and (14), equations (72) are obtained.

CXu + δx

(
CXu, CYu

)
=

(
IXd − u0

)/−ku
CYu + δy

(
CXu, CYu

)
=

(
IYd − v0

)/−kv
(72)

At this point, two new unknowns are introduced, in the following manner,

CX̂d =
(
IXd − u0

)/
αu

C Ŷd =
(
IXd − v0

)/
αv (73)

A substitution is then applied to simplify equations (72), obtaining equations (74).

CXu

f = CX̂d − δx(CXu,CYu)
f

CYu

f = C Ŷd − δy(CXu,CYu)
f

(74)

This replacement of unknowns is necessary because the value of (CXu, CYu) cannot be obtained by observa-

tion. This fact makes it necessary to compute the distortion from the observed points after representing them with

respect to the camera coordinate system, that is from (CX̂d, C Ŷd) [30, 33]. This replacement is reasonable because

the distortion on the image plane suffered by the point (CXu,CYu) is approximately equal to the distortion suffered

by the point(CX̂d, C Ŷd). Therefore, the distortion coefficients in δ′x and δ′y will be estimated from (CX̂d,C Ŷd),

instead of δx and δy , which was estimated from (CXu,CYu). As a result, the equations which relate distorted to

undistorted points are the following,

CXu

f = CX̂d + δ′x
(

CX̂d,
C Ŷd

)
CYu

f = C Ŷd + δ′y
(

CX̂d,
C Ŷd

)
(75)
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Figure 4: Flowchart of the method of Weng.

Finally, redefining the coefficients k1 and g1 up to g4, and combining equations (2), (3) and (75) the complete

camera model is obtained,

r11
W Xw + r12

W Yw + r13
W Zw + tx

r31
W Xw + r32

W Yw + r33
W Zw + tz

= CX̂d

+ (g1 + g3) CX̂d
2

+ g4
CX̂d

C Ŷd + g1
C Ŷd

2
+ k1

CX̂d

(
CX̂d

2
+ C Ŷd

2
)

r21
W Xw + r22

W Yw + r23
W Zw + ty

r31
W Xw + r32

W Yw + r33
W Zw + tz

= C Ŷd

+g2
CX̂d

2
+ g3

CX̂d
C Ŷd + (g2 + g4) C Ŷd

2
+ k1

C Ŷd

(
CX̂d

2
+ C Ŷd

2
)

(76)

In order to be able to calibrate all the parameters of the model, Weng proposes to obtain a first approximation

of the linear parameters, i.e. the extrinsic and intrinsic parameters without distortion. The m vector is now defined

containing these linear parameters.

m = (u0, v0, αu, αv, tx, ty, tz, α, β, γ)T (77)

Furthermore, the non-linear parameters which model the lens define a new vector d.

d = (k1, g1, g2, g3, g4)
T (78)

Moreover, the calibration is based on the 3D test points and their projections. Let us call F the camera model,

Ω the set of 3D points, and ω the set of their projections. Then, the calibration problem is the same as optimizing

the parameters (m∗,d∗) which minimize the equation F by using both sets of test points.

F (Ω, ω,m∗, d∗) = min
m,d

F (Ω, ω,m, d) (79)

This problem of optimization can be solved by using a non-linear method, in the following manner:
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1. Fix d = 0.

2. Calculate m, which minimizes F by fixing d, that is: min
m

F (Ω, ω,m, d)

3. Calculate d, which minimizes F by fixing m, that is: min
d

F (Ω, ω,m, d)

4. Return to step 2 until the minimization error is sufficiently tolerable.

This method of optimization is used to solve diverse problems. First, the vector d can be coupled with m

making the minimization of F false. Second, the intrinsic parameters can not be optimized until a sufficient

approximation of the extrinsic parameters is achieved. Third, since m corresponds to an approximation of the

linear parameters, it cannot be the best solution if a significant distortion is presented.

With the aim of obtaining a good estimation of m with a non-linear optimization method, it is necessary to

obtain an initial guess before iterating. Therefore, the initial guess is calculated supposing d = 0. Then, the model

of Weng removing distortion, see equations (74), is applied to the n calibrating points, obtaining 2n equations of

the form:(
IXui − u0

)
W Xwir31 +

(
IXui − u0

)
W Ywir32 +

(
IXui − u0

)
W Zwir33 +

(
IXui − u0

)
tz

−αu
W Xwir11 − αu

W Ywir12 − αu
W Zwir13 − αutx = 0(

IYui − v0

)
W Xwir31 +

(
IYui − v0

)
W Ywir32 +

(
IYui − v0

)
W Zwir33 +

(
IYui − v0

)
tz

−αv
W Xwir21 − αv

W Ywir22 − αv
W Zwir23 − αvty = 0

(80)

By using equations (80), all the m parameters can be calculated. As the m vector has 10 unknowns, it is

necessary to use at least 5 test points. Nevertheless, a large number of points is used in order to obtain a more

accurate solution. The following parameters are then defined,

W1 = αur1 + u0r3 w4 = αutx + u0tz
W2 = αvr2 + v0r3 w5 = αvty + v0tz
W3 = r3 w6 = tz

(81)

where the vectors r1, r2 and r3 correspond to each row of the matrix CRW , respectively. Moreover, the set of

equations (80) is expressed in matricial form as

AW = 0 (82)

where A is a matrix with 2n rows and 12 columns.

A =




−W Pw1
T 01x3

IXu1
W Pw1

T −1 0 IXu1

01x3 −W Pw1
T IYu1

W Pw1
T 0 −1 IYu1

...
...

...
...

...
...

−W Pwn
T 01x3

IXun
W Pwn

T −1 0 IXun

01x3 −W Pwn
T IYun

W Pwn
T 0 −1 IYun




(83)

However, the vector W = (W1,W2,W3, w4, w5, w6)T cannot be directly calculated because of the homogene-

ity of the system, which deals with multiple solutions. However, only one of these potential solutions satisfies the

following conditions: a) The norm of the W3 vector has to be the unity because it is the third row of the rotation
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matrix; b) The w6 sign has to coincide with the position of the optical center with respect to the image plane:

Positive if the z-axis intersects the image plane, and negative if otherwise.

With the aim of avoiding the homogeneity of the system of equation (82), it is necessary to impose the following

temporary restriction,

w6 = tz = 1 (84)

Hence, equation (82) is modified, obtaining

A′ W ′ + B′ = 0 (85)

where A′ is the first 11 columns of the A matrix, B′ is the last column of A and W ′ is a vector of the 11 unknowns,

i.e. W ′ = (W1,W2,W3, w4, w5). Then, W ′ is computed by using the pseudo-inverse,

W ′ =
(
A′TA′)−1

A′T (−B′) (86)

At this point, W ′ is the solution of the system shown in equation (85). However, in order to be a solution of

equation (82) as well, it has to accomplish the two constraints. Therefore, the solution is divided by ‖W3‖, which

forces the norm of W3 to be the unity, and replaces the w6 sign if necessary. See equation (87).

S =




S1

S2

S3

s4

s5

s6




= ± 1
‖W3‖




W1

W2

W3

w4

w5

w6




(87)

Moreover, knowing that the vectors r1, r2 and r3 are orthogonal, equations (81) can be applied to obtain a first

approximation of the m vector.

ū0 = ST
1 S3 v̄0 = ST

2 S3

ᾱu = −‖S1 − ū0S3‖ ᾱv = −‖S2 − v̄0S3‖
t̄x = (s4 − ū0s6)/ᾱu r̄1 = (S1 − ū0S3)/ᾱu

t̄y = (s5 − v̄0s6)/ᾱv r̄2 = (S2 − v̄0S3)/ᾱv

t̄z = s6 r̄3 = S3

(88)

However, this first approximation does not imply that the matrix CR̄W is orthonormal. The next step consists of

calculating the orthonormal matrix CR̃W . The first step is to verify,

∥∥∥CR̃W − CR̄W

∥∥∥ = min
CRW

∥∥CR̄W − CRW

∥∥ (89)

With the aim of solving equation (89), it is rewritten including a 3 × 3 identity matrix I .

∥∥∥CR̃W I − CR̄W

∥∥∥ = min
CRW

∥∥CR̄W − CRW

∥∥ (90)

It is then defined a 4 × 4 matrix B,

B =
3∑

i=1

BT
i Bi (91)

20



where,

Bi =
(

0 (ii − r̄i)
T

r̄i − ii (r̄i + ii)×

)
(92)

and where I = (i1, i2, i3)T, and (x,y,z)× is the antisymmetric matrix of the vector (x,y,z), that is:

(x, y, z)× =


 0 −z y

z 0 −x
−y x 0


 (93)

The vector q = (q0, q1, q2, q3)
T is then obtained by calculating the eigenvalues associated with matrix B,

where qi is an eigenvalue and qi ≤ qi+1. Finally, the solution of the matrix CR̃W is shown in the following

equation,

CR̃W =


 q2

0 + q2
1 − q2

2 − q2
3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 − q0q1)
2 (q3q1 − q0q2) 2 (q3q2 + q0q1) q2

0 − q2
1 − q2

2 + q2
3


 (94)

With the orthornomal rotation matrix, the rest of the parameters are recalculated once more, obtaining:

ũ0 = ST
1 r̃3 ṽ0 = ST

2 r̃3

α̃u = −‖S1 − ũ0r̃3‖ α̃v = −‖S2 − ṽ0r̃3‖
t̃x = (s4 − ũ0s6)/α̃u

t̃y = (s5 − ṽ0s6)/α̃v

t̃z = t̄z

(95)

An iterative method is then used to recalculate, for the third time, the values of m, assuming zero distortion.

Finally, a two-stage iterative method is used. In the first stage, the parameters of d are linearly obtained by using

least-squares. The second stage computes the values of m iteratively. These stages are repeated as many times as

needed depending on the desired accuracy.

3.5.1 Stage of non-linear optimization of m by fixing d.

The camera model of Weng is expressed in equation (96), see also (76).

U(x) =
r11

W Xw + r12
W Yw + r13

W Zw + tx
r31

W Xw + r32
W Yw + r33

W Zw + tz

−CX̂d − (g1 + g3) CX̂d
2 − g4

CX̂d
C Ŷd − g1

C Ŷd
2 − k1

CX̂d

(
CX̂d

2
+ C Ŷd

2
)

(96)

V (x) =
r21

W Xw + r22
W Yw + r23

W Zw + ty
r31

W Xw + r32
W Yw + r33

W Zw + tz

−C Ŷd − g2
CX̂d

2 − g3
CX̂d

C Ŷd − (g2 + g4) C Ŷd
2 − k1

C Ŷd

(
CX̂d

2
+ C Ŷd

2
)

Equation (97) shows the function of minimization that has to be used in optimization.

n∑
i=1

{(
IXdi − IXdi (m, d)

)2
+
(
IYdi − IYdi (m, d)

)2}
(97)

At this point any optimization algorithm such as Newton-Raphson or Levenberg-Marquardt can be used to optimize

equations (96).
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3.5.2 Stage of linear optimization of d by fixing m.

Note that by arranging equations (14) and (76), the equations which have to be optimized become linear. Therefore,

they can be optimized by using the pseudo-inverse technique. The linear equations obtained are the following,

IXd (m, d) − IXd = u0 + αu
CX̂d − IXd

= u0 + αu

(
r11

W Xw + r12
W Yw + r13

W Zw + tx
r31

W Xw + r32
W Yw + r33

W Zw + tz

− (g1 + g3) CX̂d
2 − g4

CX̂d
C Ŷd − g1

C Ŷ 2
d − k1

CX̂d

(
CX̂d

2
+ C Ŷd

2
))

− IXd

(98)

IYd (m, d) − IYd = v0 + αv
C Ŷd − IYd

= v0 + αv

(
r21

W Xw + r22
W Yw + r23

W Zw + ty
r31

W Xw + r32
W Yw + r33

W Zw + tz

−g2
CX̂d

2 − g3
CX̂d

C Ŷd − (g2 + g4) C Ŷ 2
d − k1

C Ŷd

(
CX̂d

2
+ C Ŷd

2
))

− IYd

where the function to minimize is expressed in equation (99):

min
d

‖Qd + C‖ (99)

where,

C =




u0 + αu

(
r11

W Xw1+r12
W Yw1+r13

W Zw1+tx

r31W Xw1+r32W Yw1+r33W Zw1+tz

)
− IXd1

v0 + αv

(
r21

W Xw1+r22
W Yw1+r23

W Zw1+ty

r31W Xw1+r32W Yw1+r33W Zw1+tz

)
− IYd1

...

u0 + αu

(
r11

W Xwn+r12
W Ywn+r13

W Zwn+tx

r31W Xwn+r32W Ywn+r33W Zwn+tz

)
− IXdn

v0 + αv

(
r21

W Xwn+r22
W Ywn+r23

W Zwn+ty

r31W Xwn+r32W Ywn+r33W Zwn+tz

)
− IYdn




(100)

Q =




−αu
CX̂d1

(
CX̂d1

2
+ C Ŷd1

2
)

−αu

(
CX̂d1

2
+ C Ŷd1

2
)

−αv
C Ŷd1

(
CX̂d1

2
+ C Ŷd1

2
)

0
...

...

−αu
CX̂dn

(
CX̂dn

2
+ C Ŷdn

2
)

−αu

(
CX̂dn

2
+ C Ŷdn

2
)

−αv
C Ŷdn

(
CX̂dn

2
+ C Ŷdn

2
)

0

0 −αu
CX̂d1 −αu

CX̂d1
C Ŷd1

−αv

(
CX̂d1

2
+ C Ŷd1

2
)

−αv
CX̂d1

C Ŷd1 −αv
C Ŷd1

...
...

...
0 −αu

CX̂dn −αu
CX̂dn

C Ŷdn

−αv

(
CX̂dn

2
+ C Ŷdn

2
)

−αv
CX̂dn

C Ŷdn −αv
C Ŷdn




(101)

The solution for d can now be obtained by using the pseudo-inverse in the following way,

d = − (QTQ
)−1

QTC (102)
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4 Accuracy Evaluation

The systems used to evaluate the accuracy of camera calibration can be classified in two groups. The first group is

based on analyzing the discrepancy between the real position of the 3D object point with respect to the 3D position

estimated from its 2D projection. The second group compares the real position in pixels of a 2D image point

with the calculated projection of the 3D object point on the image plane. In the following text, some of the most

frequently used methods of accuracy evaluation are described.

4.1 3D Measurement

1. 3D position obtained from stereo triangulation. In the first step, two images are acquired from a set of 3D

test points whose 3D coordinates are known. In the second, the estimated 3D coordinates of the same points

are computed from their projections using the calibrated parameters. Finally, the discrepancy between real

and estimated positions is compared.

2. Radius of ambiguity in the calibrating plane. First, a set of 3D test points, which lay on test plane and

whose coordinates in the world coordinate system are known, is acquired. Second, for each image point, the

calibrated model is used to project the optical ray back from the focal point through the 2D projection. The

transverse of the optical ray with the test plane determines the intersection point. The distance from the 3D

test point to this intersection point defines a radius of ambiguity around the 3D point.

3. Distance with respect to the optical ray. This method is a generalization of the previous method. In this case,

the discrepancy to be measured is the distance of the 3D test points from the optical ray generated from their

projections.

4. Normalized Stereo Calibration Error [33]. The array of pixels in an image is projected back to the scene so

that each back-projected pixel covers a certain area of the object surface. This area indicates the uncertainty

of the basic resolution at this distance. The orientation of the surface has been fitted to a plane which is

orthogonal to the optical axis. Let the depth of this plane be equal to CZw, and the row and column focal

lengths be αu and αv . The back projection of the pixel on this plane is a rectangle of a × b size. Let the

real coordinates of the ith 3D object points (CXwi,
CYwi,

CZwi) be represented in the camera coordinate

system, and let its coordinates obtained by back-projecting the pixel and intersecting it with the surface

plane (CX̂wi,
C Ŷwi,

CẐwi) be also represented in the camera coordinate system. With these givens, the

Normalized Stereo Calibration Error (NSCE) is defined as,

NSCE =
1
n

n∑
i=1



(

CX̂wi − CXwi

)2

+
(

C Ŷwi − CYwi

)2

CẐwi

2 (
α−2

u + α−2
v

)/
12




1/2

(103)
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4.2 2D Measurement

1. Accuracy of distorted image coordinates. First, take an image of a set of 3D test points. Then, calculate the

2D position of each 3D point on the image plane, taking into account lens distortion. Accuracy is obtained by

measuring the discrepancy between the real 2D points (obtained from image segmentation) and the estimated

ones (obtained by using the camera model).

2. Accuracy of undistorted image coordinates. First, take an image of a set of 3D test points. Calculate the

linear projection of the 3D points on the image plane, without taking lens distortion into account. Continue

by determining the real 2D points through image segmentation and remove the lens distortion by using

the camera model to obtain a set of undistorted points. Finally, accuracy is obtained by measuring the

discrepancy between the linear projections and the undistorted points.

5 Experimental Results

Instead of using our own experimental setup, we decided to download a list of corresponding points from the well-

known Tsai’s Camera Calibration Software Webpage (http://www.cs.cmu.edu/˜rgw/TsaiCode.html).

Actually, results are always conditioned to the structure of the 3D points and the image processing tools used in

segmentation and further points extraction. Hence, this decision was just taken to allow the scientific community

to reproduce the same conditions. Then, the surveyed calibrating techniques have been implemented and their

accuracy measured using the following criteria: a) Distance with respect to the optical ray; b) Normalized Stereo

Calibration Error; c) Accuracy of distorted image coordinates; and d) Accuracy of undistorted image coordinates.

The two first criteria calculate the accuracy with respect to a world coordinate system. The other two calculate

the discrepancy on the image plane. First, table 2 show the accuracy measured by using the first criteria and the

second criteria, respectively. Note that the NSCE method is not applicable to Hall because the method of Hall does

not provide the camera parameters. Second, table 4 show the results of calculating the accuracy by using the third

and fourth criteria, respectively. Note that the first three calibrating methods which do not include the modelling of

lens distortion (i.e. Hall, Faugeras-Toscani and iterative Faugeras-Toscani without distortion) obviously give the

same accuracy with distorted and undistorted 2D points as has been considered Pd = Pu.

These tables show the accuracy obtained by each of the camera calibration techniques surveyed. It can be

observed that the techniques, which do not model lens distortion (the first three rows in the tables) provide less

accuracy than the others, which do model the lens. Moreover, the technique of Hall appears as the best undistorted

lens method because it is based on computing the transformation matrix without including any constraint. The

other two techniques are based on a model which imposes a determined form of the transformation matrix. This

fact ill effects the calibration. However, the discrepancy between their accuracy is not significant. Furthermore,

the results show that the use of an iterative algorithm does not improve the accuracy obtained by using the pseudo-
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Table 1: Accuracy of 3D Coordinate Measurement.
3D position (mm) NSCE

Mean σ Max
Hall 0.1615 0.1028 0.5634 n/a
Faugeras 0.1811 0.1357 0.8707 0.6555
Faugeras NR3 without distortion 0.1404 0.9412 0.0116 0.6784
Faugeras NR with distortion 0.0566 0.0307 0.1694 0.2042
Tsai 0.1236 0.0684 0.4029 0.4468
Tsai optimized 0.0565 0.0306 0.1578 0.2037
Tsai with principal point
of Tsai optimized 0.0593 0.0313 0.1545 0.2137
Tsai optimized with principal
point of Tsai optimized 0.0564 0.0305 0.1626 0.2033
Weng 0.0570 0.0305 0.1696 0.2064

Table 3: Accuracy of 2D Coordinate Measurement.
2D distorted image (pix.) 2D undistorted image (pix.)
Mean σ Max Mean σ Max

Hall 0.2676 0.1979 1.2701 0.2676 0.1979 1.2701
Faugeras 0.2689 0.1997 1.2377 0.2689 0.1997 1.2377
Faugeras NR without distortion 0.2770 0.2046 1.3692 0.2770 0.2046 1.3692
Faugeras NR with distortion 0.0840 0.0458 0.2603 0.0834 0.0454 0.2561
Tsai 0.1836 0.1022 0.6082 0.1824 0.1011 0.6011
Tsai optimized 0.0838 0.0457 0.2426 0.0832 0.0453 0.2386
Tsai with principal point
of Tsai optimized 0.0879 0.0466 0.2277 0.0872 0.0463 0.2268
Tsai optimized with principal
point of Tsai optimized 0.0836 0.0457 0.2500 0.0830 0.0454 0.2459
Weng 0.0845 0.0455 0.2608 0.0843 0.0443 0.2584

inverse in the technique of Faugeras-Toscani without distortion. This fact demonstrates that pseudo-inverse is the

best approximation in undistorted models. In order to improve accuracy it has to go to lens modelling.

It can be observed from the tables that the non-linear techniques, which model lens distortion (the last 6 rows

of the tables), obviously obtain better results than the undistorted techniques. However, the improvement obtained

by the method of Tsai without optimization (fifth row) is not very significant because only a few parameters are

iteratively optimized (i.e. f , tz and k1). Nevertheless, when the whole set of parameters is optimized, the method

of Tsai (sixth row) shows the best accuracy obtainable despite needing more computing time. Note that accuracy

is limited due to image segmentation and also that the model used always approximates the real behavior of the

image sensor. However, if a real principal point is known instead of the image center approximation, the Tsai

method without optimization is as accurate as any iterative method, and allows a rapid computation. Note that

the use of the Tsai optimized method by using the real principal point in the initial guess does not suggest an

important improvement in the obtained accuracy. Finally, the results show that any iterative method which models

lens distortion provides the same accuracy without depending on the kind of modelled lens. That is, the complete

method of Weng does not obtain a better accuracy than the simple iterative method of Faugeras modelling only

3Newton-Raphson.

25



radial distortion. Even so, the accuracy is slightly less due to the complexity of this model which ill effects the

calibration. The modelling of a camera including a large quantity of parameters does not imply that the accuracy

obtained will be better.

6 Conclusions

This article surveys some of the most frequently used calibrating techniques. Effort has been made to unify the

notation among these different methods, and they have been presented in a way the reader can easily understand.

We can see that the differences among these techniques are mainly in the step concerning lens modelling. Also,

the transformation from camera to image coordinates is slightly different in the method proposed by Tsai.

Furthermore, a survey on accuracy evaluation has been done. The methods surveyed have been implemented

and their accuracy has been analyzed. Results show that only non-linear methods obtain a 3D accuracy smaller than

0.1 mm. with a reasonable standard deviation. Moreover, the accuracy of non-linear methods on the image plane is

much better than linear methods. Results show moreover that the modelling of radial distortion is quite sufficient

when high accuracy is required. The use of more complicated models does not improve the accuracy significantly.

It should be kept in mind that segmentation introduces a discrepancy between observable and modelled projections

which poses conditions on the accuracy. Moreover, when a low accuracy is sufficient, the fast and simple method

of Hall is sufficient for most applications.

When comparing the obtained results, it can be seen that a relationship exists between the different criteria.

Accuracy measuring methods obtain similar results if they are relatively compared. That is, good calibrating

algorithms obtain acceptable accuracy results independently from the accuracy evaluation method used. Obviously,

the results only prove something already demonstrated by the authors. However, in this article the accuracy has

been measured by using the same test points for all the methods so results can be reliably compared. Hence,

the reader can choose one or another method depending on the accuracy required. Moreover, once the calibrating

method is chosen, the reader can take equations directly from this article to use in the desired calibrating algorithm.

Appendix

This appendix synthesizes the nomenclature used to express coordinate systems and camera parameters in the

article.

{H} defines a coordinate system H, which is composed of an origin OH and either two {XH , YH} or three

{XH , YH , ZH} axis, depending on the number of dimensions defined.

The article defines the following coordinate systems:

• {W}={OW ,XW ,YW ,ZW } defines the world coordinate system.

• {C}={OC ,XC ,YC ,ZC} defines the camera coordinate system located at the focal point OC .
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• {R}={OR,XR,YR} defines the retinal coordinate system located at the principal point OR = (u0, v0).

• {I}={OI ,XI ,YI} defines the computer image coordinate system located in the upper-left corner of the image

plane.

Each point P is always related to a coordinate system. Hence, HP relates the point P with respect to {H},

where HP = (HX,H Y,H Z). Each point can be related to any coordinate system. However, the following

notations are the only ones used:

• W Pw=(W Xw,W Yw,W Zw) expresses a 3D test point from the world (scene) expressed with respect to {W}.

• CPw=(CXw,CYw,CZw) expresses a 3D test point from the world (scene) expressed with respect to {C}.

• CPu=(CXu,CYu,f )=(CXu,CYu) expresses the linear projection of a point CPw on the image plane related

to {C}, without including lens distortion.

• CPd=(CXd,CYd,f )=(CXd,CYd) expresses a 2D image point, including lens distortion, related to {C}.

• IPd=(IXd,IYd) expresses a 2D image point related to the image coordinate system {I}, in pixels. This point

is the observable point from image acquisition.

In order to distinguish a single point from a set, i.e. the set of test points, a second sub-index is used. Then, Pui

indicates the i-th point on a set, where i = 1...n.

A rigid transformation between a two coordinate system is expressed by a transformation matrix, i.e. JKH

expresses the coordinate system {H} with respect to {J}. Moreover,

JKH =
(

JRH
JTH

01×3 1

)

where R = (r1, r2, r3)T expresses the orientation of {H} measured with respect to the axis of {J}. R can also be

given related to the three rotation angles, i.e. α, β and γ. Moreover, T = (tx, ty, tz)T expresses the position of the

origin of {H} with respect to {J}.

Finally, the following camera parameters are used:

• k1 is the first coefficient of a series which models the radial lens distortion.

• g1 up to g4 are the coefficients which model the decentering and thin prism lens distortion.

• f is the focal distance, i.e the distance from the focal point OC to the image plane.

• (u0,v0) are the two components of the principal point, i.e. the projection of OC on the image plane.

• ku, kv are the two components which permit to transform a point from metric coordinates to pixels.

• αu, αv are defined as αu = f ku and αv = f kv .
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• sx is the scale factor.

• d′x = dx
Ncx

Nfx

• dx, dy are the center to center distances between adjacent sensor elements with respect to X direction and

Y direction of the CCD sensor, respectively.

• Ncx is the number of sensor elements in the X direction of the CCD sensor.

• Nfx is the number of pixels in an image row as sampled by the computer.

References

[1] R. I. Hartley, Euclidean reconstruction from uncalibrated views, Second European Workshop on Applications

of Invariance in Computer Vision, (1993), pp. 237–257.

[2] O. D. Faugeras, Three-Dimensional Computer Vision, The MIT Press, Cambridge, Massachusetts, 1993.

[3] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, vol. 2, Addison-Wesley Publishing Company,

1993.

[4] R. Ahlers and J. Lu, Stereoscopic vision - an application oriented overview, SPIE - Optics, Illumination, and

Image Sensing for Machine Vision IV, 1194 (1989), pp. 298–307.

[5] J. Batlle, E. Mouaddib, and J. Salvi, A survey: Recent progress in coded structured light as a technique to

solve the correspondence problem, International Journal of Pattern Recognition, 31 (1998), pp. 963–982.

[6] R. A. Jarvis, A perspective on range finding techniques for computer vision, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 5 (1983), pp. 122–139.

[7] Z. Zhang, The matching problem: The state of the art, Tech. Rep. 2146, Institut National de Recherche en

Informatique et en Automatique, 1993.

[8] T. S. Newman, A survey of automated visual inspection, Image Understanding, 61 (1995), pp. 231–262.

[9] A. Casals, Sensor Devices and Systems for Robotics, vol. 52, Springer-Verlag. NATO ASI Series, Berlin

Heidlberg, 1989.

[10] A. Broggi, Vision-based driving assistance in vehicles of the future, IEEE Intelligent Systems, (1998), pp. 22–

23.

[11] L. Charbonnier and A. Fournier, Heading guidance and obstacles localization for an indoor mobile robot,

IEEE International Conference on Advanced Robotics, (1995), pp. 507–513.

28



[12] D. Khadraoui, G. Motyl, P. Martinet, J. Gallice, and F. Chaumette, Visual servoing in robotics scheme using

a Camera/Laser-stripe sensor, IEEE International Journal on Robotics and Automation, 12 (1996), pp. 743–

750.

[13] R. K. Lenz and R. Y. Tsai, Calibrating a cartesian robot with eye-on-hand configuration independent of eye-

to-hand relationship, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), pp. 916–

928.

[14] M. Li, Camera calibration of a head-eye system for active vision, European Conference on Computer Vision,

(1994), pp. 543–554.

[15] M. Ito, Robot vision modelling - camera modelling and camera calibration, Advanced Robotics, 5 (1991),

pp. 321–335.

[16] R. K. Lenz and R. Y. Tsai, Techniques for calibration of the scale factor and image center for high accuracy

3D machine vision metrology, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10 (1988),

pp. 713–720.

[17] M. Penna, Camera calibration: A quick and easy way to detection the scale factor, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13 (1991), pp. 1240–1245.

[18] Y. Liu, T. S. Huang, and O. D. Faugeras, Determination of camera location from 2-d to 3-d line and point

correspondences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), pp. 28–37.

[19] C. C. Wang, Extrinsic calibration of a vision sensor mounted on a robot, IEEE Int. Journal on Robotics and

Automation, 8 (1992), pp. 161–175.

[20] E. L. Hall, J. B. K. Tio, C. A. McPherson, and F. A. Sadjadi, Measuring curved surfaces for robot vision,

Computer Journal, December (1982), pp. 42–54.

[21] J. Batista, H. Araujo, and A. T. de Almeida, Iterative multistep explicit camera calibration, IEEE International

Journal on Robotics and Automation, 15 (1999), pp. 897–916.

[22] G.-Q. Wei and S. De Ma, Implicit and explicit camera calibration: Theory and experiments, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 16 (1994), pp. 469–480.

[23] O. D. Faugeras and G. Toscani, The calibration problem for stereo, Proceedings of IEEE Computer Vision

and Pattern Recognition, (1986), pp. 15–20.

[24] R. Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using

off-the-shelf TV cameras and lenses, IEEE International Journal on Robotics and Automation, RA-3 (1987),

pp. 323–344.

29



[25] Z. Hong and J. Yang, An algorithm for camera calibration using a three-dimensional reference point, Pattern

Recognition, 26 (1993), pp. 1655–1660.

[26] S. Kamata, R. O. Eason, M. Tsuji, and E. Kawaguchi, A camera calibration using 4 points targets, Interna-

tional Conference on Pattern Recognition, 1 (1992), pp. 550–553.

[27] L. L. Wang and W. Tsai, Camera calibration by vanishing lines for 3-D computer vision, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 13 (1991), pp. 370–376.

[28] S. Chen and W. Tsai, A systematic approach to analytic determination of camera parameters by line features,

Pattern Recognition, 23 (1990), pp. 859–877.

[29] T. Echigo, A camera calibration technique using three sets of parallel lines, Machine Vision and Applications,

3 (1990), pp. 159–167.

[30] Manual of Photogrammetry, American Society of Photogrammetry, 4 ed., 1980.

[31] J. Salvi, An Approach to Coded Structured Light to Obtain Three Dimensional Information, PhD thesis,

Universitat de Girona, Departament d’Electrònica, Informàtica i Automàtica, 1997.
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A SURVEY ADDRESSING THE FUNDAMENTAL MATRIX ESTIMATION PROBLEM

J. Salvi, X. Armangué and J. Pagès

University of Girona.
Institute of Informatics and Applications.

Av. Lluı́s Santaló, s/n, E-17071 Girona (Spain)

ABSTRACT

Epipolar geometry is a key point in computer vision and
the fundamental matrix estimation is the only way to com-
pute it. This article surveys several methods of fundamen-
tal matrix estimation which have been classified into linear
methods, iterative methods and robust methods. All of these
methods have been programmed and their accuracy anal-
ysed using real images. A summary, accompanied with ex-
perimental results, is given and the code is available in Inter-
net (http://eia.udg.es/˜armangue/research).

1. INTRODUCTION

The estimation of three-dimensional information in active
systems is a crucial problem in computer vision because the
camera parameters may change dynamically depending on
the scene. In such situations, only epipolar geometry, which
is contained in the fundamental matrix, can be computed.
Basically, the intrinsic parameters of both cameras and the
position and orientation of one in relation to the other can be
extracted by using Kruppa equations [1]. Moreover, the fun-
damental matrix can be used to reduce the matching process
among the viewpoints [2], therefore, it is very interesting to
develop accurate techniques to compute it.

This article surveys fifteen of the most frequently used
techniques in computing the fundamental matrix and is or-
ganized as follows. First, a brief introduction of epipolar
geometry is presented. Then, all the techniques to estimate
F are presented describing their advantages and drawbacks
as opposed to previous ones. Section three deals with the
experimental results obtained with real images and finally,
the article ends with conclusions.

2. EPIPOLAR GEOMETRY

Consider a 3D object point � expressed with respect to a
world coordinate system � � ���� ��� ��� ��� and
its 2D projection � on the image plane in pixels � �

Work funded by Spanish project CICYT TAP99-0443-C05-01
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Fig. 1. The geometric relation between two cameras.

���� �� ��. Both points are related with a projective trans-
formation matrix �

�� , that is �� � �
�� � , where � is

a scale factor. The �
�� matrix can be broken down into

�
�� � �

��
�
�� , where �

�� is a 3 � 4 matrix which
relates the metric camera coordinate system C located at the
focal point �� with the image coordinate system I located
at the north-west corner of the image plane in pixels, and
�
�� is a 4 � 4 matrix, see equation (1), which relates the

camera coordinate system �C� with the world coordinate
system W.

�
�� �

�
�
��

�	�
���� �

�
(1)

Then, the epipolar geometry concerns the relationship be-
tween both cameras of a stereoscopic system. Given the ob-
ject point� and its 2D projections� and� � on both image
planes, these 3 points define a plane � which intersects both
image planes at the epipolar lines 
�� and 
�� respectively,
as shown in Figure 1. Note that the same plane � can be
computed using both focal points �� and ��� and a single
2D projection (� or ��), which is the principle to reduce
the correspondence problem to a single scanning along the
epipolar line. Moreover, the intersection of all the epipolar
lines define an epipole on both image planes, which can also
be extracted by intersecting the line defined from both focal
points�� and��� with both image planes. All the epipolar



geometry is contained in the so called Fundamental matrix
F, where ��

��� � �.
The fundamental matrix contains the intrinsic parame-

ters of both cameras and the rigid transformation between
both cameras which depends on the camera that has been
considered as the origin of the world coordinate system. In
this article, the origin of the world coordinate system co-
incides with the coordinate system of the second camera,
located at ��� , as shown in equation (2).

� � �
��

��
��	�� ��

�
���

��

���

��

(2)

3. ESTIMATING THE FUNDAMENTAL MATRIX

In the last few years, several methods to estimate the funda-
mental matrix have been proposed and can be classified into
lineal methods and iterative methods. These deal with bad
point localization due to noise in image segmentation and
robust techniques whitch eliminate the outliers due to false
matchings.

3.1. Linear methods

The linear method of seven points is based on computing the
fundamental matrix by using only seven point correspon-
dences [3]. Due to the homogeneity of the equations, the so-
lution is a set of matrices of the form� � ���	�������.
Then, by forcing the rank of the matrix to 2 and using the
expression 
�� ���� 	 ��� �����, a cubic polynomial is
obtained, which has to be solved to obtain � and therefore
�. The main advantage of this method is that a fundamen-
tal matrix can be estimated by using only seven points, but
this fact becomes a drawback when some points are badly
located. Moreover, the 7-points method cannot be applied
in the presence of redundancy. Hence, it can not be applied
using � points if �  .

Another interesting method is 8-points method in witch
redundancy of points permits minimizes the error of esti-
mating�. The minimizing equation is ���

�

�
�

�
��
� ��

�

�

��
.

The classical method of solving such equation is the least-
squares technique which forces one of the components of
� to be the unity [4]. This simplification can be assumed
because � is always defined using a scale factor. Then the
system to solve is � � � ����

�
��������� in which �� is

a matrix containing the first eight columns of �, �� is the
last column of� and � � is a vector containing the first eight
elements of � . Note that the ninth element of � is 1. A vari-
ant of the 8-points method can be applied if the equation
is solved by using eigen analysis, also called orthogonal
least-squares technique [5]. In this case, � can be deter-
mined from the eigen vector corresponding to the smallest
eigen value of ��

�. The difference between this method

and the classical least-squares resides in the form of calcu-
lating the error between correspondences and epipolar lines
in which an orthogonal distance to the epipolar line is much
more realistic.

The last linear method we surveyed is the analytic method
with rank-2 constraint [3] which imposes the rank-2 con-
straint during the minimization. The matrix � � is defined
as the composition of the first seven columns of � and ��
and �� are defined as the eighth and ninth columns of �
respectively so that � can be computed as

� � � �������
�
��������� � ����

��
�
��������� (3)

in which � � is the vector containing the first seven elements
of � , and �� and �� are the eighth and ninth elements of � ,
respectively. In order to obtain the values of �� and ��, an
� is computed by using the seven points algorithm. Then,
� is computed by selecting from the various pairs of � the
one which minimizes ��� � �. This method provides a
rank-2 matrix. However, the analytic method with rank-2
constraint does not improve the results of the previously
explained methods to any great extent.

The linear methods are very fast but their accuracy is
rather poor in the presence of noise. In order to obtain better
results the iterative algorithms have to be considered.

3.2. Iterative methods

The iterative methods can be classified into two groups. The
first group of techniques is based on minimizing the dis-
tances between points and epipolar lines, that is

���
�

�
�

�
��������

�

�� 	 �����

������
�

(4)

A first approach consists of directly applying an iterative
method as Newton-Raphson [6]. Another possibility is the
iterative linear method [3] which is based on computing the
weight value �� equivalent to the epipolar distances by us-
ing the previous � (in the first iteration �� � �) and then
minimize by using least-squares in each iteration. Neither
approach imposes the rank-2 constraint. The nonlinear min-
imization in parameter space [3] can solve this situation.
This method is based on parameterizing the fundamental
matrix keeping in mind that it must have rank 2 by fixing
just one of the multiple parameterizations. The iteration of
this method permits computing a better rank-2�. However,
obtaining a good estimation alone is not enough because the
variance of points are not analogous and the least-square
technique assumes they are comparable. In order to over-
come this drawback, the second group of methods have to
be considered.

The second group of methods are based on the gradient-
technique [7]. In this case, the equation to solve is

���
�

�
�

�
��
� ��

�

�

��
���� (5)



in which �� � �
�
� 	 
�

� 	 
��
�
	 
��

�
����.

The gradient-based technique obtains better results com-
pared to linear methods and the iterative methods of the first
group. Although iterative methods are more accurate than
linear ones, they are also time consuming and can not elim-
inate the potential outliers. Hence, robust methods have to
be used in the presence of outliers.

3.3. Robust methods

This paper surveys three robust methods: M-Estimators,
Least-Median-Squares (LMedS) and Random Sampling
(RANSAC), which can be used in the presence of either out-
liers or bad point localization.

The M-estimators [7] try to reduce the effect of outliers
by weighting the residual of each point. A lot of different
weight functions have been proposed and each one gives
a new variant of the M-estimator method. The results ob-
tained are quite good in the presence of outliers but they are
rather bad if the points are badly located. The LMedS [3]
and RANSAC [5] techniques are very similar. First, both
techniques are based on a random selection of a set of points
which are then used to compute� by using a linear method.
The difference between these techniques is the way they de-
termining the best �. The LMedS calculates the median of
distances between points and epipolar lines for each�. The
chosen fundamental matrix has to minimize such a median.
The RANSAC calculates the number of inliers for each �
and the chosen � is the one which maximizes it. Once the
outliers are eliminated, the � is recalculated with the aim
of obtaining a better approach. Another difference is that
LMedS is more restrictive than RANSAC so that it elimi-
nates more points. However, the main constraint of both
techniques is their lack of repetitivity due to the aleatory
way of selecting the points.

3.4. Considerations in � estimation

Data normalization is a key point in fundamental matrix es-
timation. It has been proved that the computation should not
be applied directly to the raw data in pixels due to poten-
tial uncertainties when using by huge numbers. Basically,
there are two different methods of data normalization. The
first method [3] normalizes the data between ���� ��. The
second, proposed by Hartley [8], is based on two transfor-
mations. In the first, the points are translated so that their
centroid is placed at the origin. In the second, the points
are scaled so that the mean of the distances of the points to
the origin is

�
�. It has been proved that the method pro-

posed by Hartley gives more accurate results than the previ-
ous one.

Another interesting fact is that the estimated � should
be a rank-2 matrix in order to model the epipolar geom-
etry with all the epipolar lines intersecting in the epipole.

Although the rank-2 constraint is not imposed in all the sur-
veyed methods, there is a mathematical method which trans-
forms a rank-� square matrix to the closest rank-(���) ma-
trix [7]. However, the obtained rank-2 � give worse results
because it has not been optimized. In this case, we propose
to using any method which imposes a rank-2 matrix in the
computation of � instead of further transforming it.

4. EXPERIMENTAL RESULTS

The surveyed methods have been programmed and their ac-
curacy analyzed with synthetic and real data, such as under-
water images from the seabed obtained by our underwater
robot GARBI. Image points have been normalized by using
Hartley [8] explained in section two. Table 1 shows the ac-
curacy of each method as the mean and standard deviation
of the distances between points and epipolar lines.

The accuracy of the seven points algorithm extremely
depends on the seven points used. The least-squares tech-
nique depends inversely on the amount of bad-located points,
obtaining usually better results by increasing the amount of
points. The eigen analysis is the linear method that ob-
tains the best results because an orthogonal least-squares
minimization is more realistic than the classic least-squares.
However, all these methods obtain a rank-3 matrix, which
means that the epipolar geometry is not properly modeled.

The analytic method with rank-2 constraint obtains a
rank-2 fundamental matrix. However, the distances between
points and epipolar lines are worse than in the linear meth-
ods. The iterative linear method improves considerably the
least-squares technique but can not cope with the outliers
problem. The iterative Newton-Raphson algorithm obtains
even better results than the previous method if there is no
outliers present. Although the nonlinear minimization in
parameter space obtains also a rank-2 matrix, but his com-
putational cost is very high. The eighth and ninth methods
are two versions of the gradient-based method using least-
squares and orthogonal least-squares, respectively. Both
methods obtain better results than their equivalent linear
methods. Furthermore, the eigen analysis, once again, ob-
tains better results than the other linear methods. Although
some of these methods obtain a rank-2 matrix, they can not
cope with outliers.

The last surveyed methods are known as ”robust”, which
means they might detect and remove the outliers and com-
pute the fundamental matrix using only the inliers. Three
versions of the M-estimators have been programmed us-
ing least-squares, eigen analysis and the method proposed
by Torr [5], respectively. The three methods use a linear
initial guess and they become really dependent on the lin-
ear method used to estimate it. The following two meth-
ods are two versions of LMedS using again least-squares
and eigen analysis, respectively. Although the accuracy of



Table 1. Methods Implemented with mean and std. of error: 1.- seven points; 2.- least-squares (LS) 3.- orthogonal LS; 4.- rank-
2 constraint; 5.- iterative lineal using LS; 6.- iterative Newton-Raphson using LS; 7.- minimization in parameter space using eigen; 8.-
gradient using LS; 9.- gradient using eigen; 10.- M-Estimator using LS; 11.- M-Estimator using eigen; 12.- M-Estimator proposed by Torr;
13.- LMedS using LS; 14.- LMedS using eigen; 15.- RANSAC using eigen.

Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
� � �	� 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

outliers �	 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
� � �	� 22.125 339.562 17.124 30.027 161.684 27.035 17.871 187.474 18.224 73.403 4.909 4.714 0.000 0.000 9.449

outliers ��	 57.007 433.013 31.204 59.471 117.494 59.117 31.225 197.049 36.141 60.443 4.493 2.994 0.000 0.000 8.387
� � �	� 15.048 1.331 0.107 0.120 1.328 0.108 0.112 1.328 0.112 0.355 0.062 0.062 1.331 0.107 0.107

outliers �	 14.498 0.788 0.088 0.091 0.786 0.088 0.092 0.786 0.092 0.257 0.042 0.041 0.788 0.088 0.088
� � �	� 26.136 476.841 19.675 50.053 158.671 70.530 19.549 183.961 15.807 73.354 4.876 4.130 0.449 0.098 9.148

outliers ��	 66.095 762.756 46.505 53.974 124.086 91.194 46.537 137.294 40.301 59.072 4.808 2.997 0.271 0.077 8.564
� � �	
 15.783 5.548 0.538 0.642 5.599 0.538 0.554 5.590 0.554 2.062 0.392 0.367 5.548 0.538 0.538

outliers �	 14.837 3.386 0.362 0.528 3.416 0.366 0.361 3.410 0.361 1.466 0.237 0.207 3.386 0.362 0.362
� � �	
 117.534 507.653 19.262 26.475 161.210 47.884 18.933 217.577 19.409 143.442 3.887 3.147 47.418 0.586 10.723

outliers ��	 94.987 940.808 49.243 54.067 136.828 65.975 49.204 368.061 51.154 111.694 3.969 2.883 29.912 0.434 12.972
� � �	� 19.885 21.275 1.065 1.319 20.757 1.064 1.071 21.234 1.071 8.538 0.794 0.814 21.275 1.065 1.065

outliers �	 16.485 12.747 0.744 0.912 12.467 0.747 0.745 12.719 0.745 6.306 0.463 0.463 12.747 0.744 0.744
� � �	� 138.554 629.326 21.264 61.206 158.849 79.323 20.277 152.906 18.730 120.012 3.921 4.089 25.759 1.052 8.657

outliers ��	 96.671 833.019 53.481 64.583 120.461 80.100 49.476 120.827 38.644 122.436 3.752 4.326 15.217 0.803 17.410
Real 3.833 4.683 1.725 5.242 3.068 2.584 1.643 2.949 1.581 0.557 0.650 0.475 1.485 1.039 1.725

Image 4.440 3.941 2.138 4.286 2.804 4.768 2.109 2.798 2.056 0.441 0.629 0.368 1.134 0.821 2.138

LMedS seems worse than the one given by M-estimators,
LMedS removes the outliers much more correctly since the
epipolar geometry is better modeled. The RANSAC is the
last surveyed method, which does not obtain better results
than LMedS with eigen analysis because the method is too
permissive selecting the outliers.

5. CONCLUSIONS

The objective of this article is a comparative survey of fif-
teen of the most frequently used methods in fundamental
matrix estimation. The different methods have been pro-
grammed and their accuracy analyzed with real images. Ex-
perimental results show that: a) linear methods are quite
good if the points are well located in the image and the cor-
respondence problem previously solved; b) iterative meth-
ods can cope with some gaussian noise in the localization of
points, but they become quite inefficient in the presence of
outliers; c) robust methods can cope with both discrepancy
in the localization of points and false matchings.

The experimental results point out that the orthogonal
least-squares using eigen analysis gives better results than
the classic least-squares technique of minimization. More-
over, a rank-2 method is preferred because it models the
epipolar geometry with all the epipolar lines intersecting at
the epipole. Finally, experimental results show that the cor-
responding points have to be normalized and the best results
using this sort of method have been obtained by using the
method proposed by Hartley [7]. In conclusion, the best
results were obtained with the LMedS method forcing the
matrix to be rank-2 once the outliers have been removed.
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Institut de Informàtica i Aplicacions.
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Abstract

The epipolar geometry is a key point in computer vision and the fundamental
matrix estimation the unique way to compute it. This article surveys several
methods of fundamental matrix estimation. All the different methods have been
programmed and their accuracy analysed using synthetic and real images. A
discussion justified with experimental results is given and the code is available
in Internet (http://eia.udg.es/~armangue/research).

Keywords: Epipolar Geometry, Fundamental Matrix, Performance Evaluation.

1 Introduction

The estimation of three-dimensional information in active systems is a crucial prob-
lem in computer vision because the camera parameters might change dynamically
depending on the scene. In such situation, only the epipolar geometry, which is
contained in the fundamental matrix, can be computed. Basically, the intrinsic pa-
rameters of both cameras and the position and orientation of one from the other
can be extracted by using Kruppa equations [1]. Moreover, the fundamental matrix
can be used to reduce the matching process among the viewpoints [2]. Thus, it is
very interesting to develop accurate techniques to compute it. This article surveys
fifteen of the most used techniques in computing the fundamental matrix.

The article is organized as follows. First, section two describes all the techniques
in a sequence analyzing their advantages and drawbacks with the previous ones.
Then, section three deals with the experimental results obtained by using synthetic
and real data. The article ends with conclusions.

∗Work funded by Spanish project CICYT TAP99-0443-C05-01



2 Estimating the fundamental matrix

In the last few years, several methods to estimate the fundamental matrix have
been proposed, which can be classified into lineal methods and iterative methods
that deal with bad point localization due to noise in image segmentation, and robust
techniques that eliminate the outliers due to false matchings.

Linear methods:
The linear method of the seven points is based on computing the fundamental

matrix by using only seven point correspondences [3]. Due to the homogeneity of the
equations, the solution is a set of matrices of the form F = αF1 + (1−α)F2. Then,
by forcing the rank of the matrix to 2 and using the expression det [αF1 + (1− α)F2]
a cubic polynomial is obtained, which has to be solved to obtain α and therefore F.
The main advantage of this method is that a fundamental matrix can be estimated
by using only seven points, but this fact becomes a drawback when some points are
bad located. Moreover, the 7-points method cannot be applied in the presence of
redundancy. Hence, it can not be applied using n points if n > 7.

Another interesting method is the 8-points method, where the redundancy of
points permits to minimize the error on estimating F. The equation to minimize
is: min

F

∑
i

(
mT

i Fm′
i

)2. The most classical method to solve such equation is the

least-squares technique by forcing one of the components of F to be the unity [4].
This simplification can be assumed because F is always defined up to a scale factor.
Then the system to solve is: f ′ = (U′TU′)−1U′Tc9, where U′ is a matrix containing
the first eight columns of U, c9 is the last column of U and f ′ is a vector containing
the first eight elements of f . Note that the last element of f is 1. A variant of the
8-points method can be applied if the equation is solved by using eigen analysis, also
called orthogonal least-squares technique [5]. In this case F can be determined from
the eigen vector corresponding to the smallest eigen value of UTU. The difference
between this method and the classical least-squares resides in the form of calculating
the error between correspondences and epipolar lines, where an orthogonal distance
to the epipolar line is much more realistic.

The last linear method we surveyed is the analytic method with rank-2 con-
straint [3], which imposes the rank-2 constraint during minimization. The matrix
U′ is defined as the composition of the first seven columns of U and c8 and c9 are de-
fined as the eighth and ninth columns of U respectively, so that F can be computed
as f ′ = −f8(U′TU′)−1U′Tc8−f9(U′TU′)−1U′Tc9, where f ′ is the vector containing
the first seven elements of f , and f8 and f9 are the eighth and ninth elements of f ,
respectively. In order to obtain the values of f8 and f9, a F is computed by using
the seven points algorithm. Then, f is computed by selecting for any choices of



pairs of F the one that minimizes ‖f‖ = 1. This method obtains a rank-2 matrix.
However, the analytic method with rank-2 constraint does not improve considerably
the results of the previously explained methods.

The linear methods are very fast but their accuracy is rather poor in the presence
of noise. Better results might be obtain using iterative algorithms.

Iterative methods:
The iterative methods can be classified into two groups. The first group of

techniques is based on minimizing the distances between points and epipolar lines,
that is min

F

∑
i

(
d2(mi,Fm′

i) + d2(m′
i,Fmi)

)
.

A first approach consists in applying directly an iterative method as Newton-
Raphson [6] using least-squares technique as initial solution. Another possibility
is the iterative linear method [3] that is based on computing a weight value wi

equivalent to the epipolar distances by using the previous F (in the first iteration
wi = 1) and then minimize by using least-squares in each iteration. Both approaches
do not impose the rank-2 constraint. Then, the nonlinear minimization in parameter
space [3] can solve this situation. This method is based on parameterizing the
fundamental matrix keeping in mind that it has rank 2 by fixing just one of the
multiple parameterizations. The iteration of this method permits to compute a
better rank-2 F. However, it is not enough to obtain a good estimation because the
variance of points are not analogous and the least-square technique assume they are
comparable. In order to overcome this drawback, the second group of methods have
to be considered, which are based on the gradient-technique [7]. In this case, the
equation to solve is min

F

∑
i

(
mT

i Fm′
i

)2
/g2

i , where gi = (l12 + l2
2 + l′1

2 + l′2
2)1/2. The

gradient-based technique obtains better results compared to linear methods and the
iterative methods of the first group. Although iterative methods are more accurate
than linear ones, they are also hard time consuming and they can not eliminate
potential outliers. Hence, robust methods have to be considered.

Robust methods:
This paper surveys up to three robust methods: M-Estimators, Least-Median-

Squares (LMedS) and Random Sampling (RANSAC), which can be used in the
presence of either outliers and bad point localization.

The M-estimators [7] tries to reduce the effect of outliers weighting the residual
of each point. A lot of different weight functions have been proposed and each one
gives a new variant of the M-estimator method. The results obtained are quite good
in the presence of outliers, but they are rather bad if the points are bad located. The
LMedS [3] and RANSAC [5] techniques are very similar. First, both techniques are
based on selection randomly the set of points that are used to compute F by using a



linear method. The difference between both techniques is in the way of determining
the best F. The LMedS calculates for each F the median of distances between points
and epipolar lines and the chosen fundamental matrix has to minimize such a median.
The RANSAC calculates for each F the number of inliers and the chosen F is the
one that maximizes it. Once the outliers are eliminated, the F is recalculated with
the aim of obtaining a better approach. Moreover, another difference is that LMedS
is more restrictive than RANSAC, so that it eliminates more points. However, the
main constraint of both techniques is their lack of repetitivity due to the aleatory
way of selecting the points.

Considerations in F estimation:
Data normalization is a key point in fundamental matrix estimation. It has

been proved that the computation should not be applied directly to the raw data
in pixels due to potential uncertainties given by huge numbers. Basically, there are
two different methods of data normalization. The first method [3] normalize the
data between [−1, 1]. The second was proposed by Hartley [8] and it is based on two
transformations: a) First, the points are translated so that their centroid is placed
at the origin; Secondly, the points are scaled so that the mean of the distances of the
points to the origin is

√
2. It has been proved that the method proposed by Hartley

gives more accurate results than the previous one.
Another interesting fact is that the estimated F should be a rank-2 matrix in

order to model the epipolar geometry with all the epipolar lines intersecting in the
epipole. Although the rank-2 constraint is not imposed in all the surveyed methods,
there is a mathematical method that transforms a rank-n square matrix to the
closest rank-(n − 1) matrix [7]. However, the obtained rank-2 F give worse results
because it has not been optimized. Then, we propose to use any method which
impose a rank-2 matrix in the computation of F instead of further transforming it.

3 Experimental Results

The surveyed methods have been programmed and their accuracy analyzed with
synthetic and real data, such as underwater images from the seabed obtained by our
underwater robot GARBI. Image points have been normalized by using Hartley [8]
explained in section two. Table 1 shows the accuracy of each method as the mean
and standard deviation of the distances between points and epipolar lines.

The accuracy of the seven points algorithm extremely depends on the seven
points used. The least-squares technique depends inversely on the amount of bad-
located points, obtaining usually better results by increasing the amount of points.
The eigen analysis is the linear method that obtains the best results because an



Table 1: Methods Implemented with mean and std. of error: 1.- seven points; 2.-
least-squares (LS) 3.- orthogonal LS; 4.- rank-2 constraint; 5.- iterative lineal using LS; 6.- iterative Newton-
Raphson using LS; 7.- minimization in parameter space using eigen; 8.- gradient using LS; 9.- gradient using
eigen; 10.- M-Estimator using LS; 11.- M-Estimator using eigen; 12.- M-Estimator proposed by Torr; 13.-
LMedS using LS; 14.- LMedS using eigen; 15.- RANSAC using eigen.
Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ = 0.0 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

outliers 0% 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.0 22.125 339.562 17.124 30.027 161.684 27.035 17.871 187.474 18.224 73.403 4.909 4.714 0.000 0.000 9.449

outliers 10% 57.007 433.013 31.204 59.471 117.494 59.117 31.225 197.049 36.141 60.443 4.493 2.994 0.000 0.000 8.387
σ = 0.1 15.048 1.331 0.107 0.120 1.328 0.108 0.112 1.328 0.112 0.355 0.062 0.062 1.331 0.107 0.107

outliers 0% 14.498 0.788 0.088 0.091 0.786 0.088 0.092 0.786 0.092 0.257 0.042 0.041 0.788 0.088 0.088
σ = 0.1 26.136 476.841 19.675 50.053 158.671 70.530 19.549 183.961 15.807 73.354 4.876 4.130 0.449 0.098 9.148

outliers 10% 66.095 762.756 46.505 53.974 124.086 91.194 46.537 137.294 40.301 59.072 4.808 2.997 0.271 0.077 8.564
σ = 0.5 15.783 5.548 0.538 0.642 5.599 0.538 0.554 5.590 0.554 2.062 0.392 0.367 5.548 0.538 0.538

outliers 0% 14.837 3.386 0.362 0.528 3.416 0.366 0.361 3.410 0.361 1.466 0.237 0.207 3.386 0.362 0.362
σ = 0.5 117.534 507.653 19.262 26.475 161.210 47.884 18.933 217.577 19.409 143.442 3.887 3.147 47.418 0.586 10.723

outliers 10% 94.987 940.808 49.243 54.067 136.828 65.975 49.204 368.061 51.154 111.694 3.969 2.883 29.912 0.434 12.972
σ = 1.0 19.885 21.275 1.065 1.319 20.757 1.064 1.071 21.234 1.071 8.538 0.794 0.814 21.275 1.065 1.065

outliers 0% 16.485 12.747 0.744 0.912 12.467 0.747 0.745 12.719 0.745 6.306 0.463 0.463 12.747 0.744 0.744
σ = 1.0 138.554 629.326 21.264 61.206 158.849 79.323 20.277 152.906 18.730 120.012 3.921 4.089 25.759 1.052 8.657

outliers 10% 96.671 833.019 53.481 64.583 120.461 80.100 49.476 120.827 38.644 122.436 3.752 4.326 15.217 0.803 17.410
Real 3.833 4.683 1.725 5.242 3.068 2.584 1.643 2.949 1.581 0.557 0.650 0.475 1.485 1.039 1.725
Image 4.440 3.941 2.138 4.286 2.804 4.768 2.109 2.798 2.056 0.441 0.629 0.368 1.134 0.821 2.138

orthogonal least-squares minimization is more realistic than the classic least-squares.
However, all these methods obtain a rank-3 matrix, which means that the epipolar
geometry is not properly modeled.

The analytic method with rank-2 constraint obtains a rank-2 fundamental ma-
trix. However, the distances between points and epipolar lines are worse than in the
linear methods. The iterative linear method improves considerably the least-squares
technique but can not cope with the outliers problem. The iterative Newton-Raphson
algorithm obtains even better results than the previous method if there is no out-
liers present. Although the nonlinear minimization in parameter space obtains also
a rank-2 matrix, but his computational cost is very high. The eighth and ninth
methods are two versions of the gradient-based method using least-squares and or-
thogonal least-squares, respectively. Both methods obtain better results than their
equivalent linear methods. Furthermore, the eigen analysis, once again, obtains bet-
ter results than the other linear methods. Although some of these methods obtain
a rank-2 matrix, they can not cope with outliers.

The last surveyed methods are known as ”robust”, which means they might
detect and remove the outliers and compute the fundamental matrix using only
the inliers. Three versions of the M-estimators have been programmed using least-
squares, eigen analysis and the method proposed by Torr [5], respectively. The three
methods use a linear initial guess and they become really dependent on the linear
method used to estimate it. The following two methods are two versions of LMedS
using again least-squares and eigen analysis, respectively. Although the accuracy of
LMedS seems worse than the one given by M-estimators, LMedS removes the outliers



much more correctly since the epipolar geometry is better modeled. The RANSAC
is the last surveyed method, which does not obtain better results than LMedS with
eigen analysis because the method is too permissive selecting the outliers.

4 Conclusions

This article surveys up to fifteen of the most used methods in fundamental matrix
estimation. The different methods have been programmed and their accuracy an-
alyzed with synthetic and real images. Experimental results show that: a) linear
methods are quite good if the points are well located in the image and the correspon-
dence problem previously solved; b) iterative methods can cope with some gaussian
noise in the localization of points, but they become really inefficient in the presence
of outliers; c) robust methods can cope with both discrepancy in the localization of
points and false matchings.

The experimental results brings out that the orthogonal least-squares using eigen
analysis gives better results than the classic least-squares technique of minimization.
Moreover, a rank-2 method is preferred because it models the epipolar geometry with
all the epipolar lines intersecting at the epipole. Finally, experimental results show
up that the corresponding points have to be normalized and the better results have
been obtained by using the method proposed by Hartley [7]. Concluding, the best
results were obtained with the LMedS method forcing the matrix to be rank-2 once
the outliers have been removed.
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Xavier Armangué, Joaquim Salvi and Joan Batlle

Computer Vision and Robotics Group
Institute of Informatics and Applications

University of Girona
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X. Armangué, J. Salvi and J. Batlle
Institut de Informàtica i Aplicacions
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Abstract

Camera modelling and calibrating is a crucial problem for further metric measuring
of a scene. A lot of different calibrating techniques and surveys about calibration
have been presented in last years. However, it is still difficult to go into details of
a determined calibrating technique and to compare it with respect to the others.
Mainly, this problem emerges due to the lack of notation standardization and the
different existing methods of accuracy evaluation. This article presents a detailed
review about five of the most used calibrating techniques and a great deal of effort
has been done to present them by using the same notation. Moreover, the techniques
have been implemented and the accuracy evaluation results are shown in the article.

1. INTRODUCTION

Camera calibration is the first step toward computational computer vision.
Although some information from the measuring scenes can be obtained from
uncalibrated cameras, calibration is essential when metric information is re-
quired. Some applications of this capability includes:

1. Dense reconstruction: Each image point determines an optical ray passing
through the focal point of the camera toward the scene. Use of more than
a view of a motionless scene permits to cross both optical rays and get
the metric position of the 3D point.

2. Visual inspection: Once a dense reconstruction of a measuring object is
obtained, it can be compared with an stored model in order to detect
some manufacturing imperfections as bumps, dents and cracks.

1This work has been supported by Spanish project CICYT TAP99-0443-C05-01



3. Object localization: From points of different objects, the position relation
among these objects can be easily determined, which has many applica-
tion in industrial part assembly and obstacle avoidance in robot naviga-
tion, among others.

4. Camera localization: When a camera is placed at the hand of a robot
arm or on a mobile robot, the position and orientation of the camera can
be computed through the localization of some known landmarks in the
scene. If these measures are stored, a temporal analysis permits to obtain
the trajectory of the robot, which can be used in robot control and path
planning.

Camera calibration can be classified according to several different criteria.
For instance, 1) Linear versus nonlinear camera calibration (usually differenti-
ate by the modelling or not of the lens distortion [1]). 2) Implicit versus explicit
calibration. Implicit calibration is the process of calibrating a camera without
explicitly computing its physical parameters. Although, the results can be
used for 3D measurement and generation of image coordinates, they are use-
less for camera modelling as the obtained parameters do not correspond to the
physical ones [2]. And 3), methods that use known 3D points as a calibrating
pattern [3], and others that use some geometrical properties of the scene such
as vanishing lines. Moreover, the approaches can be classified with respect to
the calibrating method used to estimated the parameters of the camera model:

1. Non linear optimization techniques. The camera parameters are obtained
through iteration with the constraint of minimizing a determined func-
tion. The advantage of these techniques is that it can calibrate nearly
any model and the accuracy usually increase by increasing the number
of iterations. However, these techniques require a good initial guess in
order to guarantee the convergence. Examples: classic photogrammetry
and Salvi [4].

2. Linear techniques which compute the transformation matrix. These tech-
niques use the least squares method to obtain a transformation matrix
which relates 3D points with their projections. However, these techniques
can not model lens distortion. Moreover, it’s sometimes difficult to ex-
tract the parameters from the matrix due to the implicit calibration used.
Examples: Hall [5], Toscani-Faugeras [3] and Ito [1].

3. Two-step techniques. These techniques use a linear optimization to com-
pute some of the parameters and, as a second step, the rest of parameters
are iteratively computed. These techniques permit a rapid calibration re-
ducing considerably the number of iterations. Moreover, the convergence



is nearly guarantee due to the linear guess obtained in the first step.
Examples: Tsai [6], Weng [7] and Wei [2].

This article is a detailed survey of some of the most used calibrating tech-
niques. A great deal of effort has been done to present the survey using the
same notation. Moreover, the techniques have been implemented and compar-
ative results are shown and discussed.

The article is structured as follows: Section 2 deals with camera modelling.
Section 3 describes some techniques of camera calibrating. Section 4 explains
some methods for the accuracy evaluation of camera calibrating techniques.
The paper ends with conclusions.

2. CAMERA MODEL

The model is a mathematical formulation which approximates the behaviour
of any physical device, i.e a camera. In such a case, the internal geometry and
the position and orientation of the camera in the scene is modelled. There are
several camera models depending on the desired accuracy. The simplest model
is the one proposed by Hall [5]. The goal is to find a relationship among the
3D points of the scene with their 2D projecting point in the plane image. This
relationship is approximated by means of a transformation matrix, sIXd

sIYd

s

 =

 A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34




W Xw
W Yw
W Zw

1

 (1)

Then, given a 3D point Pw with respect to the metric world coordinate
system, applying the transformation matrix proposed by Hall, the 2D point Pu

in pixels with respect to the image coordinate system is obtained. However,
other more complex models decompose the transformation of the point Pw into
the point Pd in 4 steps, explained in the following (see also figure 1):

1. The first step consists on relating the point Pw from the world coordinate
system to the camera coordinate system.

2. Next it is necessary to carry out the projection of the point Pc on the
image plane obtaining the point Pu, by using a projective transformation.

3. The third step models the lens distortion, based on a disparity of the real
projection. Then, the point Pu is transformed to the real projection Pd.

4. Finally, the last step consists on carrying out another coordinate system
transformation in order to go from the metric coordinate system of the
camera to the image coordinate system of the computer in pixels.
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Figure 1: The geometric relation between a 3D point and its 2D projection.

In the following four different camera models (Faugeras-Toscani [3], Faugeras-
Toscani with distortion [4], Tsai [6] and Weng [7]) are explained in detail con-
sidering how they carry out this four steps.

2.1. Changing from the world to the camera coordinate system

Changing the system of coordinates of the world to the system of coordinates
of the camera is carried out in the same way in the 4 surveyed models. This
transformation is modelled using a translation vector and a rotation matrix, CXw

CYw
CZw

 = CRW

 W Xw
W Yw
W Zw

 + CTW (2)

2.2. Projection of the point 3D on the image plane

Consider that any optical sensor can be modelled as a pinhole camera. That
is, the image plane is located at a distance f from the optical centre OC , and
it is parallel to the plane defined by the coordinate axis XC and YC . Moreover,
given an object point Pw related to the camera coordinate system, if it is
projected through the focal point OC , the optical ray intercepts the image
plane at the 2D image point Pu. This relation is shown in equation. The four
reviewed models solved the projective transformation by using equation (3).

CXu = f
CXw
CZw

CYu = f
CYw
CZw

(3)



2.3. Lens distortion

The third step is based on modelling of the distortion of the lenses. Each
surveyed model proposed different approaches. Equation (4) transforms the
point Pu without distortion to the point Pd with distortion, δx and δy represents
the applied distortion.

CXu = CXd + δx
CYu = CYd + δy (4)

The camera model proposed by Faugeras-Toscani [3] does not model the lens
distortion, therefore Pu and Pd are the same point. In this case δx and δy are
zero.

The model of Faugeras-Toscani can be improved by modelling the lens dis-
tortion [4] as also considered Tsai [6]. This displacement can be modelled by
equation (5), which considers only the first coefficient k1.

δx = k1
CXd

(
CXd

2 + CYd
2
)

δy = k1
CYd

(
CXd

2 + CYd
2
)

(5)

The model of Weng [7] considers three types of distortion: radial distortion,
decentering distortion and thin prism distortion. The total distortion will be
the sum of the three distortions like it is shown in the following equations,

δx = δxr + δxd + δxp δy = δyr + δyd + δyp (6)

The radial distortion is modelled in the same way Tsai did. The decentering
distortion is due to that the optic centre of the lenses is not correctly aligned
with the centre of the camera [7]. This type of distortion introduces a radial
and tangential distortion. Moreover, the thin prism distortion arises from im-
perfection in lens design and manufacturing as well camera assembly. This type
of distortion can be modelled adding a thin prism in the optic system, causing
radial and tangential distortions [7]. Adding the three types of distortions the
following equations are obtained,

δx = (g1 + g3) CXd
2 + g4

CXd
CYd + g1

CYd
2 + k1

CXd

(
CXd

2 + CYd
2
)

δy = g2
CXd

2 + g3
CXd

CYd + (g2 + g4) CYd
2 + k1

CYd

(
CXd

2 + CYd
2
) (7)

2.4. Changing from the camera to the computer image coordinate
system

The last step deals with relating the Pd point with respect to the computer
image plane in pixels. This change of coordinates can be made in two different
ways according to the surveyed camera models.



The camera models proposed by Faugeras-Toscani, Faugeras-Toscani with
distortion and Weng use the following equations,

IXd = −ku
CXd + u0

IYd = −kv
CYd + v0 (8)

where, (kv,ku) are these parameters transforms from metric measures with re-
spect to the camera coordinate system to pixels with respect to the computer
image coordinate system; and (u0, v0) are these components defines the pro-
jection of the focal point in the plane image in pixels, i.e. the principal point.

The camera model of Tsai proposed another equations to carry out the same
transformation. The equations are the following,

IXd = sxd′x
−1CXd + u0

IYd = dy
−1CYd + v0 (9)

where, (u0, v0) are the coordinates of the projection of the focal point in the
plane image in pixels; sx is the image scale factor; dx is the centre to centre
distance between adjacent sensor elements in the X direction; dy is the centre
to centre distance between adjacent sensor elements in the Y direction; Ncx is
the number of sensor elements in the X direction; Nfx is the number of pixels
in a line as sampled by the computer; and d′x = dx

Ncx

Nfx
.

3. CALIBRATING METHODS

The calibrating method depends on the model used to approximate the
behaviour of the camera. The linear models, i.e Hall and Faugeras-Toscani,
use a least-squares technique to obtain the parameters of the model. However,
non-linear calibrating methods as: Faugeras-Toscani with distortion, Tsai and
Weng; use a two stages technique. They carry out a linear approximation with
the aim of obtaining an initial guess for a further iterative optimization.

3.1. Method of Hall

The method used to calibrate the model of Hall is based on expressing
equation (1) in the following form,

IXu = A11
W Xw+A12

W Yw+A13
W Zw+A14

A31W Xw+A32W Yw+A33W Zw+A34
IYu = A21

W Xw+A22
W Yw+A23

W Zw+A24
A31W Xw+A32W Yw+A33W Zw+A34

(10)

Then, consider that the 3D position of a set of n calibrating points and their
corresponding 2D projection in the image are known (n should be bigger or
equal to 6). Moreover, if we consider without lost of generality that A34 = 1,
all the elements of the transformation matrix A can be obtained by using a
linear least-squares technique as the pseudo-inverse [5].



3.2. Method of Faugeras-Toscani

In order to obtain the complete model of the camera, it is necessary to
combine equations (2), (3), (4) and (8), obtaining (11).

IXu = −kuf r11
W Xw+r12

W Yw+r13
W Zw+tx

r31W Xw+r32W Yw+r33W Zw+tz
+ u0

IYu = −kvf
r21

W Xw+r22
W Yw+r23

W Zw+ty

r31W Xw+r32W Yw+r33W Zw+tz
+ v0

(11)

Note that equation (11) can be expressed in matricial form in the following
way, where αu = −fku and αv = −fkv. sIXd

sIYd

s

 =

 αur1 + u0r3 αutx + u0tz
αvr2 + v0r3 αvty + v0tz

r3 tz




W Xw
W Yw
W Zw

1

 (12)

Then, equation (12) is combined in the following way,

IXu = A1
A34

W Pw + A14
A34

− A3
A34

W Pw
IXu

IYu = A2
A34

W Pw + A24
A34

− A3
A34

W Pw
IYu

(13)

At that time, a set of 5 parameters are considered X = (T1, T2, T3, C1, C2)T,
which are T1 = A1

A34
, T2 = A3

A34
, T3 = A2

A34
, C1 = A14

A34
and C2 = A24

A34
. Then,

the value of the vector X is obtained by using a linear least-squares technique.
Finally, the camera parameters are extracted from X by using equation (12).

3.3. Method of Faugeras-Toscani with radial distortion

When a good accuracy is necessary, the linear method of Faugeras-Toscani
becomes useless. However, it can be easily modified including the radial lens
distortion as it has been shown in section 2.3. Nevertheless, the equations
turns into non-linear and the least-squares techniques has to be replaced by an
iterative algorithm.

Note that combining equation (2), (3), (4) and (5), equation (14) is obtained.
Moreover, equation (8) has to be used to transform from metric coordinates to
pixels.

CXd + CXdk1r
2 = f r11

W Xw+r12
W Yw+r13

W Zw+tx

r31W Xw+r32W Yw+r33W Zw+tz

CYd + CYdk1r
2 = f

r21
W Xw+r22

W Yw+r23
W Zw+ty

r31W Xw+r32W Yw+r33W Zw+tz

r =
√

CXd
2 + CYd

2

(14)

where x = (α, β, γ, tx, ty, tz, ku, kv, u0, v0, k1)
T is the vector of unknowns which

can be computed by using an iterative method as, for instance, the method of
Newton-Raphson or Levenberg-Marquardt, among others.



Note that one of the problems of convergence in iterative algorithms is the
initial guess. However, an initial guess can be obtained calibrating the linear
method of Faugeras-Toscani without lens distortion, and assuming k1 = 0.

3.4. Method of Tsai

The non-linear method of Faugeras-Toscani is based on fixing the initial
guess without considering lens distortion. Moreover, a large number of itera-
tions is usually necessary to obtain an accurate value of the camera parameters.
The method of Tsai [6] models also the radial lens distortion but assumes that
there are some parameters of the camera that are distributed by manufactur-
ers. This fact reduces the number of calibrating parameters in the first steps.
However, all of them are iteratively optimized in the last step.

Firstly, by combining equation (2), (3), (4) and (5), equation (14) is ob-
tained. Note that, at this point Tsai’s model is equivalent to the previous one
of Faugeras-Toscani with distortion. Note also, that the points have been ex-
pressed in metric coordinates instead of pixels for easier comprehension (use
equation (9) to express the points in pixels)

Once CXd and CYd are obtained in metric coordinates by using equation (9),
they can be expressed in pixels IXd and IYd, assuming that sx = 1 and the
principal point is located in the physical centre of the image plane. Moreover,
by using equation (14) and considering a radial lens distortion, some geomet-
rical principles can be applied, which leads us to the following substitution of
unknowns.

a1 = t−1
y sxr11 a5 = t−1

y r21

a2 = t−1
y sxr12 a4 = t−1

y sxtx a6 = t−1
y r22

a3 = t−1
y sxr13 a7 = t−1

y r23

(15)

The ai unknowns are obtained by using least-squares technique. Moreover,
assuming that the orientation vectors of a rotation matrix are orthogonal, ty,
tx and CRW are obtained. This complete the first three steps of the method of
Tsai. However, two more steps are programmed in order to calculate f , tz and
k1. Firstly, f , tz are approximated by least-squares, considering k1 = 0. Then,
this approximation determines an initial guess, which is used by an iterative
algorithm to obtain f , tz and k1 accurately. Finally, all the parameters are
optimized iteratively with the aim of obtaining an accurate solution.

3.5. Method of Weng

The method of Tsai is based on modelling radial lens distortion. The accu-
racy obtained by Tsai is very good and enough for most of the applications.
However, in same cases where the lens of the camera need to be accurately
modelled a simple radial approximation is not enough. Weng [7] improves the



model proposed by Faugeras-Toscani [3] including three types of lens distortion
as it is explained in section 2.3. Then, by using equations (2), (3), (4) and (7),
equation (16) is obtained. As in the previous models, the 2D point coordinates
are expressed in metric (use equation (8) to transform them to pixels).

f
r11

W Xw + r12
W Yw + r13

W Zw + tx
r31

W Xw + r32
W Yw + r33

W Zw + tz
= CXd + (g1 + g3) CXd

2

+g4
CXd

CYd + g1
CYd

2 + k1
CXd

(
CXd

2 + CYd
2
)

f
r21

W Xw + r22
W Yw + r23

W Zw + ty
r31

W Xw + r32
W Yw + r33

W Zw + tz
= CYd + g2

CXd
2

+g3
CXd

CYd + (g2 + g4) CYd
2 + k1

CYd

(
CXd

2 + CYd
2
)

(16)

Then, equations (17) are obtained.

W1 = αur1 + u0r3 w4 = αutx + u0tz
W2 = αvr2 + v0r3 w5 = αvty + v0tz
W3 = r3 w6 = tz

(17)

At this point, W = (W1,W2,W3, w4, w5, w6)T is computed by using a lin-
ear least-squares technique. Then, w6 is assumed to be the unity in or-
der to extract from W the values of all the parameters of the vector m =
(u0, v0, αu, αv, tx, ty, tz, α, β, γ)T, without considering distortion. Furthermore,
CRW is recalculated in order to keep orthogonality by using eigen values, and
the rest of parameters are recalculated.

Then, an iterative method is used to recalculate, for the third time, the
values of m, assuming zero distortion. Finally, a two stages iterative method is
used. In the first stage, the parameters of d = (k1, g1, g2, g3, g4)

T are linearly
obtained by using least-squares, and the second stage computes the values of
m iteratively. This stages are repeated as many times as needed depending on
the desired accuracy.

4. ACCURACY EVALUATION

The systems used to evaluate the accuracy of camera calibrating methods
can be classified into two groups depending on whether the accuracy is mea-
sured from the 3D or 2D points. In the following some of the most used methods
of accuracy evaluation are described.

4.1. 3D Measurement

1. 3D position obtained from stereo triangulation. First, acquire two images
of a set of 3D test points whose 3D coordinates are known. Second, com-



pute the estimated 3D coordinates of the same points from their projec-
tions using the calibrated parameters. Finally, compare the discrepancy
between real and estimated positions.

2. Radius of ambiguity in the calibrating plane. First, acquire a set of 3D test
points, lying on a plane of test, whose coordinates in the world coordinate
system are known. Second, for each image point use the calibrated model
to back project the ray from the focal point through the 2D projection.
The intersection of the optical ray with the plane of test determines a
point. Then, the distance from the 3D test point to the intersecting
points defines a radius of ambiguity around the 3D test point.

3. Distance with respect to the optical ray. This method is a generalization
of the previous one. In this case, the discrepancy to be measured is the
distance of the 3D test points from the optical ray generated by their
projections.

4. Normalized Stereo Calibration Error. The array of pixels in an image is
projected back to the scene so that each back-projected pixel covers a
certain area of the object surface. This area indicates the uncertainty
of the basic resolution at this distance. Where (CXwi,

CYwi,
CZwi) is

the real coordinates of the ith 3D object point and (CX̂wi,
C Ŷwi,

CẐwi)
is the coordinates obtained by back-projecting the pixel and intersecting
it with the surface plane. See Weng [7] for detailed information. Then,
it is defined the Normalized Stereo Calibration Error (NSCE) as show
equation 18.

NSCE = 1
n

n∑
i=1

[
(CX̂wi−CXwi)2

+(C Ŷwi−CYwi)2

C Ẑwi
2(α−2

u +α−2
v )

/
12

]1/2

(18)

4.2. 2D Measurement

1. Accuracy of distorted image coordinates. First, take an image of a set of
3D test points. Then, calculate the 2D position on the image plane of
each 3D point, taking into account lens distortion. Accuracy is obtained
measuring the discrepancy between the real 2D points and the estimated
one.

2. Accuracy of undistorted image coordinates. First, take an image of a
set of 3D test points. Then, calculate the linear projection of the 3D
points on the image plane. Besides, detect the real 2D points through
image segmentation and remove the distortion of lens by using the camera
model. Finally, accuracy is obtained measuring the discrepancy between
the linear projection and the undistorted points.



5. EXPERIMENTAL RESULTS

The five calibrating techniques have been implemented and their accuracy
measured by using the following criteria: 1) Distance with respect to the optical
ray; 2) Normalized Stereo Calibration Error; 3) Accuracy of distorted image
coordinates; 4) Accuracy of undistorted image coordinates.

Using a set of object ponits proposed by Tsai2. Table 1 shows the ac-
curacy measured by using the first criteria and second criteria, respectively.
Comparing the mean of the results obtained in both tables, we can see that
a relationship exists among the two methods. Both methods obtained similar
results if they are relatively compared that is, good calibrating algorithms ob-
tain acceptable accuracy results not depending on the evaluation method used.
Moreover, table 2 shows the results of calculating the accuracy by using the
third and fourth criteria, respectively.

3D position (mm) NSCE No of
Mean σ Max iterations

Hall 0.1615 0.1028 0.5634 n/a n/a
Faugeras 0.1811 0.1357 0.8707 0.6555 n/a
Faugeras NR3 without distortion 0.1404 0.9412 0.0116 0.6784 20
Faugeras NR with distortion 0.0566 0.0307 0.1694 0.2042 20
Tsai 0.1236 0.0684 0.4029 0.4468 57
Tsai optimized 0.0565 0.0306 0.1578 0.2037 499
Tsai with principal point
of Tsai optimized 0.0593 0.0313 0.1545 0.2137 52
Tsai optimized with principal
point of Tsai optimized 0.0564 0.0305 0.1626 0.2033 355
Weng 0.0570 0.0305 0.1696 0.2064 200

Table 1: Accuracy of 3D Coordinate Measurement

2D distorted image (pix.) 2D undistorted image (pix.)
Mean σ Max Mean σ Max

Hall 0.2676 0.1979 1.2701 0.2676 0.1979 1.2701
Faugeras 0.2689 0.1997 1.2377 0.2689 0.1997 1.2377
Faugeras NR without distortion 0.2770 0.2046 1.3692 0.2770 0.2046 1.3692
Faugeras NR with distortion 0.0840 0.0458 0.2603 0.0834 0.0454 0.2561
Tsai 0.1836 0.1022 0.6082 0.1824 0.1011 0.6011
Tsai optimized 0.0838 0.0457 0.2426 0.0832 0.0453 0.2386
Tsai with principal point
of Tsai optimized 0.0879 0.0466 0.2277 0.0872 0.0463 0.2268
Tsai optimized with principal
point of Tsai optimized 0.0836 0.0457 0.2500 0.0830 0.0454 0.2459
Weng 0.0845 0.0455 0.2608 0.0843 0.0443 0.2584

Table 2: Accuracy of 2D Coordinate Measurement

2http://www.cs.cmu.edu/∼rgw/TsaiCode.html
3Newton-Raphson



6. CONCLUSION

This article surveys five of the most used calibrating techniques. Effort has
been done to unify the notation among the five methods, so that they have
been presented in a way that the reader can understand them easily. We can
see that the differences among them are mainly in the step concerning the
modelling of lens.

Moreover, a survey on accuracy evaluation has been done. The five meth-
ods have been implemented and their accuracy analyzed. Results show that
only non-linear methods obtain a 3D accuracy smaller than 0.1 mm. with a
very good standard deviation. Moreover, the accuracy on the image plane of
non-linear methods is much better than linear methods. However, non-linear
methods are more time-consuming than linear ones. Obviously, the results only
prove something already demonstrated by authors. However, in this article the
five methods have been compared among them, so that the reader can choose
one or another method depending on their applications. Future work. it would
be useful if they could compare the same methods by artificially including noise.
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Abstract— This paper describes a vision system to detect the

3D position of pallets for autonomous forklift vehicles. An
accurated image segmentation method based on colour and
geometric characteristics of the pallet is proposed. Moreover,
the application computes the 3D position and orientation of
the pallet and generates the vehicle trajectory to fork it. The
system has been tested and experimental results are shown.

Index Terms— 3D Image Reconstruction, Computer Vision,
Feature Selection, Industrial Application and Segmentation.

I. INTRODUCTION

This article describes a complete computer vision system
designed to segment and locate the pallets in an industrial
environment with the aim of automating forklift vehicles.
Usually, autonomous navigation is based on using
ultrasonic sensors and odometers. Computer vision has not
been used in general applications due to its lack of
robustness in the presence of illumination variations and
also due to computer complexity. However, computer
vision shows a great performance in specific applications.
For instance, it has been widely used in industrial
inspection [1]. Moreover, some efforts have been done
using structured light in order to reduce computer
complexity [2]. However, it remains difficult to apply
computer vision in industrial navigation.

This paper addresses a specific application: the forklift
vehicle (see Fig. 1) has to detect the pallet, which is situated
on the floor, and fork it autonomously. The problem has
been solved using computer vision. Although it is not the
purpose of this article, the vehicle uses also ultrasonic
sensor to avoid obstacles and odometers to keep the
trajectory.

The article is divided as follows. First, section II deals
with the pallet modeling and segmentation. Section III is
based on detecting the pallet in the 2D image once it has
been segmented. Then, section IV describes the
methodology used to obtain the 3D position of the pallet
with respect to the vehicle using a single camera attached
on its top. Finally, section V describes the method used to
generate the trajectory to fork the pallet. The article

                                                            
  Institute of Informatics and Applications. EIA-PII. University of Girona,
Av. Lluis Santaló s/n, 17071 Girona (Spain). Jpages@eia.udg.es

1 This work has been supported by the CeRTAP consortium of the local
government of Catalonia.

discusses the experimental results and ends with
conclusions.

Fig. 1.  The forklift that is being automated

II. OBJECT MODELLING

A. Introduction

Models constitute representations of the real world, and
thus, modelling implies the choice of a suitable set of
parameters in order to build those representations.
Obviously, the selection of the parameters will affect how
well the models fit reality, and this becomes a central issue
in any object recognition system. Here, a method for
learning such models in training images is proposed.

Object modelling has been designed as a supervised task,
where a teacher presents representative examples of objects
in training images. Moreover, the presentation of which
parts do not belong to the object of interest is also required.
Afterwards, the application fulfil a stage of calculating or
abstracting in order to find out which features can be used
to identify whether an image pixel belongs to the target
object. That is, the modelling process is planned as a
features selection problem, in which the goal is to find the
subset of features that best captures the representation of a
given object. In this work, only colour features have been
treated, however, the methodology here described is valid
for whatever kind of features.

B. Feature selection

In this stage a combination of features which makes
possible to identify an object must be found. The solution to
this problem is entirely statistical due to the complexity and
the amount of data to be treated. If all the combinations of
features are tested, a problem of huge execution time has to
be faced. Besides, there is another problem, more
subjective, which is how to decide which set of features is
the most appropriated. With the aim of showing the
problem of feature evaluation, a simple example based  only
on two single features is proposed. Such a simplification
has been considered in order to reduce the complexity of

A Computer Vision System for Autonomous
Forklift Vehicles in Industrial Environments1.

J. Pagès, X. Armangué, J. Salvi, J. Freixenet and J. Martí.



graphical representation of spaces with multiple features. In
Fig. 2 two couples of colour features of a set of pixel
samples from two different objects have been calculated.
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Fig. 2.  Object samples distribution based on colour features couples.

The result is a 2D distribution of the given samples
which allows us to see whether exists some relationship
between them based on their feature values. The sample
pixels corresponding to each object form two differentiated
clusters, as shown on Fig. 2a, which means that these
features can separate the pixels of both objects. Now, a
procedure is needed to find out if these two features are
more useful than the used in Fig. 2b, where there is no clear
relationship between the features and the object samples.

The selection of an optimal subset of features will always
rely on a certain evaluation function. Typically, an
evaluation function tries to measure the discriminating
ability of a feature or a subset of features, to distinguish the
different objects [3]. Following the “divide and conquer”
paradigm, the problem of feature evaluation has been
solved by using a decision tree that separates the samples in
a recursive way [4]. Fig. 3 shows such a decision tree
operating in a two-dimensional feature space. The decision
trees considered in our approach are binary trees with
multivariate decision functions, where each node is a binary
test represented by a linear function. The Fisher Linear
Discriminant Function (LDF) has been demonstrated as a
powerful classifier that maximizes the ratio between the
inter-class covariance and the intra-class covariance [5].
Each node of the tree attempts to separate, in a set of known
instances (the training set), a target (i.e., pallet) mapped as

, from non-target instances (no-pallet) mapped as .
However, this is achieved only in a certain ratio, because
realistic data is not always linearly separable. The resulting
two subsets of samples are again subdivided into two parts
using two new calculated linear functions. This process is
extended along the binary tree structure, until an
appropriate misclassification ratio is achieved. The result is
a tree of hyperplane nodes that recursively try to divide the
feature space into target and non-target samples. Every leaf
has a group of samples with an associated misclassification.
So that, all the subgroups of object samples can be found
with multiple evaluation functions. To avoid an
uncontrolled tree growing, the deep of its branches is
usually limited.

Misclassification = 0 Misclassification = 0

Fig. 3.  Binary tree using Fisher recursive evaluation.

Once an evaluation function is chosen to compare the
performance of different feature sets, a method to find the
best set is required. As it was said before, all possible
combinations of features should be tested. However other
algorithms are usually used to avoid an exponential
execution time. These methods are all based on reducing the
search space, using for example AI algorithms like
heuristics, genetics, etc. The technique chosen in this work
is based on genetics [6]. In summary, it creates an initial
population of chromosomes where every one of them
represents a different combination of features. Each
chromosome is a vector as long as the number of features
chosen. Every position of the vector can be zero or one,
indicating whether the feature associated to that position is
present. Fitness is calculated for every chromosome, which
is the misclassification produced for the activated features.
A series of iterations are applied based on the initial
population, trying to create new chromosomes by using
cross techniques, mutating some parts of the existing and
removing the worst of them. This process is repeated till a
chromosome of certain fitness is generated. The
performance of genetics, although its lack of determination,
is quite good and the timing calculus is much better than an
exhaustive combination method [6].

C. Real time image processing

One of the main traits of industrial applications is the
capacity to work in real time. Therefore, the image
processing, as part of our application, should be as fast as
possible. The evaluation of a decision tree based on Fisher
function for each pixel of an image requires a substantial
processing time. To reduce it, a look up table is used. The
procedure to create this table is simple: every possible
combination of RGB colours are evaluated offline using the
calculated Fisher tree. Thus, it is known a priori, which
pixel have to be considered part of the target (pallet) and
which must be filtered. All this information is stored in the
look up table, that is a simple memory structure of three
dimensions (one for each colour component). When an
image has to be segmented, it is only necessary to calculate
the RGB components of every pixel and consult the look up
table to know whether is part of the target object. The use of
a look up table is possible because only colour features have
been used. If other features like textures are considered, a
look up table is useless because of the required
neighbourhood operation.



D. Requirements for a good colour segmentation

The study of the pallet colour has reflected that there are
many grey-scale components in a large variety. This fact
implies that a robust segmentation of the pallet is not easy
to achieve if there are objects in the environment with
important variety of grey components. As the aim of this
work is for an industrial application in a controlled
environment the adaptation of it to our requirements is truly
possible. Therefore, the theoretical warehouse where this
application will be used can be adapted so the colours of the
walls and floor make easier the segmentation of the pallets.

III. LOCALIZATION OF THE PALLET

The goal of locating the pallet in a complex environment
is not an easy task. Thus, the images are pre-processed to
remove the most part of the scene except the pallet, which
will appear as a non-uniform region. The pre-processing
task consists on a colour-based segmentation. Once the
pallet is the only remarkable blob in the image, some
techniques are applied to get the positional information and
orientation of the pallet.  An example of pallet segmentation
is shown in Fig. 4. Note the image contains some noise that
is further removed. The global shape of the pallet can be
observed.

Fig. 4.  Pallet colour segmentation sample.

Now, in order to fork the pallet with the forklifter, its 3D
position and orientation have to be computed. Moreover, it
is necessary to identify the nearest forking side of the pallet.
Both tasks are explained in the following sections.

A. Pallet vertex detection

In order to find the pallet orientation, the Hough
transform is proposed. The Hough transform can be applied
to digital images, using the adapted algorithm introduced by
Duda and Hart [7]. In summary, this method gathers
information about the lines that can be found in the image.
Besides, the pallet has a rectangular shape that, at
maximum, two of its lateral sides can be observed in a 2D
image depending on its orientation. Therefore, the lines of
both sides that are in contact with the floor should be
detected with Hough transform. Once these lines have been
detected the position of three pallet vertexes can be easily
found, as shown in Fig. 5. Images shown are in negative.

Fig. 5.  Significative vertexes of a pallet

The way used to find the vertexes is here briefly
described: both lines given by Duda-Hart are explored by

using four cursors located at the four line ends. Each cursor
explores the line going to the image centre until detects part
of the pallet region, which determines one of the four
vertexes and finishes its exploration. Obviously, a certain
tolerance for this process is recommended in order to skip
noise. Then, the exploration consists on using a 1x8
window centred in the line (instead of a 1x1 window) and
moving it along the line. This is strongly recommended
because of the inherent error of the discrete Hough
transform, which can cause that the detected line differs a
little from the right one.

It has been observed, during the study, that a single
segment of the pallet is only required because the whole
pallet can be reconstructed from it, as the pallet model is
known.

The main constraint in the line detection process is the
interpretation of the information given by Hough transform.
The output of the Hough transform is a rectangular matrix
in polar coordinates, where each cell represents one of the
potential lines that might be present in the image. Every
matrix cell contains a number expressing the amount of
pixels that have been found in the source image that could
be part of the same line. The cell with the highest number
determines the largest line in the image. However, the main
problem result from finding such a cell that represents the
desired line among a non-uniform distribution with local
maximums. The complexity of this problem has been
described in some articles [8]. In this paper, an intermediate
stage is applied to reduce the amount of local maximums.
The process is described in the following section.

1) Image filtering process
The intermediate process is based on cleaning out the

images before applying Hough by using filtering and
morphologic operators. The source images in this process
have been already segmented so they are binary coded.

The first step consists in a close morphological operation
to grow the inner pallet region with the goal of producing a
single blob. Secondly, an open operator is applied with the
aim of removing the noise. After most noise is eliminated, a
sobel filter is applied to enhance the edges of the image.
Afterwards, a thining operation is executed to obtain the
skeleton of every line. The result of the three steps can be
observed in Fig. 6a. As it can be seen, most part of the noise
has been removed. However, a lot of lines are still detected
if Hough is now applied. As our aim is the detection of a
single edge of the pallet that is in contact with floor, the rest
of lines should be firstly removed. In order to achieve this
goal, another step is applied: every column of the image is
explored keeping only the pixel with the highest Y
component and removing the rest. The effects of this filter
can be seen in Fig. 6b.

x

y

a) b)

Fig. 6.  a) Image filtering; b) Edge pallet detection.



As result of this procedure most part of pixels forming
the two searched lines have overcome the filtering.
Although some of them are not detected because of noise,
the pallet edges still have an important pixel contribution so
they are now easily detected by using Hough transform.

2) Maximum searching in Hough matrix
As it has been discussed in previous sections, a single

pallet edge is required. It has been seen that, at least, one of
the visible sides has a positive angle in polar coordinates,
related to a coordinate system located at the left-bottom
corner of the image. This could be used to restrict the
scanning area of the hough matrix. However, both lines are
searched in order to achive better results. This decission is
due to the fact that some discrete lines of certain slopes
have not a clear linear appearance. The scanning areas for
maximums in the Hough matrix are determined by ρ =
[1920, 3839], which represents the possible distances
between the lines and the origin, and θ = ([159, 312], [316,
469] and [473,626]), representing the line angles. Fig. 7
shows the scanning areas and the correspondence between
matrix indexes and angles. These ranges have been found
with the analysis of a set of images where all boundary
slopes of each side appeared. All this process could be
easily automatized for any linear shape (not only
rectangular) giving the number of sides and angles among
them. A security thin blank space has been defined between
each consecutive area with the aim of avoiding the
discontinuities given by upright slopes. Finally, the
maximum search starts.
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Fig. 7.  Scanning areas of hough matrix of a 768x576 image.

An exhaustive scanning is done all over the area.
Maximums do rarely appear as a single cell with a
maximum value, but as a set of adjacent cells with the same
value. Therefore, for each region of adjacent cells with the
same maximum value, the gravity centre is calculated and
stored as a local maximum. However, only the maximums
that overcome a fixed threshold are considered. This
minimum value has been fixed to 20 (what it means that
lines with less than 20 pixels are not considered). Finally,
the local maximum with the highest value is selected as the
largest line in the image. Thus, a single edge of both pallet
sides is presumed to be detected.

IV. 3D RECONSTRUCTION

A. Coplanar Tsai calibration

When the segment of one of the sides of the pallet, which
are in contact with floor, has been detected in the image, its
3D real position in the world has to be computed in order to
get the 3D position and orientation of the pallet. The
method chosen is a transformation algorithm to get the 3D
coordinates of  2D points from a single image. A camera
calibration algorithm is required to calculate the
relationship between the 2D points and the corresponding
3D optical rays. The Coplanar Tsai calibration method has
been used [9]. This algorithm presumes that all the
reconstructing points are placed in a plane, which coincides
with the calibrating plane. Therefore, this method only
gives accurate results under these conditions. The problem
treated in this work can easily accomplish this requirement
because the pallet is always on the floor and it can be used
as the calibrating plane. In order to apply the calibration
algorithm a 3D world coordinate system is required.
Although it can be virtually situated everywhere, it is
interesting to set it in the forklift adequately. Moreover, the
camera is located as far as possible from the floor and on
the forklift.

A set of 3D sample points (minimum 6, due to the
number of variables involved) from the floor must be
measured referred to the origin of the world coordinate
system, trying to spread them to cover all the image scope,
where the pallet can be located. The larger is the number of
sample points the more accurate the transformation between
2D and 3D will be. Then, the 2D correspondences of every
3D point is measured in the image. Once the set of 3D
points and their 2D correspondences are known, the camera
can be calibrated by using the co-planar algorithm proposed
by Tsai [9]. When the camera is calibrated, two main
transformations can be applied: a) given a 3D point, its 2D
projection on the image plane can be predicted; b) given a
2D point, its optical ray starting from the optical center of
the image and passing through the 2D projection and the 3D
point can be computed. The 3D position of every point
lying on the floor can be computed intersecting the optical
ray with such a floor. The, the position of the pallet related
to the forklift (world coordinates) can be easily computed.

B. 3D Reconstruction of the pallet

As result of the 2D-edge localization process, both end
points of the main segment in the image are known.
Besides, it is known that both points lie on the floor, so the
equation of the floor with respects to the world coordinate
system is also known. This information is enough to
calculate the rest of pallet points. Once we have the 3D
coordinates of the detected points, the distance between
them can be calculated. This distance represents the
longitude of one of the pallet sides. The average dimensions
of the pallets must be known and stored as part of the pallet
model. The pallets used in our application have the largest
side in the forking part, which is about 1 meter long. The



shorter side is about 0.8 m. Therefore, analyzing computed
distances, the forking side of the pallet can be detected. The
rest of the pallet can be reconstructed by simple scaling and
rotating adequately the edges of the pallet.

V. TRAJECTORY CALCULATION

Once the 3D information of the pallet relative to the
vehicle is obtained, a trajectory strategy to fork the pallet
has to be appointed. The simplest trajectory consists on
dividing it into two linear segments. The goal is to fork the
pallet from the forking side close to the vehicle (Note every
pallet has two forking sides). In Fig. 8 a schema of this kind
of trajectory is shown [10].
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Fig. 8.  Linear trajectory to fork the pallet.

In order to achieve such a trajectory, two couples of
rotation-displacement operations are defined. The rotations
are defined around de Z-axis, which is orthogonal to the
floor, following the rules of a counter-clockwise system.
The displacements are defined along the X-axis of the
vehicle co-ordinate system. Then, three intermediate steps
are considered to achieve the trajectory. The first step {R}
is the position of the vehicle once the pallet has been
detected. The second step {R’} represents the vehicle
position when the first rotation and displacement and the
second rotation have been made. Last step {P} represents
the position and orientation of the vehicle when the pallet
has been forked. Both rotations are identified by the angles
ϕ  and φ . The angle θ  represents the rotation that the

vehicle might do in the initial step to get orthogonal to the
target side of the pallet. The relationship of these angles is:

θ ϕ φ= +

where θ can be calculated with the following rules:
0 / 2

0 /2

α θ α π
α θ α π

> → = −
< → = +

where tan( )α  is the slope of the target side referred to

XR. α is expressed in the range of [π/2, -π/2]. The
intermediate point of the trajectory {R’} is computed so that
XR’ is pointing to the target and located at a predefined
distance with respect to it. Thus, the second segment
displacement is always constant. In order to calculate the
motion parameters, the transformation matrices between the
three co-ordinate systems are used:
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with respect to (*). Observing Fig. 8 matrix R
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Where R R
X Y( P  , P )  are the co-ordinates of the central point

of the target side of the pallet (origin of {P}) referred to
{R}, d is the predefined distance between the origin of {P}
and the origin of {R’}.  Therefore, the co-ordinates of the
intermediate point of the trajectory (origin of {R’}) are

R R(-d·cos + Px, -d·sen + Py)θ θ

Finally, the rest of parameters can be computed:
R R  = ATAN2(-d·sen + Py / -d·cos + Px)ϕ θ θ  =  - φ θ ϕ

R 2 R 21 (-d·cos ) (-d·sen )x yt P Pθ θ= + + + t2 = d

where t1 and t2 are the two displacements along the XR

and XR’ axis of the vehicle, respectively. The sequence of
transformations to achieve the trajectory is: rotation ϕ,
displacement t1, rotation φ and displacement t2.

VI. EXPERIMENTAL RESULTS

A Visual C++ application has been developed to study
the performance of the whole process. All the different
steps have been implemented from colour segmentation till
trajectory calculation. With the aim of reducing the design
time, the forklift has been implemented in a mobile robot
model Pioneer2 of ActivMedia,  and a camera has been
assembled on its top. This article describes only a part of a
huge project financed by the local government, which
integrates up to 7 research groups. Due to the difficulty to
have the autonomous forklift all the time available in our
university, as a first approach we have simulated its
behavior in such a mobile robot.

A set of sample situations (varying the position and
orientation of the pallet with respect to the vehicle) have
been tested in the laboratory, where the environmental
conditions have been adapted to simulate an industrial
warehouse. Walls and floor colours have been chosen
(white for the walls and green for the floor due to their easy
segmentation), and the illumination system is light
controlled. Such conditions have been discussed and
accepted by the enterprises supporting the project and
considered as really low-cost measures.

The study has addressed that the discrepancy between
defined and real intermediate points depends on an inherent
error produced by the control architecture of the robot, but
also an error generated in the pallet localization step. The
first component of the error has not been treated because it
was not the aim of this work (other research groups are
working in control architectures and sensor data fusion) and
it is assumed to be small. The error due to the imprecision



of the pallet localization method has been studied. An
obvious result is that the larger is the distance between the
pallet and the robot, the higher is the error between
predicted and real pallet position.

Table I shows the real and the calculated world
coordinates of both points of the detected side in a set of
images, as well as the real and calculated longitude of the
side, besides the errors produced by the system (all in mm).

TABLE I
PALLET 3D LOCALIZATION RESULTS

Real points Calculated points
X1 Y1 X2 Y2 X1 Y1 X2 Y2

1909 1105 2254 169 1916 1084 2335 180
2049 -40 1909 -804 2078 -33 1928 -801
2311 0 2533 -748 2373 -1 2560 -747
2408 703 2136 -28 2409 702 2115 -59
2522 166 2311 -804 2565 178 2353 -809
2713 402 2755 -595 2722 392 2766 -577
2713 402 3087 -502 2742 399 3135 -540
3153 180 3014 -804 3093 186 3033 -810
3416 378 3416 -402 3467 376 3460 -410
3571 763 3416 0 3677 765 3439 -34
4689 374 4220 -506 4333 250 4521 -538

Errors Side longitude
X1 Y1 X2 Y2 Real Calculated
-7 21 -81 -11 1000 996
-29 -7 -19 -3 800 808
-62 1 -27 -1 800 793
-1 1 21 31 800 842
-43 -12 -42 5 1000 1009
-9 10 -11 -18 1000 969
-29 3 -48 38 1000 1018
60 -6 -19 6 1000 997
-51 2 -44 8 800 812

-106 -2 -23 34 800 860
356 124 -301 77 1000 810

This table is only a summary of a bigger test where 50
different pallet orientation and positions were proved. If
there is not an important loss of the pallet geometry in
segmentation, the discrepancy between real and calculated
points has an average of 31.5mm along the x-axis and
12.5mm along the y-axis, with a standard deviation of
21.7mm and 10.1mm, respectively (see Fig. 8). The
discrepancy has been computed when the pallet is close to
the vehicle (up to 3 m). The error of the x component is
larger because the range of distances along this axis is also
bigger. Note that the difference between both pallet sides is
200 mm, so the system can keep an accurate identification
of the forking side of the pallet. Besides, if the
segmentation process erodes the pallet edges, the forking
side identification decreases considerably. However, this
occurs only when the pallet is far from the vehicle. Then,
the strategy consists in approaching the vehicle to the pallet
and, then, recalculating the trajectory when the pallet is
close to 3 meters. The idea of this strategy is that the
orientation of the pallet is not important until it is separated
less than a certain distance from the vehicle, while if the
distance is larger, the application only tries to calculate the
mass center of the pallet. Before calculating the mass
center, the statistical technique of the median is applied to
remove possible remaining noise. The mass centre is used
to calculate the approaching trajectory. Once the distance
between pallet and vehicle is less than 3m, the detection
process is used. If the dimensions of the detected pallet do

not fit the pallet model, the processed image is rejected and
a new one is grabbed, introducing a sort of feedback.

VII.  CONCLUSIONS

This article describes a vision system useful for
autonomous forklift vehicles in industrial environments.
The application is based on accurate pallet segmentation
based on its colour and geometric characteristics. A
trajectory to fork the pallet is calculated based on its 3D
position and orientation.

The pallet segmentation is one of the key points of the
process. There are more powerful algorithms of feature
selection and better discrimination functions than the linear
ones that have been used. Although the results obtained
with linear tools have been quite accurate, we are interested
in testing other segmentation methods, like textures, that
could improve the pallet segmentation when it is far from
the vehicle. Another aspect related with the vision problem
is the scene illumination. Moreover, the system was tested
in light uncontrolled environments with the aim of
observing its robustness, but the obtained results were really
discouraging. Once more, a good illumination system is
really required to obtain accurate results.

Related to 3D computation, other calibration algorithms
should be tested to survey their accuracy. Moreover, the
trajectory proposed is robust but quite simple so that some
other more complex, like cubic splines, should be studied.

Finally, we are also thinking in a continuous vision
feedback system to adapt the trajectory dynamically. Thus,
erroneous pallet detection could be isolated. In summary, a
first approximation to the problem has been developed.
Hereafter, the aim is to develop a robust system based on
the methods here described.

VIII. REFERENCES

[1] B.G. Batchelor, F.M. Waltz, Machine Vision Systems Integration in
Industry, The International Society for Optical Engineering, 1991, vol.
1386.

[2] J.Salvi, E. Mouaddib and J. Batlle, “An overview of the advantages
and constraints of coded pattern projection techniques for autonomous
navigation,” IEEE Int. Conf. on Intelligent Robots and Systems, sept.
1997, vol. III, pp. 1264-1271.

[3] M. Dash and H. Liu, “Feature selection for classification”, Intelligent
data analysis, vol. 1(3), 1997.

[4] J.Freixenet, J.Martí, X.Cufí and X.Lladó, “Use of decision trees in
colour feature selection. Application to object recognition in outdoor
scenes,” in Proc. of the IEEE Int. Conference on Image Processing
(ICIP) , Sept. 2000, vol. 1 pp. 800-803.

[5] G.J. McLachlan, Discriminant analysis and statistical pattern
recognition , Wiley-InterScience Publication, 1992.

[6] X.Lladó,J.Martí,J.Freixenet and X.Muñoz, “Features selection using
genetic algorithms,” 3rd Catalan Conference on Artificial Intelligence,
Oct. 2000, pp. 152-156.

[7] W.K.Pratt, Digital Image Processing, 2on Edition. Wiley-InterScience
Publication, 1991.

[8] R.C. Aggarwal, R.K. Shevgaonkar and S.C Sahasrabudhe, “A fresh
look at the Hough transform,” Pattern Recognition Letters, vol. 17, pp
1065-1068, 1996.

[9] R.Y. Tsai. “A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and
lenses,” IEEE Journal of Robotics and Automation , aug. 1987, vol. 3,
no.4, pp. 323-344.

[10] O. Faugeras, Three-Dimensional Computer Vision: a Geometric
Viewpoint, The MIT Press, 1993.
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Xavier Armangué, Rafael Garćıa, Joan Batlle, Xavier Cuf́ı,
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Resum

Utilitzant una placa de processament d’imatges que
disposa d’una FPGA programable amb VHDL, s’ha
implementat un algorisme que permet el seguiment de
5 microrobots i d’una pilota. S’utilitza aquesta placa
per poder localitzar els jugadors 50 vegades/segon.
Aquest mateix algorisme implementat per software
dóna un rendiment molt baix degut al seu alt cost
computacional.
La placa realitza la tasca d’etiquetar els píxels i
l’algorisme s’encarrega de localitzar els robots. Quan
es té un robot localitzat es centra una finestra de
seguiment sobre el jugador i es calcula el seu centre de
masses. Les coordenades dels jugadors són enviades a
un sistema de control encarregat de prendre les
decisions necessaris per cada un dels jugador.

1 Introducció

Dins el Departament d’Electrònica, Informàtica i
Automàtica de la Universitat de Girona s’ha
desenvolupat una placa de processament d’imatge [1],
que permet la implementació d’algorismes paral∙lels
mitjançant un llenguatge de desenvolupament de
hardware: el VHDL. Aquest llenguatge permet la
programació concurrent mitjançant la creació de
processos que s’executen en paral∙lel. Les passes a
seguir per tal de desenvolupar un algorisme són molt
semblants a la programació tradicional, però
diferenciant-se en que finalment, en lloc d’un codi
executable, es sintetitza una lògica que queda
mapejada en hardware sobre un dispositiu
programable. Aquest sistema de visió s’utilitzarà per
realitzar el seguiment d’un equip de microrobots
cooperants que jugen a futbol [2].

És un requeriment indispensable del sistema el que
funcioni en temps real, de tal manera que la única
limitació del seu rendiment vingui fixada per
l’estàndard de vídeo (50 imatges/segon). Aquest
sistema serà utilitzat per l’equip de la Universitat de
Girona que participa a la RoboCup F-180 League on
competeixen 5 contra 5 robots [3].
Per arribar a aquest objectiu cal realitzar un
preprocessament de la imatge, a continuació aplicar un
algorisme per trobar i fer els seguiment dels jugadors i
finalment enviar les coordenades al sistema que
s’encarrega del control dels jugadors. En la literatura
es poden trobar diferents implementacions per
solucionar aquest problema [4,5]. Nosaltres hem optat
per un preprocessat de la imatge consistent en etiquetar
la imatge en funció del valor RGB de cada píxel. La
forma d’etiquetar la imatge està lligat a l’arquitectura
de la nostra placa de processament.
Les dimensions i colors del camp i dels robots estan
fixats per les normes de la competició. El sistema que
utilitza l’equip de la Universitat de Girona per realitzar
la competició consta de:
• Un camp de joc.
• Una camera 3 CCD situada a sobre del camp

sobre la vertical del centre del camp.
• Un PC encarregat del sistema de visió per trobar

la posició dels jugadors i de la pilota. Aquest PC
té instal∙lada la tarja de processament.

• Una segon PC que llegeix les coordenades dels
jugadors i de la pilota i fent servir tècniques
d’intel∙ligència artificial genera les consignes que
s’han d’enviar a cada robot via radio.

• Un transmissor de radio.

La carcassa dels jugadors té forma cilíndrica amb un
diàmetre de 12,5 cm. A la tapa s’hi ha col∙locat unes
taques de colors per identificar els jugadors. Al centre
hi ha un cercle de color amb el diàmetre equivalent de
4,1 cm que pot ser de color groc o blau.



Color orientació
(lila)

Color posició
(groc)

Colors
identificació

(verd)

Figura 1 De esquerra de dreta: carcassa del robot;
tapa la carcassa; robot

Per determinar quina és la orientació del jugador
s’utilitza un cercle de color lila que és comú a tots els
jugadors del mateix equip. Per fer la identificació de
cada un dels jugadors s’utilitza un tercer color, el verd,
en funció del número de cercles de color verd i de la
seva posició es pot conèixer quin jugador és. De la
identificació de cada un dels jugadors se n’encarrega
una aplicació software i es per això que el sistema de
seguiment no cal que segmenti el color verd. A la
Figura 1 es pot observar un robot amb la seva carcassa
i els colors que l’identifiquen.

A/D D/A

Camera

Monitor

LUT
FPGA

PC-BUS

24

24

16

8

Figura 2 Diagrama de blocs de la tarja de
processament

2 Definició de subsistemes

Per realitzar el seguiment dels 5 jugadors cal
particionar el sistema per dividir les diverses funcions
a realitzar.
• Senyals de control.
• Comunicació amb el PC.
• Segmentació de la imatge.
• Seguiment de 5 jugadors i la pilota.

2.1 Senyals de control

Aquest subsistema s’encarrega, bàsicament de generar
les senyals de sincronisme horitzontal (SYNC_H), i de
sincronisme vertical (SYNC_V) i les coordenades del
píxel actual. La senyal SYNC_H serveix per indicar a
la resta de subsistemes que ho necessitin quan s’ha
processat una línia sencera de píxels. La senyal
SYNC_V és l’equivalent a la senyal SYNC_H però
ens indica quan s’ha processat un quadre sencer de la
imatge. Aquest procés també s’encarrega d’anar
comptant els píxels a mesura que van arribant per la
camera per saber en tot moment quina és la
coordenada del píxel actual.

2.2 Comunicació amb el PC

EL procés encarregat de la comunicació amb el PC
realitza 3 funcions:
• Llegir les senyals de control enviades pel PC i

enviar-les al subsistema afectat.
• Recollir les dades calculades pels altres

subsistemes i enviar-les al PC quan aquest llegeixi
de la tarja.

• Emplenar la memòria de la placa (LUT) amb la
taula de segmentació generada pel PC.

2.3 Segmentació de la imatge

Aquest subsistema és l’encarregat de processar la
imatge d’entrada provinent de la camera. Per realitzar
la segmentació s’utilitza una taula de segmentació que
s’emmagatzema a una memòria (LUT) de la tarja de
processament. Per a cada valor RGB s’assigna una
etiqueta. Per aquesta aplicació cal utilitzar 3 etiquetes:
per la posició del jugador, per l’orientació dels jugador
i per  posició de la pilota. Per eliminar soroll les
etiquetes són filtrades. El filtre utilitzat és una operació
morfològica open 2x2.
A més a més, aquest subsitema es l’encarregat de
generar una imatge de sortida per poder visualitzar el
resultat del seguiment. S’encarrega dibuixar les
finestres de seguiment dels jugadors i de la pilota per



tal de tenir una realimentació visual del funcionament
del sistema.

2.4  Algorisme de seguiment

L’algorisme utilitzat per localitzar el cinc jugadors és
el següent:
1. A mesura que arriben píxels es mira si estan

etiquetats amb l’etiqueta del color de l’equip.
Quan arriben un conjunt de píxels suficients per
poder afirmar que s’ha localitzat un jugador es
finalitza la busqueda en aquesta imatge i es guarda
la coordenada del jugador.

2. Quan es comença la captura de la següent imatge
es centra una finestra sobre la posició on s’havia
localitzat el primer jugador. Per trobar el segon
jugador es torna a buscar píxels etiquetats amb el
color de l’equip però que quedin fora de la finestra
de seguiment del primer jugador. En el moment
que el nombre de píxels amb l’etiqueta de l’equip
sigui superior a un llindar establert es guarden les
coordenades del segon jugador.

3. Quan arribin els píxels de dins de la finestra del
primer jugador cal calcular el centre de masses
dels píxels etiquetats amb el color de la posició
del jugador i el centre de masses dels píxels
etiquetats amb el color de l’orientació del jugador.
Amb aquest dos punts es té una mesura de la
posició i de l’orientació del jugador.

4. Aquest procés es repeteix fins a localitzar tots els
jugadors tenint en compte que per trobar un nou
jugador no es tenen en compte els píxels que estan
dins de les finestres dels jugadors ja localitzats.

5. Passades 5 imatges, si tot ha anat bé, ja s’han
localitzat tots els jugadors i a la sisena imatge ja
es disposa de la posició i orientació de tots els
jugadors. Si en algun moment es perd la posició
d’algun jugador es tornen a buscar píxels
etiquetats amb la posició del jugador a dins de tot
el camp i fora de les finestres dels altres jugadors.

Localitzar
nou jugador

Calcular centre
de masses de la

 posició del
jugador 1

Finestra
jugador 1

Calcular centre
de masses de
l’orientació del

jugador 1

Calcular centre
de masses de la

 posició del
jugador 5

Finestra
jugador 5

Calcular centre
de masses de
l’orientació del

jugador 5

Control del
seguiment dels

5 jugadors

Coordenades de la
posició i l’orientació

dels 5 jugadors
(nou resultat cada 20 ms)

.

.

.

Coordenades d’un
nou jugador

Coordenades calculades
de la posició del jugador 1

Coordenades calculades
de la posició del jugador 5

Coordenades de la
posició del jugador 5

Coordenades de la
posició del jugador 1

Coordenades i
etiqueta del nou píxel 

(nova dada cada 100 ns)

Píxel dins de la finestra 5

Píxel dins de la finestra 5

Píxel dins de la finestra 1

Píxel dins de la finestra 1

.

.

.

Figura 3 Diagrama de flux de dades pel seguiment del 5 jugadors. Tots els blocs treballen en paral∙lel.
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(c) (d)

 

(e) (f)

Figura 4 Evolució temporal de l’algorisme: localització inicial dels jugadors i la pilota. (a) A la primera
imatge cal localitzar el primer jugador i la pilota (b) A la següent imatge ja s’ha trobat el primer jugador i
la posició de la pilota (c) A la tercera imatge es troba el segon jugador (d) Després es localitza el quart
jugador (e) Passades 5 imatges ja es tenen els 5 jugadors localitzats (f) A la sisena imatge ja s’està
realitzant el seguiment.



3 Visualització de la imatge processada

Utilitzant la taula de segmentació de la LUT la imatge
es segmentada i només ens quedem amb els píxels del
color de que indiquen quina és la posició i orientació
dels jugador i amb el color de la pilota. Visualitzant la
imatge etiquetada s’aconsegueix que els píxels que són
de color fosc quedin ressaltats i es vegi millor si la
imatge té soroll. Per l’eliminació del soroll s’ha
d’activar el filtratge morfològic.
Si observem una imatge de tot el camp com la Figura 5
es por observar que hi ha tota una zona on no cal
realitzar el seguiment dels jugadors perquè queda fora
dels límits del camp, es per això que cal indicar a la
tarja de processament on està situat el camp. Els píxels
que queden fora del camp són depreciats, no s’utilitzen
per fer el seguiment dels jugadors.

Figura 5 Seguiment dels 5 jugadors i de la pilota
per la tarja de processament

Un cop es té la imatge segmentada, etiquetada i
filtrada es pot començar a aplicar l’algorisme de
seguiment.
Sobre cada jugador que es realitza el seguiment es
dibuixa una finestra de color blanc. Sobre la pilota es
dibuixa una finestra de color vermell (veure Figura 5).
El host (ordinador on està connectada la tarja de
processament) llegeix les coordenades de les posicions
i orientacions dels jugadors i de la posició de la pilota.
Aquestes dades es passen al sistema de control per
decidir quina acció ha de prendre cada jugador. Les
dades llegides pel host es representen visualment a la
Figura 6.

Figura 6 Seguiment de 5 jugadors i de la pilota pel
host

4 Anàlisi temporal

A la Figura 7 es pot observa quin és e diagrama de
temps de l’algorisme.

• Captura de la imatge: A l’instant de temps t=0 es
comença de capturar la imatge, després de
capturar les 287 línies amb informació de vídeo es
finalitza la captura (t=18368 µs). La mitja línia
que també conté informació de vídeo no es té en
compte per no complicar la lògica.

• Etiquetatge: L’etiquetatge de la imatge va
desfasada respecte la captura 20ns  aquest retard
és produeix perquè cal accedir a la LUT per
obtenir les etiquetes i el temps d’accés a la LUT
és de 20 ns. L’etiquetatge de la imatge finalitza al
mateix tems que la captura.

• Filtratge: Una operació morfològica open 2x2
implica aplicar un erode a la imatge original, i a
continuació un dilate a la imatge resultant. La
concatenació d’aquestes dues operacions genera el
mateix retard (en termes dels píxels que ens va
passant la càmera) que si passéssim un únic filtre
3x3. Per poder passar un filtre 3x3 no es pot donar
una valor al píxel central fins que no es coneguin
els valors de tots els elements de la matriu 3x3. El
fet de passar el filtre fa que es produeixi un retard
d’una línia i un píxel respecte a la imatge
capturada (64,1 µs).  El filtratge finalitza quan
acaba la captura de la imatge.

• Acumulació de coordenades: a mesura que les
etiquetes són filtrades, quan es troba una etiqueta
que pertany algun jugador o a la pilota les seves
coordenades són acumulades i s’incrementa el
número de píxels



Comunicació amb el PC
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Filtrat

Captura de la imatge
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20 ns 64,1 µs
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Figura 7 Diagrama de temps

• Càlcul del centre de masses: Al finalitzar
l’acumulació de les coordenades ja es pot
començar a calcular els centres de masses. Per
calcular-lo cal dividir la coordenada acumulada
per número de píxels de l’objecte corresponent.
Com que es fa el seguiment de 5 jugador i de la
pilota cal trobar 11 coordenades (5*posició
jugador+5*orientació jugador+1*posició pilota) i
com que cada coordenada està formada per 2
valors cal realitzar 22 divisions. Per seleccionar
els valors a dividir i realitzar la divisió són
necessaris 20 cicles del rellotge de 10 MHz, per
tant per realitzar les 22 divisions calen 44 µs (22
divisions*20 cicles*100 ns).

• Comunicació amb el PC: quan ja s’han calculat
els centres de masses el PC els ha de llegir. El
temps que pot tardar a llegir les dades depèn
completament de l’ocupació del PC i del sistema
operatiu. Si el PC està completament dedicat a
llegir les dades de la tarja i tenint en compte que el
BUS ISA funciona a 10 MHz, la lectura del centre
de masses pot tardar 3,3 µs (22 dades*100 ns+11
dades per alliberar el BUS*100ns). Donat que
treballem amb un sistema operatiu multitasca però
no temps real (Windows 98), és difícil estimar el
temps necessari perquè el host porti a terme la
lectura de les dades. Això dependrà no només de
la velocitat de la CPU, sinó també de la
planificació de l’execució dels threads, de la
prioritat d’aquests i de la càrrega del sistema,
generalment el host està realitzant altres tasques
com visualitzar la imatge de vídeo, filtrar les
dades obtingudes, realitzar prediccions sobre el
moviment dels jugadors i de la pilota. Tot això pot
retardar la lectura de les dades. El retard màxim
que es pot permetre el host és de 20 ms, si tardés
més es perdrien dades. Les proves realitzades han

demostrat que no hi ha pèrdua rendiment a menys
que es despleguin els menús de l’aplicació.

5 Experiments realitzats

Per comprovar quina és la precisió del sistema s’han
realitzat tota una sèrie proves per comprovar la
precisió de les dades. Primer de tot cal calcula quina és
la relació entra les dades obtingudes i el món real. Les
distàncies dels objectes d’una imatge es mesuren en
píxels, coneixen les mides del camp en píxels i les
mides del camp amb centímetres es pot trobar la
següent correspondència:

cm 815,0
5,152187

1

cm 617,0
274444

1

cm 274x152,5 :scentimetreen  camp del Mides

píxels 444x187 :píxelsen  camp del Mides

=⇒=

=⇒=

y
y

x
x

Veient aquestes dades, una variació d’un píxel és de
0,617 cm en coordenades X i de 0,815 cm en
coordenades Y.

Un altre aspecte a tenir es compte és el problema del
càlcul d’angles. La imatge que genera la camera té una
relació de 4:3, en canvi la imatge processada per la
tarja i sobre la qual es realitzen les mesures té 522x287
píxels. Cal realitzar una correcció de les dades per
corregir aquesta deformació.
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Figura 8 Error en el càlcul dels angles

S’ha de escalar la imatge de la tarja perquè compleixi
les proporcions de 4:3. Les operacions a realitzar per
corregir la mesura dels angle són les següents:
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S’ha realitzar una aproximació per treballar amb el
mateix número de línies d’una quadre d’una imatge de
l’estàndard de vídeo, se suposa que la tarja de
processament mesura 288 línies.

Figura 9 Pilota en moviment: zoom sobre una
imatge entrellaçada de 768××××576 pixels.

La imatge de vídeo que està entrellaçada, cada imatge
la formen dos quadres, un amb les línies imparells i
l’altre amb les línies parells. Quan es captura una
imatge d’un objecte en moviment i s’entrellacen els
dos quadres el resultat és que s’obté un objecte
deformat perquè els dos quadres s’han capturat en
instant de temps diferents. A la Figura 9 es pot
observar quin és el resultat de capturar una imatge amb
la pilota en moviment. Si es calcula el centre de
masses d’aquesta imatge en donarà un punt intermig
entre el centres de masses del primer i del segon
quadre. Per evitar aquest problema es calcula el centre

de masses a cada quadre, d’aquesta manera s’obté una
mesura més exacta de la posició de la pilota en
moviment i encara que es perdi resolució vertical.

6 Resultats

Per veure com són les dades obtingudes pel seguiment
s’han recollit dades sobre la posició de la pilota i dels
jugadors.
Si es col∙loca la pilota en una posició estàtica, en
teoria, la mesura hauria de ser sempre la mateixa. A la
pràctica es produeixen petites variacions. A la Taula 1
es poden observar els principals valors estadístics de
les dades obtingudes. Observant aquestes dades es veu
que la variància de les coordenades és molt petita.

Coordenada  X Coordenada  Y
Màxim 419 199
Mínim 416 195
Mitjana 416,84 196,676
Variància 0,3679 0,3002

Taula 1 Estadístics de la posició de la pilota
(mesures en píxels)

Realitzant la mateixa prova amb un jugador els
resultats obtinguts són mot similars (veure Taula 2 i
Taula 3).

Coord. X
posició

Coord. Y
posició

Màxim 415 118
Mínim 413 117
Mitjana 414,0689 117,9655
Variància 0,0785 0,03352

Taula 2 Estadístics de la posició del jugador
(mesures en píxels)

Coord. X
orientació

Coord. Y
orientació

Màxim 417 124
Mínim 415 121
Mitjana 416,2827 122,8069
Variància 0,3153 0,2124

Taula 3 Estadístics de l’orientació del jugador
(mesures en píxels)

A continuació s’ha comprovat quina és la resposta del
sistema de seguiment amb objectes mòbils. A la Figura
10 es representen les dades obtingudes de la pilota,
inicialment està parada, un moment donat se li dona un
cop, avança, realitza un doble rebot contra una
cantonada del camp i surt més esmorteïda. Els resultats



són molt bons ja que la pilota segueix trajectòries
rectilínies i les dades obtingudes descriuen trajectòries
rectilínies.

Figura 10 Coordenades d'una pilota en moviment:
la línia contínua correspon a la coordenada X, la

discontínua correspon a la Y

La prova realitzada amb el jugador ha consistit en fer-
li donar una volta i recollir dades sobre les
coordenades de la posició, de l’orientació i realitzar el
càlcul de l’angle de l’orientació. La Figura 11 estan
representades les dades d’un jugador realitzant una
trajectòria circular, amb aquestes dades s’ha calculat
l’angle de l’orientació de la Figura 12. Les
coordenades tenen una variació molt petita però
l’angle resultant té unes oscil∙lacions molt grans, que
farien difícil el control dels robots.

X

Y

Figura 11 Coordenades d'un jugador realitzant una
trajectòria circular: la línia contínua correspon a

les coordenades de posició, i les discontínues
corresponen a l’orientació

Figura 12 Angle d'un jugador realitzant una
trajectòria circular

Per mirar de suavitzar aquests errors en el càlcul de
l’angle s’ha aplicat un filtre d’ordre 1 [5] a les mesures
de la coordenades. L’equació d’aquest filtre és la
següent:

( )11
~~~

−− −⋅+= kkkk XXkXX (2)

L’estimació d’una coordenada en un instant temps k és
funció de l’estimació anterior i de la diferencia entre la
dada actual i l’estimació anterior. El paràmetre k
s’utilitza per suavitzar més o menys l’efecte del filtre,
per valors a prop de 1 es dona més importància a la
dada actual i per valors a prop del 0 es dona més
importància a l’estimació anterior. La Figura 13
s’observa quin és el resultat de l’aplicació d’aquest
filtre a les coordenades d’orientació i posició amb una
k=0.2.
Si es comparen les dades obtingudes del càlcul de
l’angle de la Taula 4 es pot observar que la variància
disminueix notablement utilitzant el filtre.

Angle Angle Filtrat
K=0.2

Màxim 90 75,3767
Mínim 61,1134 66,1365
Mitjana 71,2723 71,3421
Variància 34,4243 3,5360

Taula 4 Estadístics de l'angle del jugador
 (mesures en graus)



Figura 13 Angle de l'orientació filtrat

7 Conclusions

Els principals problemes que han sorgit durant la
implementació són la limitació d’espai de programació
de la FPGA i la necessitat de que el sistema de
seguiment funcioni de 50 imatges/segon. Com a
conseqüència d’aquesta limitació d’espai les
seguiment dels jugadors contraris no es pot realitzar
amb aquesta FPGA.
Els objectius que s’han complert són:
• Segmentar la imatge.
• Realitzar el seguiment dels 5 jugadors de l’equip

propi per trobar-ne la posició i l’orientació.
• Realitzar el seguiment de la pilota.
• Enviar totes les coordenades al PC.
• Visualitzar els resultats.
• Aconseguir un temps de cicle de 20 ms per tot

l’algorisme.
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