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Abstract 
 
Purpose: Magnetic resonance imaging is nowadays the hallmark to diagnose multiple sclerosis (MS), characterized by 
white matter lesions. Several approaches have been recently presented to tackle the lesion segmentation problem, but 
none of them have been accepted as a standard tool in the daily clinical practice. In this work we present yet another tool 
able to automatically segment white matter lesions outperforming the current-state-of-the-art approaches. 
 
Methods: This work is an extension of Roura et al. [1], where external and platform dependent pre-processing libraries 
(brain extraction, noise reduction and intensity normalization) were required to achieve an optimal performance.  Here 
we have updated and included all these required pre-processing steps into a single framework (SPM software). 
Therefore, there is no need of external tools to achieve the desired segmentation results. Besides, we have changed the 
working space from T1w to FLAIR, reducing interpolation errors produced in the registration process from FLAIR to 
T1w space. Finally a post-processing constraint based on shape and location has been added to reduce false positive 
detections. 
 
Results: The evaluation of the tool has been done on 24 MS patients. Qualitative and quantitative results are shown with 
both approaches in terms of lesion detection and segmentation. 
 
Conclusion: We have simplified both installation and implementation of the approach, providing a multiplatform tool1 
integrated into the SPM software, which relies only on using T1w and FLAIR images. We have reduced with this new 
version the computation time of the previous approach while maintaining the performance.  
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1. Introduction 
 

Magnetic resonance imaging (MRI) is a powerful and essential tool for understanding brain anatomic abnormalities. For 
instance, multiple sclerosis (MS) is characterized by demyelination presenting white matter lesions (WML). Detecting 
these WML is crucial for the MS diagnosis [2]. However, performing this task manually is tedious and very time 
consuming and may lead to inaccuracies due to evident human errors, inter- and intra-rater variability.  
 
Automatic and semiautomatic tools to perform this task are numerous [3], but none of them have emerged as a standard 
on the daily clinical practice. The literature includes both supervised approaches [4,5,6], which require a training step, 
and unsupervised strategies [1,7]. The work presented here is an extension of a previous unsupervised approach 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  eloyroura@eia.udg.edu; phone +34 972 41 9812; http://eia.udg.edu/~eloyroura 
1 http://atc.udg.edu/salem/slsToolbox  
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introduced in Roura et al. [1]. The novelty here is that all the steps required for the WML segmentation are integrated 
into a single framework, which works in the SPM software2.  

 
 

2. Methods 
 
2.1. Data 
A dataset containing 24 patients with Clinically Isolated Syndrome (CIS) was used to evaluate the performance. The 
dataset is challenging since lesion volume per patient was very small. The scanner used was the 3T magnet with a 12-
channel phased-array head coil (Trio Tim; Siemens, Germany). The following pulse sequences were obtained: 1) 
transverse proton density and T2w fast spin-echo (TR=2500ms, TE=16-91ms, voxel size=0.78x0.78x3mm3); 2) 
transverse fast T2-FLAIR (TR=9000ms, TE=93ms, TI=2500ms, flip angle=120º, voxel size=0.49x0.49x3mm3); and 3) 
sagittal 3D T1 magnetization-prepared rapid gradient echo (MPRAGE) (TR=2300ms, TE=2ms; flip angle=9º; voxel 
size=1x1x1.2mm3). Lesions were annotated by experts on FLAIR images with a lesion volume variation (mean ± 
standard deviation) and range (min-max) of 4.1±4.7 [0.18− 18] ml. 
 
2.2. Pre-processing 
To deal with brain MRI analysis several factors must be considered depending on the final application. Since we focus 
on MS WML segmentation, non-brain tissues may affect the intensity distribution of our region of interest. Moreover, 
during the acquisition the scanner also introduces noise and undesired artifacts leading to the well-known intensity 
inhomogeneities. In addition and due to the acquisition time, different sequences may present slightly patient 
movements, which may be appreciated between modalities. Hence, as stated in previous approaches [1,4,5,6], several 
pre-processing steps should be applied to deal with these issues: 
 

1) Skull stripping and tissue segmentation, obtained here by means of the SPM tissue segmentation algorithm 
[8]. As the result is a probability map (see Figure 1), we performed a maximum likelihood between the three 
main tissue classes: white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF).  To obtain the brain 
mask we apply a probability threshold set at 0.5 [9,10].  

2) Image denoising is applied in order to enhance and restore the MRI image. We smooth the image histogram by 
using the 3D Matlab implementation3 of the anisotropic diffusion filter of Perona and Malik [11]. 

3) Bias correction is applied to correct the inhomogeneities. For this purpose, we use a Matlab implementation of 
the bias field correction proposed by Thode et al. [12], which implements the well-known non-parametric, non-
uniform intensity normalization (N3) method [13] as a Bayesian modeling method. 

4) Intra-subject registration to correct spacing and misalignments is solved by using SPM spatial co-registration, 
estimate and re-slice [14]. 

 
2.3. Lesion segmentation 
Following the unsupervised strategy presented in Roura et al. [1], we look for the hyperintensity regions as the outliers in 
the GM tissue of the FLAIR image. First of all, we need to distinguish among the three main brain tissues. This is 
already obtained when performing the skull stripping process via the SPM tissue segmentation on T1w images. 
Afterwards, the hyperintensities are detected by a thresholding in FLAIR images and refinement step which is performed 
twice, where the first iteration takes into account larger and brighter lesions and the second is performed at a lower 
threshold to look for small lesions. The outliers are computed using a threshold defined as: 
 

𝑇ℎ𝑟 =   𝜇 +   𝛼𝜎      (1) 
 
where µ and σ are the mean intensity and the standard deviation of the GM histogram (computed by the full width at half 
maximum) respectively. Candidate lesions are adjusted by the parameter α. As stated in Roura et al. [1], this alpha 
parameter has a strong impact on the results obtained with this approach. However, assuming the GM histogram as 
normal distribution and according to the three-sigma rule, a good trade off of the tool has been observed when 
considering outliers beyond the 99th percentile for the first iteration and 92% for the second. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2  http://www.fil.ion.ucl.ac.uk/spm/  
3	  http://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion--perona---malik-	  
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Originally, three post-processing parameters were used to reduce the false positive (FP) lesions: lesion size, percentage 
of lesion voxels belonging to either WM or GM, and percentage of neighbor lesion voxels belonging to WM. The effect 
of this parameter setting was evaluated in Roura et al. [1], where the authors determined as default values a 60% for each 
ratio and a minimum lesion size of 3mm. However, depending on the 𝛼, these values might need to be readapted, 
especially for the second iteration where those ratios must be increased since the threshold is reduced to detect darker 
lesions which are usually smaller. 
 
In this extended approach we have added a new constraint in order to avoid periventricular inflammatory regions, which 
usually appear as elongated regions. To this end, we have used the maximum probability tissue labels derived from the 
MICCAI 2012 Gran Challenge and Workshop on Multi-Atlas Labeling4. The data was labeled by Neuromorphometrics, 
Inc.5 using MRI from the OASIS project6. This atlas belongs to the standard space used by SMP12 tissue segmentation; 
therefore, one can easily obtain the deformation fields to this space from any subject space. Since we already performed 
this process at the early steps, we are able to apply the inverse deformation fields with a nearest-neighbor interpolation to 
the labels belonging to the ventricles. This procedure allows to pullback any of the brain structures of this atlas (see 
Figure 1). Once the ventricles have been brought to the subject space, we obtain a smoothness region by applying 
morphological operations (dilation and erosion). All the lesions attached to this ventricle region and presenting elongated 
shapes are discarded. In Figure 1 there is an example of this scenario, where we show the ventricles and some elongated 
candidate regions that have been removed. 
 
 
	  
	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  
	  

	  
Figure	   1:	   Scheme	  of	   the	  whole	   pipeline.	   The	   first	   line	   represents	   the	   atlas	   information	   used	  when	   segmenting	   the	  
tissues	  and	  the	  ventricles	  of	   the	  T1w	  image	   in	   the	  second	  row.	  The	  bottom	  row	  shows	  all	   the	  steps	  over	   the	  FLAIR	  
image	  when	  segmenting	  the	  white	  matter	  lesions. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details  
5	  http://Neuromorphometrics.com/ 	  
6	  http://www.oasis-brains.org/ 	  
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As described in Roura et al. [1], a simple iteration of the thresholding	  process	  changing	   the parameter α	  may	  avoid	  
oversegmentation	  of	  lesions	  and	  ensure	  a	  more	  accurate	  application	  of	  the	  post-‐processing	  steps.	  We	  followed	  the	  
same	  strategy	  in	  our	  experimental	  tests.	   
 
 

3. Experimental results 
 

In our evaluation we have used the original FLAIR image space to perform the lesion segmentation, thus the parameter 
configuration differs slightly from the one presented in Roura et al. [1]. The 24 MS patients manually annotated in 
FLAIR images were used to test our approach, comparing the obtained results with those reported in Roura et al. [1] 
using the same patients. 
 
For the first iteration we let the same α=3 reducing λts=0.5 and λnb=0.5, detecting only large lesions. This allows to 
increase the λts and λnb when detecting small lesions, therefore, for the second iteration we set the following parameters: 
α=1.75, λts=0.9, λnb=0.9. The trade-off of this parameter setting has been done in a similar way than in Roura et al. [1]. 
The parameter α has been tested in both iterations from 1 to 3 each 0.1, while λ has been evaluated from 0 to 1 each 0.05. 
 
 
Obtained results are shown in Figure 2, where the following segmentation and detection values were obtained. Average 
Dice Similarity Coefficient (DSC) = 0.35 ± 0.21, True Positive Rate (TPR) = 0.40 ± 0.19 and Positive Predictive Value 
(PPV) = 0.58 ± 0.30. A slightly performance increase with respect to the work of Roura et al. [1] was observed with a 
DSC Δ0.05, TPR Δ0.04 and PPV Δ0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Boxplots representing DSC, TPR, and PPV measures obtained with the Roura et al. [1] and the new proposal. 
 
 
An improvement of the new proposal can be seen in Figure 3, where the FP detections close to the ventricles have been 
removed. Looking at the 3D representation, one can see how the TP is fairly similar while FN and FP are reduced in the 
new approach. The computation time required by each patient is less than 5 minutes. However, nearly 4 of these minutes 
are required by the SPM tissue segmentation step.  
 
Besides, the original approach [1] was tested also with different private datasets at different magnetic field strength (3T 
and 1.5T) in order to prove its robustness. The tool was also compared to the state-of-the-art works evaluating the well-
known MICCAI MS Challenge 2008, for both training and testing dataset (total score = 82.344). We observed better 
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results then those of the state-of-the-art when evaluating the training dataset for the two hospitals (UNC: DSC=30%, 
TPR=68%, PPV=38%; CHB: DSC=38%, TPR=46%, PPV=69%). 
 

 
Figure 3. Qualitative example of the results of the new proposal (1st and 2nd  rows) and the Roura et al. [1] approach (3rd and 4th rows). 
Notice that 1st and 2nd row have lower resolution in z-index, which means that the slices may differ (TP=green, FP=red, FN=yellow).  
 
Novelty of the proposed method 
Given that inflammatory periventricular regions can present elongated hyperintensities in FLAIR images, they can be 
misclassified as MS WML. This issue has been solved as a new post-processing rule to reduce FP. Furthermore, we have 
integrated all the pre-processing steps into the same SPM framework (SPM12 compatible).  
 
 

4. Conclusions and future work 
 

We have introduced an update of the automatic MS lesion segmentation approach presented in Roura et al. [1]. The 
performance has been slightly improved by adding a new restriction, which allows reducing FP detections while 
maintaining TPR. On the other hand, as stated in Roura et al. [1], the use of external pre-processing libraries, sometimes 
not easy to install and configure, was advised for an optimal performance of the approach. In this work, we have also 
improved this issue implementing new pre-processing steps which have been integrated into the own SPM framework, 
being therefore a multiplatform MS segmentation tool more straightforward to use. In order to optimize our code, we 
would like to explore the possibility of using a GPU based implementation to achieve the necessary parallelization and 
hardware acceleration. 
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