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Abstract—Accurate extraction of prostate biopsy samples dur-
ing Transectal Ultra Sound (TRUS) guided prostate biopsy is
facilitated with the registration of pre-acquired Magnetic Reso-
nance (MR) images with the Ultrasound (US) images. This paper
proposes a novel method of generating optimal correspondences
to register the MR and US images using Thin-Plate Splines
(TPS) transformation. The correspondence generation method
exploits the prostate shape geometry in both the modalities and
is fully automatic. Normalized Mutual Information (NMI) is
employed for the quantitative determination of optimal number
of correspondences in terms of maximization of registration
similarity. Qualitative registration results, that conform to the
NMI measures are also shown for different numbers of corre-
spondences. Shepard’s interpolation method is used with the TPS
in order to deal with the interpolation error of backward TPS
transformation. The accuracy of our method of correspondence
generation is qualitatively evaluated in comparison with two
intuitive geometric contour sampling methods. An average Dice
Similarity Coefficient (DSC) value of 0.97 ± 0.01 for 4 patient
datasets is obtained for the TPS registration using our novel
method of correspondences.

Index Terms—Prostate biopsy, multimodal registration, au-
tomatic correspondences, thin-plate splines, normalized mutual
information.

I. INTRODUCTION

Prostate cancer among men has been of serious concern
in Europe for the last twenty years. A patient with increased
level of Prostate Specific Antigen (PSA) in blood is advised
for a prostate biopsy that aids in the diagnosis of benign
hypertrophy or cancer. The biopsy procedure is often guided
by TRUS imaging when, clinicians generally extract 10-12
samples strategically from different regions of the prostate
gland. However, the risk of the malignant prostate tissues
remaining uncovered increases with this approach since the
US images do not provide enough contrast between healthy
and malignant prostate tissues [1]. Hence, pre-acquired MR
prostate images of the same patient with better qualities and
contrasts can be registered with the interventional US images
to guide the biopsy procedure [2]–[5].

The prostate may undergo deformations due to the insertion
of the endorectal probe through the rectum during the MR
imaging, inflation of the endorectal balloon, bowel and gas

in rectum, full bladder or different patient positions on the
couch during the imaging procedures. Non-rigid or deformable
registration deals with such prostate deformations between
the modalities. However, deformable registration employing
TPS transform, requires selection of correspondence points on
the moving and reference images for the computation of the
transformation parameters. Some researchers like Lu et al. [6]
and Fei et al. [7] have used manually selected correspondences
to warp MR prostate volumes with TPS registration.

In this paper, we propose a novel approach to establish an
optimal set of correspondence points automatically in the US
and MR modalities to achieve deformable multimodal prostate
registration employing TPS. Salient points on prostate contour
were automatically identified using equal angle sampling by
Padilla-Castañeda and Arámbula-Cosı́o [8]. Yan et al. [9] used
equally spaced salient points on prostate contour based on
Euclidean distance to build a partial active shape model for
segmentation. Our new approach of generating correspondence
points exploits the principal shape components of the seg-
mented prostate contours. The correspondences are generated
in different levels termed as resolutions in the remaining paper.
The optimal resolution of correspondences is determined by
the maximum NMI value after the TPS registrations of all
resolutions. The TPS framework includes the correspondence
localization errors and uses Shepard’s interpolation [10] to
yield a smooth transformation. The accuracy of our correspon-
dence point generation algorithm for registration is evaluated
against two intuitive geometric approaches of prostate contour
sampling. 4 patient datasets are used to validate the results.
The registration results with our approach of generating cor-
respondences shows improved performance over the other
geometric approaches.

The remaining paper is organized as follows. Section II
describes the two geometric sampling methods and the novel
correspondence method implemented. Section III compares the
results of different correspondence point generation algorithms
in terms of registration quality and demonstrates the role of the
NMI values in determining the optimal set of correspondences
generated with our new method along with the improved reg-
istration quality using Shepard’s interpolation over backward
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(a) Equal-angle sampling (b) Equal-space sampling

Fig. 1. Geometric methods for correspondence points generation.

TPS interpolation. Conclusions and future works are presented
in section IV.

II. PROPOSED METHOD

This section is divided into three subsections. The first one
dealing with three correspondence point generation method,
the second one explaining the use of NMI in determining the
optimal set of correspondences and the last one explaining the
thin-plate splines with Shepard’s interpolation.

A. Automatic point correspondences

The 2D MR slice corresponding to the US slice is manually
resliced from the MR volume and the prostates in both the
images are automatically segmented using the method of
Ghose et al. [11]. The US image is treated as the reference and
the MR as the moving image. Principal Component Analysis
(PCA) of the segmented contour in the reference US image
provides the principal axes of the prostate. These axes are then
projected on the center of gravity of the prostate MR image.
The intersection points of the principal axes with the prostate
boundaries for both the reference and moving images are
identified automatically. All correspondence point generation
methods described hereafter, are based on the principal axes
of the prostate.

The algorithms for geometric prostate contour sampling at
equal angles and at equal spaces are implemented. In equal-
angle sampling method, the angles are equally spread inside
each quadrant formed by the principal axes. The equally-
spaced contour sampling points are also generated inside each
quadrant depending on the number of contour points falling
in the same. Fig. 1(a) and Fig. 1(b) show the contour points
obtained with equal-angle sampling and equal-space sampling
approaches respectively.

Our approach of correspondence point generation is based
on triangulated approximation of the prostate quadrants. The
triangulation method begins by traversing the intersections of
the principal axes in a clockwise or anti-clockwise manner in
each image. Let pis, i = 1, ..., n, n = 4 for resolution l = 0,
represent the the four intersections of the principal axes with
the prostate contour. With the final resolution L, the algorithm
is as follows

1) Resolution l = 1.
2) Loop while l <= L.
3) Generate midpoint qi between pi and pi+1 as (pi +

pi+1)/2.

(a) Level 0 (b) Level 1 (c) Level 2, only
shown for right-
bottom quadrant

Fig. 2. Method of generating correspondence points in different resolutions.

(a) Points generated in US (b) Points generated in MR

Fig. 3. The *s indicate points generated with equal-angle sampling and
the squares indicate the points generated with our approach. Note that in the
bottom-left quadrant, our method is able to get good correspondences even
in the presence of a significant deformation.

4) Find a point xi on the contour between pi and pi+1 such
that slope(pi, pi+1).slope(xi, qi) = −1.

5) (pi, xi, pi+1) comprise the triangulated region of the
prostate between pi and pi+1.

6) Repeat Steps 3-5 until pi = pn and pi+1 = p1.
7) If l <= L, then update n = 2n and l = l + 1, save

p1, x1, p2, ..., pn−1, xn−1, pn, xn as new pis with i =
1, ..., n and repeat from Step 3. Else, end the loop.

The order of traversing the pis should be the same for both the
reference and moving images. Fig. 2 shows the triangulation
method for three subsequent levels/resolutions.

Instead of considering only the contour points for the de-
formable registration, certain points inside the prostate contour
are also considered for a smooth deformation of the internal
glandular structures of the prostate that are quite evident in
MR images and sometimes partially visible in US images. The
internal points are primarily the qis generated in resolution
l = 1 and the prostate centroid (see Fig. 2(b)).

As a comparison of our correspondence method to other
geometric methods, Fig. 3 shows a case when bad corre-
spondences are generated with equal-angle sampling due to
significant deformation between the reference and moving
images.

B. NMI in determining optimality of correspondences

NMI is an information theoretic method of measuring
mutual dependence between two random variables and is
commonly used as a similarity measure to achieve multimodal
image registration [12].

NMI(R,M) =
∑
r,m

pRM (r,m) log
pR(r)
pM (m)

(1)

where, pRM (r,m) is the joint pdf of the reference and the
moving images. pR(r) and pM (m) are the marginal pdfs of
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the reference and the moving images respectively. In this work,
correspondence points are generated in different resolutions
using our algorithm described in section II-A. TPS registration
is then performed at each resolution of correspondences and
the NMI between the deformed and reference images is
computed. The resolution corresponding to the the maximum
NMI is then considered as the one with the optimal set of
correspondences.

C. Thin-plate splines registration

The thin-plate spline is a commonly used basis function in
2D-Euclidean space [13] to map the coordinates of a moving
image into a reference image, when a set of homologous
correspondence points are established in both images. In its
extended form, the deformable TPS model includes the affine
model as a special case. If pi = (xi, yi) and qi = (xj , yj),
i = j = 1, . . . , n represent two sets of corresponding
landmarks in the moving and reference images respectively,
then, the TPS interpolation f(x, y) minimizes the bending
energy

If =
∫ ∫

�2
(f2

xx + 2f2
xy + f2

yy)dxdy (2)

and has the form

f(x, y) = a1 + axx + ayy + (3)
n∑

i=1

wiU(‖(xi, yi) − (x, y)‖),

where, U(r) = r2 log r, a1, ax and ay are the affine parame-
ters and wis are the TPS parameters and f(x, y) should have
square integrable derivatives if

n∑
i=1

wi = 0 and
n∑

i=1

wixi =
n∑

i=1

wiyi = 0.

The boundary conditions and introduction of the correspon-
dence localization errors in terms of regularization [14], yields
a linear system of equation for the TPS coefficients as[

K + nλC−1 P
PT O

] [
w
a

]
=

[
q
o

]
(4)

where, K is a n × n matrix and Kij =
U(‖(xi, yi) − (xj , yj)‖), ith row of P is (1, xi, yi), O
is a 3×3 matrix of zeros, o is a 3×1 column vector of zeros,
w and q are column vectors of wis and qjs respectively, a is
a column vector of the affine parameters a1, ax and ay and

C−1 =

⎛
⎜⎝

σ2
1 0

. . .
0 σ2

n

⎞
⎟⎠ .

The covariance σ2
i is the sum of the covariances of the

points pi and qi and λ = 0.01 is the regularization term.
Introducing the term nλC−1 yields a better conditioned linear
system and a robust numerical solution. Finally, (4) is framed
as

LU = V (5)

and solved as

U = L−1V (6)

where,

L =
[

K + nλC−1 P
PT O

]
, U =

[
w
a

]

and

V =
[

q
o

]
.

The TPS and affine parameters obtained from the TPS frame-
work are used to warp the moving image using nearest-
neighbor interpolation to map the pixel values onto integer
coordinates. However, TPS interpolation produces holes in the
transformed image as all its pixels are not being mapped.
Therefore, a general approach is to unwarp the transformed
image to fill up the unmapped pixels. Unfortunately, the
backward transformation fails to achieve accurate results
since, splines are not exactly reversible. Therefore, we used
Shepard’s interpolation [10] to deal with these unmapped
pixels. This method of interpolation successfully interpolates
a point from scattered pixel points. In our method, a 7 × 7
mask is centered on an unmapped pixel and the intensity of
the unmapped pixel is interpolated from the mapped pixels
within the mask. Such interpolation produces smooth intensity
warping of the moving image and is faster than computing the
reverse TPS parameters.

III. RESULTS AND DISCUSSIONS

The US images used in our experiments are acquired by
Siemens AQUSON and the MR slices are obtained from a
GE 1.5 Tesla machine. 4 patients middle slice images of the
prostate are used from which the prostates are segmented auto-
matically. For all the MR/US image pairs, we applied the three
correspondence generation methods described in section II-A.
Fig. 4 shows the obtained registration results with Patient-1.
Observe that our new method of correspondence points (see
last row of Fig. 4) produce a better registration result than the
other two approaches. In our method, the correspondences are
generated from resolution 1 through 3 including the center.
At each resolution a TPS/Shepard’s interpolation is done and
the NMI is computed. The resolution corresponding to the
maximum NMI is considered as the optimal resolution. Table
I shows the NMI for different resolutions for all patients.
The columns pertaining to the bold figures are the optimal
correspondence point resolutions for the respective patients.
Fig. 5 shows the different registration results with different
resolution of correspondences for Patient-4. It must be noted
that the results are in conformity with the NMI values in
the last row of Table I. The maximum NMI and the best
registration quality for Patient-4 are obtained for the 3rd
resolution of correspondences as evident from both the table
and the figure.

Fig. 4 and Fig. 6 show only the optimal set of correspon-
dences using our approach. Notice from the columns 1 and 2 of
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Fig. 4. Qualitative registration results for Patient-1. (First-row) corre-
spondences using equal-angle sampling, (second-row) correspondences using
equal-space sampling, (third-row) correspondences using our approach. The
first-left column shows the reference US images, second column comprises of
the moving MR images, third column shows the registered images and the last
column shows checker-board displays to evaluate the quality of registration.

Fig. 5. Patient-4 quality of registrations for different resolutions of cor-
respondences using our new method. (First-row) Level 1 correspondences,
(second-row) level 2 correspondences, (third-row) level 3 correspondences.
The column representations are the same as Fig. 4.

Fig. 4 that the number of points differ for each correspondence
generation method. With our method a maximum of 37
correspondences (level 3) yields a smooth deformation. On the
other hand with other geometric correspondence methods, less
number of correspondences provide satisfactory results and an
increase in the number of points increase the correspondence
localization errors resulting in undesirable registrations. This
is well justified with the fact that our method estimates
correspondence points in localized regions and thus, can avoid
undesirable localization errors.

It is to be observed from Fig. 4 (1st and 2nd rows), that the
overall accuracies of registration along the prostate boundaries
are satisfactory when equal-angle and equal-space samplings
are used respectively, although, the internal structures do not
have smooth deformations with equal-angle sampling. Equal-
angle sampling produces large correspondence localization
errors for Patient-2 and Patient-4 and hence, TPS registrations
are unsatisfactory. Therefore, the NMI approach to determine
optimal correspondences is not applied for equal-angle and
equal-space contour sampling methods. Fig. 6 shows the re-
sults obtained with our new correspondence generation method
for patients 2, 3 and 4 respectively.

Dice Similarity Coefficient (DSC) is used to evaluate the

TABLE I
NMI AT DIFFERENT RESOLUTIONS.

Patient# Level 1 Level 2 Level 3

1 -260.24 -174.23 -167.67
2 -781.48 -412.01 -424.14
3 -419.79 -408.54 -408.68
4 -454.60 -403.03 -389.45

Fig. 6. Patient-2 to Patient-4 registration results using our correspondence
generation method. The columns are similar to Fig. 4.

registration accuracy that measures the overlap between the
transformed image and the reference image. The choice of
DSC over other registration error measures is due to the fact
that most registration errors involve marking targets manually
on the reference US and the moving MR images. Even if the
targets are easily visible on the MR image, the corresponding
targets may not be visible in the US image due to low contrast.
Also, manual selection of targets introduces intra- and inter-
observer localization errors and may not provide accurate
registration error. Table II shows DSC values obtained with
our method along with the computation times for generating
correspondence points and TPS interpolation with Shepard’s
interpolation. An average DSC of 0.97 ± 0.01 is obtained for
all the patients. The equal-angle, equal-space sampling and
our method perform satisfactorily on patients 1 and 3 and
the DSC values of only Patient-1 after TPS registration are
0.97, 0.96 and 0.98 respectively. Therefore, it may be inferred
that despite the high DSC values provided by the geometric
sampling methods in certain cases, our method consistently
performs better for all patient cases.

Fig. 7 shows the interpolation artifacts on the prostate
central and bottom parts, when reverse TPS is used (Fig. 7(a))
and a smooth deformation when Shepard’s interpolation is
applied (Fig. 7(b)).

The algorithms have been implemented in MATLAB with
1.66 GHz, Core2Duo processor with 2GB memory. Table II
shows that TPS/Shepard’s interpolation takes a maximum of
94.58 secs. The NMI computation takes 0.5 secs on an average
with the current hardware configuration.

IV. CONCLUSIONS AND FUTURE WORKS

A novel approach to generate an optimal set of correspon-
dence points automatically for registration, based on the seg-
mented prostate contours has been presented. The method is
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TABLE II
COMPUTATIONAL PERFORMANCE AND ACCURACY OF THE PROPOSED

ALGORITHM.

Patient# Correspondence
generation (secs)

TPS/Shepard’s
method (secs)

DSC

1 0.2 94.58 0.98
2 0.2 83.91 0.97
3 0.14 22.71 0.96
4 0.16 50.15 0.97

(a) Forward/Reverse TPS (b) Forward TPS/Shepard

Fig. 7. Comparison of forward/reverse TPS interpolation with forward
TPS/Shepard’s interpolation, (a) interpolation artifacts visible in center and
lower part of the image (encircled), (b) smooth deformation with Shepard’s
interpolation.

based on triangular approximations of closed boundary regions
that may be generalized for regular-shaped anatomical struc-
tures. In comparison with other geometric contour sampling
methods, our method showed better correspondences being
generated resulting in smooth deformations and significantly
high region overlaps after TPS registration. The approach of
using NMI in determining the optimal set of correspondences
has been consistent for all patients and has been proved both
qualitatively and quantitatively. TPS interpolation along with
Shepard’s interpolation produced smoother deformations and
could avoid interpolation artifacts resulting from backward
TPS transformation.

As future work, we would like to validate our method of
correspondence point generation with more patient data in
order to claim on the robustness of the algorithm and extend
our method to 3D multimodal registration of TRUS and MR
volumes. Our method of generating optimal correspondences
may be of practical significance during interventional US
prostate biopsies if the manual selection of the corresponding
US/MR slices is automated and the forward TPS/Shepard’s
interpolation and the computation of NMI at each resolution
of correspondences can be parallelized with GPU implemen-
tation.
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