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Abstract—Prostate contour segmented from Trans Rectal Ultra
Sound (TRUS) and Magnetic Resonance (MR) images could
improve inter-modality registration accuracy and reduce compu-
tational complexity of the procedure. However, prostate segmen-
tation in each of these modalities is a challenging task in presence
of imaging artifacts, intensity heterogeneities, and large inter
patient shape variabilities of the prostate. We propose to use Haar
wavelet approximation coefficients to extract texture features of
the prostate region in both modalities to guide a deformable
parametric model to segment the prostate in a multi-resolution
framework. Principal Component Analysis (PCA) of the shape
and texture information of the prostate region obtained from
the training data aids contour propagation of the deformable
parametric model. Prior knowledge of the optimization space is
utilized for optimal segmentation of the prostate. Our method
achieves a mean Dice Similarity Coefficient (DSC) value of
0.95± 0.01, with mean segmentation time of 0.72± 0.05 seconds
in a leave-one-out validation framework with 25 TRUS images
grabbed from a video sequence. DSC value of 0.88 ± 0.06
with a mean segmentation time of 0.81 ± 0.02 seconds was
recorded for MR images when validated with 15 central slice
images of 15 datasets from the MICCAI prostate segmentation
challenge 2009. Our proposed method performs computationally
efficient accurate multi-modal prostate segmentation in presence
of intensity heterogeneities and imaging artifacts.

I. INTRODUCTION

Index Terms—Prostate biopsy, TRUS/MR registration, Haar
wavelets, Active Appearance Model.

II. INTRODUCTION

Prostate cancer is the most commonly diagnosed cancer
in North America accounting for over 33,000 deaths every
year [1]. In clinical practice TRUS guided needle biopsy
is performed to confirm the presence of cancerous tissues
in prostate. However, localization of malignant tissues in
TRUS images are difficult due to low Signal to Noise Ratio
(SNR). Tissue samples are collected from different zones of
the prostate to maximize the chance of locating malignant
tissues. Superior contrast of soft tissues of the prostate gland in
MR images facilitate improved detection of cancerous tissues.
However, interventional MRI guided biopsy is expensive and
complicated. Hence the solution lies in the fusion of the two

imaging modalities to exploit the high quality of MR images
in TRUS interventional biopsies.

Accurate segmentation of the prostate in TRUS and MR
images could improve registration accuracy and reduce com-
putational complexities involved with the procedure [2]. How-
ever, segmentation of the prostate in each of these modalities
have challenges associated with them. Low SNR in TRUS
images produces broken and discontinuous prostate edges with
traditional edge detection filters like Sobel, Prewitt and Canny.
Intensity heterogeneities inside the prostate gland inhibits the
design of a global descriptor for the prostate based on intensity.
Added to these, presence of speckle noise, shadow artifacts,
and micro-calcification significantly affects the segmentation
accuracy of the prostate in TRUS images. MR images produce
superior contrast of the soft tissues of the prostate gland
compared to TRUS images. However detail information of the
prostate gland introduces large inter patient shape and intensity
variabilities. Presence of heterogeneous intensity distribution
inside the prostate gland produces broken and false edges
with edge detection filters and inhibits the design of a global
descriptor for the prostate region. Large inter patient shape
variabilities of the prostate in MR images reduces segmen-
tation accuracy of algorithms designed on shape prior basis.
Hence, it is useful to incorporate both shape and intensity
priors in segmentation algorithms to improve accuracy in both
modalities.

Cootes et al. [3] proposed an efficient framework to com-
bine shape and intensity prior in their Active Appearance
Model(AAM). Medina et al. [4] used AAM to segment
prostate in two Dimensional (2D) TRUS images with an over-
lap ratio of 96%. Since then, not many researchers have used
AAM for prostate segmentation in TRUS and MR images.
It is argued by Wolstenholme and Taylor [5] that the time
complexity involved with AAM is high and is unsuitable for
real time procedures. Instead, they proposed to use wavelet
coefficients of the training images to build the AAM. Larsen et
al. [6] showed that frequency separation in wavelet transform
allowed an edge enhancement that provided better result
in terms of segmentation accuracy compared to traditional
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AAMs. They proposed to use a texture vector comprising
the truncated detail and approximation coefficients in a multi-
resolution framework for AAM propagation.

To address the challenges involved with prostate segmenta-
tion in MR and TRUS images, we propose a novel AAM that is
propagated by the approximation coefficients of Haar wavelet
transform. The approach is similar to that of Larsen et al. [6]
applied to face segmentation. However, deviating from their
model of using approximation and truncated detail coefficient
of Haar wavelet for AAM propagation, we propose to discard
the detail coefficients and use approximation coefficients for
AAM propagation to reduce computational complexity. The
performance of our method is validated with 25 TRUS images
grabbed from TRUS video sequence and with 15 MR datasets
of MICCAI prostate segmentation challenge 2009. Experi-
mental result reveals that the method is robust and delivers
good results in presence of low SNR, intensity heterogeneities,
presence of micro-calcification and large shape variabilities.

The rest of the paper is organized as follows. The texture
driven AAM is formulated in Section II followed by quanti-
tative and qualitative evaluation of our method in Section III.
We finally draw conclusions in Section IV.

III. METHODS

The proposed method is built on two major components:
the adaptation of AAM to incorporate texture features and
the generation of texture features using the Haar wavelet
transform. We present the traditional AAM first, followed by a
comprehensive discussion about using Haar wavelet to extract
texture features for the prostate region.

A. Active Appearance Model

AAM provides a compact parametric framework utilizing
prior shape and intensity variabilities learned from a training
model to segment an unseen test image exploiting the prior
knowledge of the nature of the optimization space [6]. The
shape model built from manually segmented contours and
the appearance model built from intensity distributions inside
the manually segmented regions are combined to produce
traditional AAM that incorporates prior knowledge of shape
and intensity variabilities in the segmentation framework for
the object under study.

The creation of the shape model is initiated with the for-
mation of the Point Distribution Model (PDM) [7] built from
manually segmented contours. Generalized Procrustes Anal-
ysis (GPA) of the PDMs is used to minimize the differences
between the PDMs and align the PDMs to a common reference
frame. PCA of the aligned PDMs is used to identify the
principal components of the variations in shape and suppress
redundancy. Intensity distributions are warped into correspon-
dence using a piece wise affine warp and sampled from shape
free reference. PCA of the intensity distribution is used to
identify the principal components of intensity variations.

The shape model may be formalized in the following
manner. Let each shape be represented by a vector x with
n points of the PDM as given in (1).

x = [x1, x2, ...., xn; y1, y2, ...., yn]
xs = x + Φsbs (1)

where the shape model xs is a function of the mean model
x, the matrix Φs includes the eigenvectors and a set of shape
deformation parameters are present in bs.

The appearance model is formalized as follows. In (2) the
normalized pixel intensities are given by a vector g of m
samples obtained using a piece-wise affine warp based on
Delaunay triangulation of the mean shape. Normalization of
the texture information is performed followed by PCA of
the intensities to generate the appearance model gi, where g
represents the mean intensity model, a matrix Φg that includes
the eigenvectors of intensity variations and a set of parameters
bg for intensity variations.

g = [g1, g2, ...., gm]
gi = g + Φgbg (2)

Correlation between the shape and intensity variations is used
to produce a concatenated vector of shape and intensity vari-
ations. In (3), b represents the concatenated vector where Ws

is a diagonal matrix whose entries are the weight parameters
that account for the differences of units between the shape
and pixel intensities. A third PCA is applied to this vector
to produce the combined model bf where Q is a matrix of
eigenvectors and c is a vector of appearance model parameters
controlling both shape and intensity variations of the model.

b =
(

Wsbs
bg

)
=

(
Wsφ

T
s (x − x)

φT
s (g − g)

)
bf = Qc (3)

Shapes and intensities are then synthesized from (3) as shown
in (4)

x = x + ΦsW
−1
s Qsc

g = g + ΦgQgc (4)

The AAM is optimized minimizing the difference between the
input and the synthesized images [3]. This problem is com-
putationally expensive. Hence, to reduce the computational
time we propose to use the approximation coefficients of Haar
wavelet transform in place of the raw intensities. This will
introduce the additional time requirement of transformation of
the image into a new representation. However, as stated in [6]
the computational burden can be considerably reduced if the
transformation is based on sparse matrix.

B. Haar Wavelets for Texture Analysis

Wavelets are a family of basis functions that decomposes
signal into frequency and time domains in a multi-resolution
framework. A set of linear, rank preserving convolution op-
erations are carried out to decompose an image by a low
pass and high pass filters. Three detail coefficient sub-bands
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corresponding to horizontal, vertical and diagonal edges are
generated by the high pass filters in a 2D image. The low pass
filter generates the approximation coefficients which is down-
sampled and is further decomposed to analyze the detail and
the approximation coefficients at a coarser resolution.

To introduce wavelet coefficients in AAM, we formalize the
framework with the used notation. First, let a n-level wavelet
transform be denoted by

W (t) = κt = ŵ =
[
âT , ûT

1 , . . . , ûT
n

]T
(5)

where κ is the Haar wavelet filter, â and û represent the
approximation and the detail coefficients respectively, and ŵ
is the wavelet transformed image [6]. The detail coefficients
are suppressed to produce a truncated wavelet basis as

b (ŵ) = Cŵ =
[
âT , 0, . . . 0, ,

]T
(6)

where C corresponds to a modified identity matrix with its
rows corresponding to the detail coefficients removed. The
AAM is built on the truncated wavelet basis constituting the
texture. The PCA of the texture is given by

a = a + Φabw (7)

where, a is the mean of the approximation coefficients, Φa is
the matrix of eigenvectors and bw is the matrix of correspond-
ing to set of parameters for the approximation coefficients
variations.

Suppression of the high frequency components reduces
texture information. However, texture information that has to
be preserved is context dependent. Suppression of the detail
coefficients reduces speckle noise and micro-calcifications and
produces an uniform texture map of the prostate. Suppressing
the detail coefficients reduces high gradient components in-
side the prostate gland reducing inter patient variabilities in
TRUS and MR images. Finally, such suppression reduces the
computational complexities involved with the fitting of a new
image to the model. It is to be noted that, the approximation
coefficients preserve significant texture information [8] and
PCA of the approximation coefficients facilitates suppresion
of noise in the underlying texture with the preservation of
important components.

As stated by Larsen et al. [6] the multi-level decomposition
of the image in wavelet domain propagates the fitting error
due to loss of texture information. Hence, we have adopted
wavelet decomposition of the first level and subsequently fitted
our model to the approximation coefficients in coarser to finer
spatial resolutions to reduce the texture dependent fitting error.

The mean model is initialized by clicking in any position
close to the center of the prostate decided on visual inspection.
The mean model initialization and subsequent multi-resolution
segmentations are produced based on the approximation coef-
ficients of the Haar wavelet.

TABLE I
PROSTATE SEGMENTATION EVALUATION METREICS FOR TRUS AND MR

IMAGES

DSC MAD(mm) Specificity Sensitivity Time(secs)
TRUS 0.95±0.01 1.48±0.36 0.92±0.02 0.998±0.001 0.72±0.05
MRI 0.88±0.06 3.97±2.74 0.86±0.11 0.998±0.001 0.81±0.02

TABLE II
COMPARISON OF OUR METHOD WITH TRADITIONAL AAM

TRUS MRI
Our Method Traditional AAM Our Method Traditional AAM

DSC 0.95±0.01 0.95±0.02 0.88±0.06 0.88±0.08
MAD 1.48±0.36 1.54±0.74 3.97±2.74 4.05±2.74
HD 5.08±1.19 5.27±2.83 9.56±4.5 9.68±4.2

Specificity 0.92±0.02 0.91±0.04 0.86±0.11 0.84±0.12
Sensitivity 0.998±0.001 0.998±0.001 0.998±0.001 0.995±0.005

Time 0.72±0.05 0.87±0.02 0.81±0.02 0.77±0.02

IV. EXPERIMENTAL RESULTS

We have validated the accuracy and robustness of our ap-
proach on a series of 25 prostate ultrasound images and 15 MR
images using a leave-one-out evaluation strategy. The TRUS
images are of resolution 538×418 pixels and are grabbed from
TRUS video sequences (acquired with a Siemens Aquson).
The 15 central slice MR images of 15 datasets are from
the MICCAI prostate segmentation challenge 2009 [9] with a
resolution of 256× 256 pixels. Our method was implemented
in Matlab 7 on a Intel Core 2 Duo T5250 processor of 1.5
Ghz processor speed and 2 GB RAM. We have used most of
the popular prostate segmentation evaluation metrics such as
the Dice similarity coefficient (DSC), Mean Absolute Distance
(MAD), specificity and sensitivity in order to evaluate our
approach. The average values for all the 25 TRUS images and
15 MR images along with average segmentation time (Time)
in seconds are given in Table I.

We have used the evaluation metrics of Table I and 95%
Hausdorff Distance (HD) to compare our method against
traditional AAM. The experimental setup, manner of execution
and the TRUS and MR datasets are identical. The evaluation
results are given in Table II. It is observed from Table II that
DSC values for both the methods are comparable. However,
our method performs better when compared in terms of MAD,
HD and specificity. The variances observed in different metrics
are significantly higher in traditional AAM justifying the
repeatability of our method. The computational complexities
involved with our method is marginally higher than the tradi-
tional AAM. This is due to the reason that traditional AAM
works with raw intensities and in our method, a transformation
of the test image into wavelet domain is necessary before
fitting the AAM.

Qualitative evaluation is done to demonstrate the robust-
ness of the proposed method against low SNR, intensity
heterogeneities, shadow artifacts, speckle noise and micro-
calcification in TRUS images and inter patient shape variabili-
ties for MR images. In all the images the green contours depict
the ground truth and red contours show the obtained result.
As observed in Fig. 1(b), during the initialization a section
of the mean model (blue contour) is located in a region of
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Qualitative evaluation of segmentation. (a) Prostate artifacts in TRUS
image of the prostate, A=Low SNR, B=Micro-Calcification, C=Intensity
difference inside prostate region, D=Shadow Artifacts, E=Speckle Noise. (b)
Manual initialization of the mean model (blue contour) by clicking on prostate
center, (c) Final segmentation result. Manual segmentation shown with green
contour and the red contour show the segmentation achieved, (d), (e) and (f)
show some of the results in MRI.

shadow artifact in the TRUS image, the model successfully
avoids the artifacts and segments the prostate accurately with
a DSC value of 0.94. The robustness of the model against large
prostate shape variabilities and intensity heterogeneities inside
the prostate region in MR images is demonstrated in Fig. 1(d),
1(e), 1(f). Our method successfully segments the prostate with
reasonable DSC values of 0.93, 0.89 and 0.95 respectively.

The mean model intializations in all the TRUS and MR
images are done on visual inspections and therefore varies
from one case to the other. However, low standard deviation
values of DSC, specificity and sensitivity being 0.01, 0.015 and
0.0001 respectively for TRUS images and being 0.06, 0.11 and
0.0001 respectively for MR images, indicate that the accuracy
of the final segmentation results using our method is indifferent
to the manual initialization of the mean model. The mean
model could be initialized automatically on the assumption
that the prostate is visible in the center of the TRUS and MR
images. A more sophisticated approach would be an initial
rough classification of the TRUS and MR images to identify
the prostate regions and then initialize the mean model at the
center of the prostate.

Comparison of different prostate segmentation methodolo-
gies is difficult in absence of public datasets and standardized
evaluation metrics. In addition, the methods are developed with
a wide variety of algorithms with specific application require-
ments. Nevertheless, to have an overall qualitative estimate of
the functioning of our method we have compared our method
with some of the state-of-the-art works in literature in Table
III for TRUS and MR images. Please note ‘-’ in Table III
means information is not available.

For TRUS images we observe that our mean segmentation
time of 0.72±0.05 seconds is comparable to some of the works
in literature and computationally expensive only compared to
Yan et al. [2]. Note that our method is implemented in Matlab
and Yan et al. code is optimized using dynamic programming

in a C++ and ITK framework. We achieved an average DSC
value of 0.95±0.01 that is less than the area overlap measure of
Abolmaesumi et al. [1] of 98%. However, we have used more
images (25 images) compared to 6 images of Abolmaesumi et
al. Our MAD value of 1.48±0.36 mm is very close to Gong
et al. [10] average distance value of 1.36±0.6 mm.

For MR images our segmentation time is comparable to the
methods in Table III. Our average DSC value is comparable
to Klein et al. [15] but less than Samiee et al. [14]. However,
it is to be noted that we have used more datasets (15 datasets)
compared to Samiee et al. (2 datasets). The performance of
AAM improves with the use of large shape and intensity
variabilities during training. However, with a small dataset
of 15 images for building the model in a leave-one-out
approach, our method performs well considering the large
variabilities present in the prostate shapes. Comparing our
results with some of the works in literature, we can state that
our method performs accurate and computationally efficient
prostate segmentation.

V. CONCLUSIONS

A novel approach of AAM propagation using Haar wavelet
approximation coefficients with the goal of segmenting the
prostate in 2D TRUS and MR images has been proposed. Our
approach is accurate, computationally efficient and robust to
low SNR, intensity heterogeneities of prostate tissues, shadow
artifacts, speckle noise and micro-calcifications in TRUS im-
ages and large inter patient prostate shape variabilities in
MR images. While the proposed method is validated with
prostate mid-gland images, the effectiveness of the method
against base and apical region slices is yet to be validated.
We would like to explore the possibilites of using 3D AAM
for prostate segmentation in MR volume. Computational time
of our process is fast but not yet suitable for real-time
applications like MRI-TRUS fusion. We would like to explore
the possibilities of optimizing our code and using the CUDA
platform that would achieve necessary hardware acceleration
and parallelization in order to produce real-time 2D fusion of
TRUS and MR images of the prostate.
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