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Abstract
Introduction Multiple sclerosis (MS) is a serious disease
typically occurring in the brain whose diagnosis and effica-
cy of treatment monitoring are vital. Magnetic resonance
imaging (MRI) is frequently used in serial brain imaging
due to the rich and detailed information provided.
Methods Time-series analysis of images is widely used for
MS diagnosis and patient follow-up. However, conventional
manual methods are time-consuming, subjective, and error-
prone. Thus, the development of automated techniques for
the detection and quantification of MS lesions is a major
challenge.
Results This paper presents an up-to-date review of the
approaches which deal with the time-series analysis of brain

MRI for detecting active MS lesions and quantifying lesion
load change. We provide a comprehensive reference source
for researchers in which several approaches to change de-
tection and quantification of MS lesions are investigated and
classified. We also analyze the results provided by the
approaches, discuss open problems, and point out possible
future trends.
Conclusion Lesion detection approaches are required for
the detection of static lesions and for diagnostic purposes,
while either quantification of detected lesions or change
detection algorithms are needed to follow up MS patients.
However, there is not yet a single approach that can emerge
as a standard for the clinical practice, automatically provid-
ing an accurate MS lesion evolution quantification. Future
trends will focus on combining the lesion detection in single
studies with the analysis of the change detection in serial
MRI.
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Introduction

Multiple sclerosis (MS) is the most frequent, non-traumatic,
neurological disease capable of causing disability in young
adults. It is a chronic, persistent inflammatory-demyelinating,
and degenerative disease of the central nervous system (CNS),
characterized pathologically by areas of inflammation, demy-
elination, axonal loss, and gliosis scattered throughout the
CNS, often causing motor, sensorial, vision, coordination,
deambulation, and cognitive impairment [11].

Conventional magnetic resonance imaging (MRI) techni-
ques, such as T2-weighted (T2-w) and gadolinium-
enhanced T1-weighted (T1-w) sequences, are highly
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sensitive in detecting MS plaques and can provide quantita-
tive assessment of inflammatory activity and lesion load.
MRI-derived metrics have become the most important para-
clinical tool for diagnosing MS, for understanding the nat-
ural history of the disease, and for monitoring the efficacy of
experimental treatments [62]. Quantitative analyses have
become invaluable in the assessment of disease progression
[34, 46, 47] and activity [58], and the evaluation of therapies
over the last 25 years [7, 18]. Figure 1 shows two scans (T1-
w, T2-w, and fluid attenuated inversion recovery (FLAIR)
images) of a damaged brain taken with 1 year of difference,
together with the manual annotations done by an expert. The
last column of the figure illustrates the total 3D lesion load
in the basal exploration and the new appearing lesions in the
follow-up scan.

While there are many articles focusing on the lesion
detection problem, most of them do not incorporate an
automated method for interpreting the lesion evolution.
The most common approach for the detection of change in
serial imaging is visual inspection, which is usually per-
formed manually by experts [41]. The processed data such
as already detected lesions are presented to the radiologists
in order to render a decision with respect to the lesion load
change [43, 47]. Experts use their high level of anatomical
knowledge to identify the lesion evolution. However, the
manual detection of change is not only time-consuming; it is
also prone to intra-observer and inter-observer variability
[51]. Although automated lesion detection techniques re-
duce this disagreement, an automated change detection
method is still necessary to increase the diagnostic precision
[14, 15]. Moreover, it is established that automated systems
may outperform the human expert. For instance, as reported
by Bosc et al. [5], while many small and subtle changes in

lesion evolution were missed by the expert, the automated
change detection algorithm did not. Therefore, we believe
that a comprehensive resource of the literature on automated
lesion detection and quantification is important work for
researchers who want to improve upon previous work or
develop new automated methods for progressive neurolog-
ical disease analysis.

Change detection techniques may be divided into two
categories: methods considering large structural changes
and methods for smaller and more localized changes [5].
In accordance with this classification, lesion detection and
quantification methods involve algorithms which must con-
sider both small and large localized structural changes (i.e.,
tumors). General problems associated with these techniques
are the lesion shape, which is usually ambiguous and has ill-
defined boundaries, and the lesion position, since the lesion
can appear or disappear arbitrarily and may shrink or en-
large over time. In addition, their growth rates are not well
characterized, and there can be great similarity between
lesions and normal tissues, so they may not always be easily
distinguishable. Moreover, the effect of a lesion does not
always appear as an intensity change on the tissue where it is
located (the so-called tissue transformation), but can also
influence the appearance of surrounding tissues (known as
the mass effect) [57]. Thus, observing the lesion evolution
without change in intensity but with displacement on the
surrounding tissues (deformation) is more difficult. In real
cases, both tissue transformation (changes in intensity) and
tissue deformation generally occur. Hence, the mass effect
of the lesion should also be taken into account in order to
define a precise lesion evolution. Furthermore, detecting
real image changes is hard work due to noise and residual
artifacts in the MR images and also because the images of a

Fig. 1 An example of MS lesion serial analysis. The upper row shows a
slice of the basal control, while the lower row shows the corresponding
slice of the following exploration, done 12 months later. a, b, and c show,
respectively, T1-w, T2-w, and FLAIR images. d Shows the manual lesion
annotations of the slices done by an expert radiologist, where the green

annotation shows a newly appearing lesion. Finally, the upper image of e
represents the 3D lesion load in the basal exploration, while the lower
image shows the 3D representation of the new lesions in the follow-up
exploration
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patient at different times are not always directly comparable
due to patient movement. In many cases, a robust image
registration algorithm must be used [22, 33, 76]. Notice that
in this case the quantification accuracy will depend on the
alignment accuracy [44]. Therefore, change detection tech-
niques should be accordingly tuned to these facts.

Numerous approaches to lesion detection and quantifica-
tion have been proposed in the literature [5, 20, 39, 42, 44,
73]. Despite the variety of approaches, none of them provide
a fully automatic procedure that includes all the required
steps for the diagnosis and treatment follow-up. For in-
stance, some of the works which introduce automated meth-
ods for lesion detection (which are typically based on
segmentation) do not always provide an automated method
for quantifying the lesion evolution [1, 2, 63]. On the other
hand, some of the works that focus on the change detection
do not always provide an automatic lesion detection method
and need user interaction to locate lesions [57] because they
are not good enough to segment lesions after change detec-
tion [44]. Furthermore, some of the change detection algo-
rithms provide only a resulting image which has to be
interpreted visually by experts [38, 55], and a final expert
decision is required to assess the lesion evolution [5]. Note
also that the change detection algorithms do not usually
cover the detection of static lesions, such as black holes.
Combining the advantages of different techniques may com-
pensate some of the missing parts of some strategies and
may enable the development of less subjective and more
automated approaches.

The aim of this article is to point out the capabilities of
the developed approaches, providing an up-to-date state-of-
the-art review of automated MS lesion detection and quan-
tification methods in serial MRI. Furthermore, we classify
the different techniques according to the strategy used,
describing also the most representative works in this field.
We analyze numerous articles providing a detailed classifi-
cation of lesion detection and change detection techniques
based on the main characteristics of each strategy, pointing
out the challenging parts of each method. In addition to
introducing and classifying these approaches, we also de-
scribe the algorithms used to detect and quantify the lesions
as well as the features and the type of MR images used.
Furthermore, we compare the results of the analyzed works
in terms of accuracy and robustness.

Few articles have reviewed MS lesion detection and
quantification methods in brain MRI serial analysis. For
instance, Patriarche and Erickson [41] provided a review
of the change detection techniques in time-series analysis.
However, this review was not particularly focused on the
purpose of MS lesion detection. Bosc et al. [5] also provided
a simple classification of inter-image comparisons consid-
ering lesion evolution. Nevertheless, this work was not a
complete review. Recently, Mortazavi et al. [40] have

presented a review of MS lesion detection in a single time
point, without taking into account the change detection, the
lesion evolution, and quantification. Even though some
articles have given information about either MS lesion de-
tection or lesion evolution quantification methods [26, 29,
42, 52], none of them proposed a comprehensive review.
Furthermore, none of them tried to quantitatively compare
the results of the different approaches, as it would be diffi-
cult to guess the performance of all these detection and
quantifications approaches. Ideally, methods should be ap-
plied to a common database and compared with a ground
truth. This is, however, very difficult due to the lack of
common public databases of real images along with their
ground truth and the fact that only few methods are publicly
available. Here we will quantitatively compare the detection
approaches accordingly to their reported results in the liter-
ature. We will describe the most typical measures used for
evaluating MS lesion detection and quantification in time-
series MRI, comparing in a qualitative and quantitative way
the results of the works analyzed. To the best of our knowl-
edge, our paper is the first attempt to review the most
relevant works in the time-series analysis from both MS
detection and quantification point of views and which also
provides an evaluation of the experimental results.

The rest of this paper is organized as follows. “Classification
of MS lesion detection and quantification in serial brain MRI”
presents the classification of the lesion detection and quantifi-
cation approaches, reviewing also the main features and algo-
rithms used. “Lesion detection approaches,” “Change detection
approaches,” and “Quantification approaches” describe the
lesion detection, change detection, and quantification
approaches, respectively. “Experimental validation” explains
how to perform the experimental validation of an approach,
explaining the different image databases and common meas-
ures used to evaluate the results. A brief analysis and a perfor-
mance comparison of some key works are given in
“Discussion,” which also presents possible improvements and
further works. The paper finishes with conclusions.

Classification of MS lesion detection and quantification
in serial brain MRI

In this section, we propose a classification for categorizing
the state-of-the-art of automated serial MS detection and
quantification methods in time-series analysis. Afterward,
we also analyze the general problems encountered in the
segmentation and quantification processes.

Proposed classification

In order to classify the MS lesion detection approaches, we
considered the different classifications proposed by Bosc et

Neuroradiology (2012) 54:787–807 789



al. in 2003 [5] alongside the one proposed by Patriarche and
Erickson in 2004 [41]. From this starting point and also
from the information collected from the newest works [26,
29, 42, 52], we propose a new classification with the cate-
gories and subcategories shown in Fig. 2. In particular, we
classify the detection approaches within two primary cate-
gories, according to their main principle and characteristics:

& Lesion detection methods. We consider lesion detection
methods to be the ones that aim to detect both static and
dynamic MS lesions on a single-time magnetic reso-
nance (MR) volume of a patient. These segmentation-
based methods, which can be supervised or unsuper-
vised algorithms, rely on the intensity homogeneities
of the tissues and typically apply data mining techniques
(clustering, classification) to distinguish lesions from
normal tissues. In time-series analysis, the use of
segmentation-based methods mostly involve a subse-
quently lesion quantification approach that computes
the volumetric changes of each segmented lesion be-
tween two time points in order to determine the MS
lesion evolution.

& Change detection methods. These approaches are not
based on the analysis of a single time point (one control
of a patient) but rely on analyzing the differences be-
tween successive MRI controls at both 2D and 3D image
levels. From this classification, we further subclassify
the main strategies. The intensity-based methods consist
of analyzing two successive scans by means of subtrac-
tion techniques. Among these methods, we further dis-
tinguish between deterministic approaches, which
typically cover the subtraction methods using direct
intensity differences between the scans, and statistical
approaches, which are used for compensating the inter-
pretation problems of point-to-point comparison. The
temporal analysis approaches are based on detecting
active voxels through a time-series analysis of more than
two successive scans. Finally, the deformation-based
approaches aim to obtain a deformation field from a
non-rigid registration process between successive

controls, which can be directly used to perform the
lesion detection and evolution. We have subclassified
these approaches according to the way the deformation
field is used: vector displacement field and deformation
field morphometry. Note that, depending on the tech-
nique used, these approaches may or may not require a
subsequent analysis of the quantification.

The approaches reviewed in this work are summarized in
Table 1, which offers a compact, at-a-glance overview of
these studies. Moreover, the most important features and
properties of all the approaches have also been taken into
account. Namely, the main characteristics of each analyzed
approach: detection strategy and quantification algorithm
used, the type of automation (semi-automated or fully auto-
mated), whether the method uses a template (an atlas) to
improve the accuracy, such as template driven segmentation
(TDS) or methods that use healthy control images to com-
pare and correct their results. Finally, we have also included
the image types used (T1-w, T2-w, PD-w, FLAIR, etc.) and
the lesion types the method can deal with. It should be noted
that not all the analyzed works specify always the specific
type of lesion. In “Lesion detection approaches” and
“Change detection approaches” of this paper, we will ana-
lyze in detail all these strategies, describing the primary
characteristics of each category.

Lesion quantification

As well as classifying the MS lesion detection approaches,
we can categorize the methods according to the quantifica-
tion of the lesion evolution. Note that this quantification
process is essential for radiologists and neurologists to ana-
lyze the patient follow-up [43]. We classify the quantifica-
tion approaches into three main categories: visual
inspection, statistical change detection, and volumetric
approaches.

The visual inspection is a manual method for determining
lesion evolution. The processed images such as registered
images or subtracted images are analyzed and interpreted

Fig. 2 Proposed classification
of MS lesion serial analysis. We
clearly distinguish between
lesion detection and lesion
change detection techniques.
The acronyms VDF and DFM
stand for vector displacement
field and deformation field
morphometry, respectively
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visually by a user or expert in order to render a decision.
Although this is a very subjective method, some improve-
ments can be used to reduce the misinterpretations made by
the expert. For instance, statistical change detection techni-
ques based on using statistical correction [5] or using struc-
ture noise maps [31] in order to reduce false positives in the
subtracted images may be applied. In a different way, the
volumetric approaches typically use already segmented
lesions in order to quantify the lesion evolution by means
of their volume changes. These volumetric quantification
approaches have been proven to be useful for detecting
positive and negative disease activity [66]. Notice that this
quantification process can be done by either subtracting
single lesion volumes or subtracting total lesion volumes
between the time-series images. However, notice that, when
computing the total MS lesion volume of a patient, it is
possible that some lesions enlarge while others shrink at the
same time. Therefore, this quantification process may not
detect a change in lesion volume even if there are growing
and shrinking lesions. As a result, comparing lesion vol-
umes individually seems a more precise way of doing the
quantification. Furthermore, when using volumetric meas-
ures, one should note that the process relies on the results of
a previous segmentation method which may not provide the
desired result and introduce errors in the quantification.

Note that we could also add in this quantification classi-
fication the temporal analysis and the warping methods
which were also included as detection approaches. In fact,
these methods produce in a single step the detection and
quantification of the MS active lesions. For instance, the
main property of the warping algorithms (also known as
deformation field-based approaches [5]) is that they are
based on one-to-one tissue correspondence and, as well as
providing lesion detection, they allow the lesion mass effect
to be quantified from the registration process between tem-
poral studies of a patient.

General problems in MRI

Image intensities between the corresponding tissues or
structures of successive scans may differ from each other.
Thus, normalization algorithms are used to compensate
global intensity changes between successive images before
and/or after registration processes [5]. This normalization
process improves the alignment between the images if used
before the registration step and also allows a better compar-
ison between the analyzed tissues, structures, and lesions if
used after registration. For instance, Bosc et al. [5] used a
linear intensity normalization algorithm before each regis-
tration step and a non-linear joint normalization algorithm
after registration.

Another well-known issue when processing MRI images
is that noise and artifacts may be present due to scanner

performance, and this may affect the detection and quanti-
fication accuracy [31]. For instance, Guttman et al. [21] and
Kikinis et al. [27] used a non-linear anisotropic diffusion
filtering, which is an edge-preserving noise reduction meth-
od, to overcome this problem. With a similar strategy Bosc
et al. [5] applied a low-pass Gaussian filter to the images
obtained by subtracting registered and normalized succes-
sive images to eliminate residual artifacts such as radio-
frequency artifacts.

Besides these difficulties, partial volume effects, where a
single voxel contains a mixture of multiple tissue values,
generally occurs in medical imaging. This situation is par-
ticularly true for voxels on the boundaries [12] or brain
surfaces that contain both brain tissue (skull bone) and
cerebrospinal fluid [27] due to the particular intensity char-
acteristics of PD-w and T2-w images. Thus, such regions
which have similar intensity values as the lesions may
introduce errors in the quantification process. Several
approaches have been proposed to deal with this issue. For
instance, some methods use a priori anatomical knowledge
[21] to eliminate spurious lesions selectively [27].

Lesion detection approaches

Image segmentation is the process of assigning a label to
every voxel in a single image such that voxels with the same
label share certain visual characteristics typically indicating
a particular object such as tissue or lesion. To our knowl-
edge, segmentation-based approaches cover the largest area
of methods for MS lesion detection and are still the largest
active area of research. Different methods have been pro-
posed for this purpose [1, 16, 21, 26, 49, 75], and some
attempts to classify these automated MS lesion segmenta-
tion approaches have been made. Mortazavi et al. [40] have
recently presented a review of segmentation of multiple
sclerosis lesions in MR images, providing a classification
of the reviewed approaches into four different categories:
data-driven, statistical, intelligent, and deformable methods.
Even though numerous attempts have been done to solve
this segmentation problem, due to the arbitrary lesion shapes
and locations, automated segmentation is still an open issue
and a challenging task [32].

Segmentation-based approaches can be classified as man-
ual outlining methods, semi-automated methods, and fully
automated methods. In this paper, we explore the fully
automated methods, which do not require user interaction
and reduce the intra/inter-operator variability [52]. Howev-
er, to provide a wider analysis, we also include some of the
most relevant semi-automated methods in our review [4, 16,
30, 61]. Figure 3 shows a flowchart with the general idea of
the segmentation-based approaches for brain MRI time-
series analysis.
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The automated MS lesion segmentation is a difficult task
due to intensity similarity between lesions and normal tis-
sues. For instance, gray matter lesions may share intensities
with gray matter (GM) or cerebrospinal fluid (CSF) [49].
Thus, traditional segmentation methods, like region-based
methods where the voxels are directly analyzed by means of
a region growing strategy, or methods using thresholding
techniques, may not provide the desired results. Noise and
residual artifacts also make lesion segmentation difficult,
even for the white matter lesions (WML).

Analyzing the literature, we have seen that tissue class
segmentation-based approaches (clustering methods) are
commonly used for automated MS lesion segmentation. Tis-
sue class segmentation, which uses the tissue-class weights to
consider the presence of lesion, can be considered as an
estimation problem for determining intensity inhomogeneities
[67]. These techniques use spatial information (position of the
tissues and lesions) and inconsistency of lesions (intensity
differences between lesions and the normal tissue distribu-
tions) to detect and then quantify the lesions. Note that they
are statistical segmentation approaches that use knowledge
about tissue properties and therefore rely on the fact that the
same tissues have the same intensity values.

Several techniques have been used to improve segmen-
tation accuracy. It is well known that the use of prior
knowledge of normal tissue distribution improves the capa-
bility of segmentation methods [65]. The main strategy is to
use an anatomical template (atlas) to introduce spatial infor-
mation into the statistical segmentation. Although this in-
formation can be introduced in different ways [6], the most
common approach is based on TDS, which mainly consists
of a non-linear registration step [53, 63] to match MR
images to the atlas. As reported by Warfield et al. [63],
statistical classification and non-linear registration are often
complementary since pathologic structures such as lesions
are not modeled in an anatomical template. Lesions cannot
be segmented directly with an anatomical template. There-
fore, statistical methods are performed to compensate this
problem.

In addition to TDS, multi-spectral approaches are used to
improve the segmentation accuracy since different modali-
ties of MR images (T1-w, T2-w, PD-w, FLAIR, etc.) have
different signal characteristics that provide different infor-
mation. However, multi-spectral anatomical images are not
always available in clinical practice since the acquisition of
all these images is cost-intensive and requires more
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processing time [49]. Methods using multi-spectral informa-
tion also require a registration step, which may be assumed
as an affine [49] or a deformable registration [63].

Furthermore, some works also use a partial volume effect
correction (PVEC) method to eliminate false-positive
detected lesions [16, 21, 27, 65]. For instance, Guttmann
et al. [21] and Kikinis et al. [27] applied a PVEC algorithm
and improved their previous results. Moreover, Wei et al.
[65] concluded that the PVEC algorithm eliminated only
false-positive errors while TDS corrected false-negative
misclassifications and some of the false-positive misclassi-
fications. They also pointed out that using TDS with PVEC
together showed the highest accuracy in the segmentation of
the white matter signal abnormalities [65].

Supervised methods

We consider as supervised approaches those methods that
use mainly the image intensities of different MR images to
train a classifier by using labeled tissues and manually
identified lesions and those methods which use information
from a template (atlas) to classify tissues and to segment
lesions as deviations from normal human brains. It can be
seen in Table 1 that several techniques have been used to
perform supervised classification. For instance, k-nearest
neighbors (kNN), artificial neural networks (ANNs), and
support vector machines (SVM) are typical supervised
approaches for the tissue segmentations. Furthermore,
Yamamoto et al. [71] have recently proposed a false-
positive reduction step which uses a level set method and
a SVM classifier to substantially reduce the false MS lesion
detections.

According to Udupa et al. [61], human experts usually
outperform automated algorithms in the recognition task,
and, therefore, in their approach, the brain tissues such as
WM, GM and CSF are manually determined by an operator.
They claimed that the automated algorithms conversely
perform better in the delineation. Hence, they used a fully
automated algorithm for the delineation process from which
they segmented the MS lesions based on the principle of
fuzzy-connectedness [60] using the manually recognized
brain tissues (WM, GM, CSF) as fuzzy connected regions.
After the detection of CSF, WM, and GM as 3D fuzzy
objects, lesions appear as “holes”. The approach of Udupa
et al. [61] can also be considered as an early multi-spectral
approach, since they used both T2-w and PD-w images to
classify brain tissues. They state that CSF tissue is better
recognized in the T2-w image whereas WM and GM tissues
are better recognized in PD-w images.

Another semi-automated supervised and multi-spectral
method was proposed by Ashton et al. [4]. They compared
the regional-based methods (GEORG) with a directed multi-
spectral segmentation approach and conclude that both

methods were acceptable in terms of speed and precision.
They used statistical characteristics of background tissues
supplied by a Bayesian classifier and target statistics sup-
plied by the exemplar. This approach is also multispectral
since they mapped the three T1-w, T2-w, and PD-w images
to the red, green, and blue channel, respectively. Neverthe-
less, both algorithms need user interaction: A single mouse
click was used to place a seed for a region growing algo-
rithm, and a manually traced exemplar was needed for the
classification method.

Warfield et al. [63] applied TDS segmentation and spa-
tially varying statistical classification based on a multiple
feature kNN classification process. Also based on the kNN
classifier, Wu et al. [70] proposed an automatic segmenta-
tion of MS lesions into three subtypes: enhancing lesions,
black holes, and hyperintense lesions. An intensity-based
statistical kNN classifier is combined here with atlas seg-
mentation to extract WM masks. Assuming that lesions are
only found within WM regions, the authors discard all the
lesions outside the masks. Moreover, partial volume prob-
lems (i.e., arising from the fact that a voxel may be com-
posed of more than one tissue type) are corrected using
morphological operators. On the other hand, Wei et al.
[65] and Meier and Guttman [35] included a template-
driven strategy to perform the tissue class segmentation
based on an expectation maximization algorithm. Meier
and Guttman [35] also applied subtraction and partial vol-
ume correction to identify lesion load change and to elimi-
nate false-positive lesions. After the lesion segmentation,
they combined space and time into the MS lesion character-
ization process via direct quantitative analysis of signal
intensity in the time domain obtained from serial MR
images. In this way, they showed the signal dynamics of
active and chronic MS lesions [35].

Zijdenbos et al. [75] proposed a supervised MS lesion
segmentation method using multi-spectral information (T1-
w, T2-w, and PD-w) using an ANN. In particular, they used
a back-propagation ANN method to classify the MS lesions
because of the reliability of the method under different
image conditions. Similarly, Cerasa et al. [9] propose a
technique for segmenting white matter lesions in MS
patients by using a cellular neural network (CNN)-based
approach. Unlike ANN, in a CNN, interconnections among
cells are local, that is, each processing unit directly interacts
only with the neighboring cells, located within a prescribed
sphere of influence. The authors applied this CNN-based
technique to automatically segment MS lesions on FLAIR
images, comparing the performance of their approach with
the manual segmentation provided by two expert radiolog-
ists. Moreover, Anbeek et al. [1] combined a supervised
classification algorithm with a multi-spectral approach for
WML detection. They used five different modalities (T1-w,
T2-w, PD-w, IR, and FLAIR) and applied a kNN
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classification technique. Likewise, Zacharaki et al. [73]
recently presented a supervised WML segmentation method
based on SVM. They applied an AdaBoost algorithm to
each of the scans. As they reported, WMLs had intensities
similar to GM tissue in T1-w images and similar to CSF in
T2-w and PD-w images, so they applied a multi-spectral
approach.

Besides these techniques, Antel et al. [2] used texture
feature maps obtained by co-occurrence matrices together
with a supervised classification based on two-step Bayesian
classifier to perform the MS lesion detection. More recently,
Shen et al. [49] identified the MS lesions using their incon-
sistency by a defined threshold. They combined the fuzzy c-
mean (FCM) algorithm and TDS which was used to create
tissue probability maps. There are more examples of atlas-
based approaches. The method proposed by Shiee et al. [50]
segments brain tissues in an iterative way, interleaving a
fuzzy segmentation and defining topologically consistent
regions. MS lesions are identified as dark holes inside the
WM. The authors use multi-channel images to segment the
major structures of the whole brain. Basically, their method
is an atlas-based segmentation technique employing a topo-
logical atlas and a statistical atlas, together with the FCM
algorithm which performs the classification. As reported by
Shiee et al. [50], the advantage of using the topological atlas
is that all segmented structures are spatially constrained,
thereby allowing subsequent processing to perform cortical
reconstruction and cortical unfolding.

One of the drawbacks of the supervised segmentation is
that segmentation accuracy may depend highly on the se-
lection of the training set and the control groups [49] used to
compare individual patient images to a normal control group
(model-based strategy) [53]. Gerig et al. [19] compared an
unsupervised classification (ISODATA) with a supervised
classification (parametric maximum likelihood classification
and Parzen window technique) for the brain MR images and
found similar estimated parameters. Furthermore, although
supervised clustering methods are more efficient for the
segmentation purpose, they require some user interaction
for the training steps. Besides, different users or trainings

at different times on the same data may produce different
results (Fig. 4 shows an example of a MS patient volume
segmented by two different experts). Thus, unsupervised
methods are less subjective and completely automated and
more reproducible methods with respect to supervised
classifications.

Unsupervised methods

As illustrated in Table 1, many of the unsupervised classifi-
cation methods [17, 21, 27, 66] use the expectation maxi-
mization (EM) algorithm [68]. For instance, Ettinger et al.
[17] combined statistical tissue classification based on the
EM algorithm and subtraction in order to detect positive and
negative changes. In a similar way, Guttmann et al. [21],
Kikinis et al. [27], and Weiner et al. [66] have used a similar
strategy to segment MS lesions based on tissue classification
and expectation maximization.

Lee et al. [30] used a local threshold defined by a single
observer in order to segment MS lesions. Areas of new
lesions and areas of resolving lesions were defined by sub-
tracting normalized and co-registered images. They labeled
the lesion areas with color and subtracted two successive
images. The outcome image yields a colored subtraction
map which indicates areas of new lesions and areas of
resolving lesions.

More recently, Duan et al. [16] compared two different
approaches called conventional image segmentation
(CSEG) and segmentation of subtraction image (SSEG).
The first one was a supervised approach due to the use of
TDS, while the second one was an unsupervised approach
using the intensities of the subtracted images to detect the
MS lesions. However, both segmentation methods are re-
fined by applying an automated Otsu threshold and manual
editing. The authors concluded that the SSEG method pro-
vided significantly higher measurement of reproducibility
and enhanced sensitivity to cortical and subcortical lesions.

Hillary et al. [23] used an ISODATA technique consisting
of a multi-parametric unsupervised classification method.
As a different approach to classification methods, Juang

Fig. 4 Generated 3D volume
with MS lesions segmented by
two different experts showing a
large inter-rater variability. Note
here the importance of using
more than one manual annota-
tion when evaluating the auto-
matic algorithms (example
extracted from the MICCAI
challenge)
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and Wu [66] applied color-based segmentation with k-
means clustering based on applying a histogram-based met-
ric to produce colored images indicating the tissues and
lesions.

Change detection approaches

As we have already stated in the introduction, the patient
follow-up over time is crucial to determine the evolution of
the disease. Therefore, change detection techniques are
needed to compare the brain evolution over time. As shown
in Fig. 2, we distinguish among three main different strate-
gies to perform these tasks, which are described in the
following subsections. Figure 5 shows the different flow-
charts of each category.

Intensity-based approaches

Intensity-based approaches for change detection use voxel-
to-voxel intensity comparison to distinguish evolving
lesions. Therefore, a lesion without changes in the follow-
up scan, such as static lesions, cannot be detected using this
strategy.

Voxel-to-voxel comparison methods usually suffer from
repositioning errors due to patient movement, inconsistent
objects over time such as blood and cerebrospinal fluid flow
artifacts [38], noise in the images, and partial volume effects
[12]. Therefore, image registration, bias field correction, and
intensity normalization [48] are necessary to compensate for
these problems. Furthermore, the selection of image type
(T1-w, magnetization prepared rapid gradient echo (MP-
RAGE), T2-w, PD-w) and the interpolation method during
the registration process are also important criteria for the
accuracy and robustness of the subtraction methods.

Deterministic approaches

We include in this group those intensity-based approaches
that are based on subtracting two successive images in order
to find intensity differences due to evolving lesions. Typi-
cally, after the subtraction of two consecutive temporal
images, unchanged areas (normal tissue) appear as gray
areas, while changed areas are due to the appearance or
disappearance of lesions. Hence, the positive activity (new
or enlarging lesions) appears as a bright area while the
negative activity (resolving or shrinking lesions) appears
as a dark area against the gray background [55].

The roots of the subtraction approach to detect MS
lesions were made by Curati et al. [12], who investigated
contrast enhancement with registered difference images.
They reported that the recognition of small changes,
changes at the boundaries, and tissues and fluids with very
high or very low signals were more difficult to determine.
Furthermore, they noted that, while the use of thin slices
decreased the partial volume effects, it increased the mis-
registration. Thus, they stated that an accurate alignment
was necessary to assess the changes. They also claimed that
using 3D scans of the MP-RAGE images might increase the
accuracy of the results since these types of scans have better
contrast.

Tan et al. [55, 56] suggested that using only the variation
in the intensity signal to determine negative or positive
activity was not sufficient, since change in intensity signal
may also be due to different conditions such as the use of a
different scanner or a high level of noise. Thus, they deter-
mined regional activity by also comparing if there was a
change in the lesions size or shape. They concluded that
using subtracted images for lesion detection showed better
agreement for the positive activity than for the negative one.
Besides, they reported that success of this approach depends
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highly on the lesion size. To detect enlarging lesions smaller
than 5 mm in diameter, they must increase their size more
than 100% and appear in at least two consecutive slices. On
the other hand, the detection of shrinking lesions with a
diameter smaller than 5 mm was not reliable.

Following a similar approach, Moraal et al. [38] also
concluded that subtracted images provide a sufficient mea-
sure for the quantification of positive disease activity. The
authors found a good inter-observer agreement in the quan-
tification of positive disease activity and compared their
results with the previous works in terms of inter-observer
agreement, concluding that their success was due to the
improvements in the registration and intensity correction
methods used. They also noted that results obtained for the
negative activity were not as good as the results obtained for
the positive disease activity. In a different study, Moraal et
al. [39] evaluated the performance of 2D and 3D subtraction
methods and conclude that 3D subtraction techniques, after
image registration, provided greater inter-observer agree-
ment. Furthermore, they compared several image sequences
(3D DIR, 3D FLAIR, 3D T2-w, 3D MP-RAGE) and found
that negative active lesions, even the small ones, could be
detected using the 3D MP-RAGE images, owing to good
anatomical detail and clear GM-WM contrast.

Statistical-based approaches

Statistical change detection techniques for interpreting in-
tensity differences aims at reducing the noisy results
obtained by direct point-to-point subtraction [5]. This group
of methods is based on building a statistical model of
intensity changes between successive scans in order to de-
tect active lesions and their evolutions. Those methods rely
on the changes of the lesions and not on the changes of the
individual voxels.

For instance, after the image subtraction, Lemieux et al.
[31] classified each voxel as changed versus unchanged
according to a threshold value and subsequently grouped
together the changed voxels. They called these grouped
voxels structured differences objects, which can be caused
by either biological processes or image artifacts. Afterward,
in order to quantify changes in the image difference, these
structured difference objects were thresholded by applying
the structure difference filtering which was used to estimate
the Gaussian noise level. After the normalization, the out-
come image was a map of the classification of voxels as no
signal change, signal increase, signal decrease, and outside
of the brain. The authors also compared this map with the
one obtained by a set of normal volunteers in order to assess
the significance of the changes. By using this full scheme,
they avoided the structured noise, and they were able to
determine the real changes more correctly. However, note
that this statistical method cannot give the total count of

active lesions directly, although a set of statistics, such as the
total genuine change voxels and total number of normal
structured voxels, can be easily obtained.

On the other hand, Bosc et al. [5] presented both a single-
modal and multi-spectral (FLAIR, RARE, and GE 3D)
change detection approach. They registered the images into
a common reference according to their modality, instead of
choosing a baseline reference from the serial images of a
patient, since the registered images undergo geometrical
transformations while the reference image does not. In this
sense, all images undergo equivalent processing steps, like it
is done in the well-known half-way registration [24, 25].
Affine registration was used for registering the single mo-
dality matching while affine and deformable registration
was used for the multi-modality matching. Afterwards, they
computed the voxel probability ratio of change and grouped
together those neighboring changed voxels. Thus, clustered
voxels (also sorted in decreasing likelihood) were presented
to the experts instead of individual voxels. Notice that
evaluating individual voxel changes is more difficult, and
also, manually delimiting the lesion evolution is more sub-
jective. They evaluated their results with simulated lesions
and found that lesions with a radius greater than 0.6 voxels
could be detected. Furthermore, they found that the multi-
modality detection increased the detection probability from
79% to 95% due to the richer information, which avoids
more false-positive detection.

Temporal analysis approaches

Temporal analysis is based on the analysis of long time-
series of MR images, i.e., more than two explorations. Note
that, in these cases, the subtraction techniques should not be
employed. Hence, in temporal analysis, the intensity of each
voxel is regarded as a function of time, and the aim is to see
how the brightness of these voxels varies over the time. This
analysis is useful for either lesion segmentation [20] or
characterization [35].

Gerig et al. [20] combined space and time into a 4D
volume in order to track the brightness of each voxel. They
first applied a supervised method to segment normal tissues
based on parametric maximum likelihood classification and
Parzen windows [19]. Afterwards, they distinguished active
lesions by computing the mean and variance of the voxel
time-series, since voxels belonging to active lesions show
higher variance compared with static tissues. Note, however,
that this temporal analysis relying on voxel level compari-
son assumes a perfect registration among the different vol-
umes, which cannot be true in most of the cases. This
drawback can be minimized by taking the spatial correlation
between neighboring voxels into account [69]. Therefore,
the voxels’ gray-value information and their surrounding
tissue for all serial scans were stored in the database,
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implicitly assuming that the mean spatio-temporal evolution
of all lesions in the database can be regarded as a character-
istic model of a typical MS lesion.

Recently, Srivastava et al. [53] presented a statistical
segmentation method based on building a lesion specific
feature map. They incorporated a template-driven segmen-
tation of the three main tissues (CSF, WM, and GM) and
then used the ratio of cortical thickness over absolute image
intensity gradient. The statistical parametric map was
thresholded in order to detect lesions. They stated that their
method can be applied to almost all lesions satisfying the
thickening and the blurring model; hence lesions with vol-
ume smaller than 3.8 cm3 could be detected.

Deformation field-based approaches

An MS lesion is generally seen as the combination of two
different effects, tissue transformation and tissue deforma-
tion [57]. Tissue transformation refers to the intensity
change in the tissue of the lesion, while tissue deformation
refers to the modification of its surrounding tissue, due to
lesion expansion or contraction. Therefore, using only
approaches based on intensity changes between serial scans
to evaluate the evolution of lesions may not give satisfactory
results, since the surrounding tissue deformation due to the
presence of the lesion is not taken into account. In order to
consider the mass effect of the lesions, deformation-based
approaches should be employed.

In deformation field-based approaches, a non-linear reg-
istration is performed between successive scans, and the
structural changes are determined based on the local defor-
mation of voxels. Note, however, that, due to the fact that
this approach looks for the differences between the succes-
sive scans, static lesions cannot be detected.

Vector displacement fields

Thirion and Calmon [57] proposed a semi-automatic ap-
proach using vector displacement fields obtained by a non-
rigid registration of two successive scans to track MS
lesions. They proposed to use both the divergence and the
norm of the displacement vector fields in order to be sensi-
tive to deformation and intensity change. Therefore, high
values of the norm indicated large deformation areas, while
high divergence indicated evolving lesions, where the sign
of the divergence operator showed whether the lesion was
growing or shrinking. Moreover, they also observed that
noise was characterized by high divergence and low norm
while the norm was large and the divergence low in the case
of a translation. Hence, a region of interest encompassing
the lesion and the surrounding tissues should be selected to
perform this analysis. In their evaluation, the authors
showed that this method worked better than intensity-

based methods when there was a mass effect without
change in enhancement, although intensity-based meth-
ods performed slightly better when there was no mass
effect.

Rey et al. [44] improved the approach of Thirion and
Calmon [57] by using the Jacobian operator to determine
local volume changes instead of using the divergence and
norm of the vector fields. Furthermore, they used multi-
resolution levels to avoid the influence of the motion in
the center of a lesion by the vectors in the boundary. Using
the Jacobian operator, it is possible to distinguish the
lesion’s evolution. As it is commonly accepted, the authors
stated that a Jacobian operator larger than 1 indicates a local
expansion, while smaller values indicate local shrinking.
Furthermore, they can segment the lesions by using a thresh-
old defined on the Jacobian operator (for instance, a thresh-
old of 0.3 indicates significant shrinking). Actually, in their
work, they only analyze shrinking lesions, due to the
richer information when looking at the shrinking field
and expanding areas more influenced by the spatial
smoothing. Note that this is not a main drawback, since
they use both information of the deformation field from
old to new images as well as from new to old images.
Comparing this algorithm with image subtraction, they
demonstrated that the Jacobian operator was invariant to
registration errors, although the algorithm gave poor
results for segmentation.

Deformation field morphometry

Recently, Pieperhoff et al. [42] applied deformation field
morphometry for the detection of local volume changes in
Parkinson patients, although this algorithm could also be
used to detect the evolution of MS lesions. The authors
considered MR images as a 3D set of grid points, and they
calculated the deformation vectors related to the grid points
between the images which indicate shifted voxels in the
source image (a deformed image to target image). Hence,
they defined local volume ratio (LVR) as the volume of the
deformed voxels in the source image divided by the volume
of the non-deformed voxels in the target image. A local
volume ratio greater than 1 shows a local increase and
vice-versa. Subsequently, they created LVR-maps, which
comprised the LVR values of all voxels. An LVR-map
can be used in a ROI by adding up the LVR values of
all the voxels. Furthermore, they compared LVR and the
Jacobian determinant, and they reported that LVR gave
smoother volume measures since the latter only consid-
ers four to six deformation vectors, whereas LVR is
computed from 27 deformation vectors. Moreover, the
Jacobian operator requires the calculation of partial
derivatives, which usually introduces approximation
computation problems.
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Quantification approaches

As well as of performing the MS lesion detection and
the change detection in MR images, the quantification
process is also essential for radiologists and neurologists
to analyze the patient follow-up. As already presented in
“Lesion quantification,” there are different ways to
quantify the lesion evolution: visual inspection, statisti-
cal change detection, and volumetric approaches.

As shown in Table 1, the approaches based on lesion detec-
tion typically use volumetric approaches to quantify the lesion
evolution. Metcalf’s 4D connected component analysis [36],
which uses a time domain on registered segmented images,
may be the most common approach for this purpose (see, for
instance, the following works which use this quantification
approach [17, 21, 27, 66]). 4D connected component analysis
provides the size and position of the lesions in a time line and is
commonly used to identify individual lesions in time series.

In order to perform the quantification with temporal-
based approaches, the outcome of the obtained images must
be interpreted. Observing Table 1, it is clear that point-to-
point subtraction methods commonly use visual inspection
to detect active lesions and interpret the lesion evolution.
For instance, Moraal et al. [39] detect positive activity by
analyzing the bright area against a gray background. Fur-
thermore, statistical intensity-based approaches use addi-
tional techniques to interpret the outcome images, for
example, Lemieux et al. [31], who used a structured noise
map (SNM) to identify lesion evolutions by comparing the
outcome image with the SNM, and Bosc et al. [5], who used
the generalized likelihood ratio test to avoid the drawbacks
of direct manual visual inspection.

Regarding the deformation-based approaches, both Thi-
rion and Calmon [57] and Rey et al. [44] used vector fields
obtained from the non-linear registration step to identify the
lesion evolution. Vector fields allow the displacement of the
tissues and lesions to be more readily visible. For instance,
Rey et al. [44] showed how the displacement field empha-
sizes a shrinking lesion while Thirion and Calmon showed
the 3D deformation field measured between two volumetric
MRI’s of the same patient at the level of the lesion. More-
over, Thirion and Calmon also used the measurements of the
volume variations to validate their method’s accuracy by
comparing with the conventional segmentation result. The
approach of Rey et al. could also be used to segment lesions
by defining a threshold. Therefore, volumetric analysis was
also used to quantify the lesion evolutions.

Experimental validation

The experimental validation of brain MRI serial methods is
not an easy task. The main problem when evaluating serial

brain analysis remains the difficulty of obtaining a solid
ground truth. Also, some of the automated methods do not
provide a final quantitative result, but a processed image
that is later displayed to the experts who provide the final
diagnosis. In these cases, the experimental results usually
evaluate the performance of the radiologists with and with-
out using the software. In what follows, we explain the main
steps that researchers follow to prepare the data and to
evaluate their approaches.

Data preparation

The initial step needed to perform a validation of any
algorithm is the selection of the cases. Depending on the
aim of the validation a different subset of images may be
necessary. For instance, if the accuracy of a segmentation
algorithm is evaluated, only lesioned volumes are necessary,
while lesioned volumes along with healthy controls are
necessary to evaluate the performance of a lesion detection
algorithm. Moreover, it is usually interesting to cluster the
data according to the total lesion load in order to correlate
this with the performance of the algorithms.

Reviewing the literature, a variety of MRI scanner
machines is used, like the 2-T Bruker [5], the 1.5-T Phillips
[1], the 1.5-T Siemens [55], or the most common one, the
1.5-T GE machine [16, 21, 37]. All these systems provide
different fields of view (25.6 cm, 230 mm, 196×310 mm,
230×310 mm, etc.), different slice thicknesses (usually be-
tween 2 and 6 mm), and different sizes of the final image
volume (256×256×54, 256×256×38, 162×256×20, 128×
256×22, etc.). Moreover, different MRI modalities are ac-
quired for each patient, typically T1-w, T2-w, PD-w, and
FLAIR images (2D or 3D), which can be acquired from
different views, usually axial or sagittal. This variety of
inputs should be covered by the developed algorithm, which
cannot be an easy task in terms of computational speed or in
amount of memory used. The most common way to deal
with this data is to construct a (virtual) 3D volume. Hence,
in serial analysis where two or more volumes are analyzed at
the same time, researchers use the term 4D dataset, assum-
ing that time is the fourth dimension.

Once the 3D volumes are obtained, they are still not ready
for direct processing. As explained in “General problems in
MRI,” some inherent problems of the MRI data should be
addressed before tracking the lesions. Bias-field correction,
spatial co-registration, and intensity normalization are applied
to correct for inter-scan intensity variations (due to scanner
drift or other technical sources) and are usually applied for
each 3D volume individually. Once these artifacts are mini-
mized in both volumes, the registration step between the
volumes is performed. New problems arise here, like different
intensity normalization between the different volumes and
issues caused by deformation artifacts that may be related
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with the registration itself (repositioning) or with the voxel
interpolation. Note that the brain extraction is usually per-
formed after the registration step, in order to take advantage
of the fact that the skull should be invariant in the different
scans.

Ground-truth preparation

In general, there are two different ways of evaluating the
approaches: with experiments using synthetic data or with
experiments using real data. The use of a phantom brain (like
the BrainWeb one [8]) provides an excellent framework to
quantitatively evaluate the algorithms. However, it is well-
known that synthetic data do not reproduce all the complex
factors involved with real data, and algorithms working in
these environments may fail when tested in real data. In
contrast, the use of simulated lesions into real MRI scans
provides a controlled ground-truth in a more realistic environ-
ment. For example, Thirion and Calmon [57] introduced
spherical lesions with blurred contours that were obtained by
averaging the intensities of real lesions, while Bosc et al. [5]
used cubic lesions with Gaussian profiles obtained from real
lesions in all the modalities they used. In contrast to these
works that only introduce lesions in the new volumes, Rey et
al. [44] suggested the addition of lesions in both old and new
volumes to obtain a more realistic evaluation.

The common way of obtaining the ground-truth of real
data is the accurate manual segmentation performed by at
least one expert. If more than one expert segments the
images, the final ground-truth will be more reliable [64].
For instance, the ground-truth used in Anbeek et al. [1] was
first segmented by an expert, and then the manual segmen-
tations were independently reviewed and corrected by two
other experts, who were blinded for the clinical symptoms
of the patients. Finally, the manual segmentation was re-
evaluated in a consensus meeting and considered as a gold
standard. Molyneux et al. [37] also noted that the potential
for any memory of the images may introduce a systematic
bias. Therefore, they suggested minimizing it by randomiz-
ing the scan order and ensuring a delay of at least 1 week
between repeated measurements of the same scan.

One of the key points usually not considered in the
approaches is related to the degree of difficulty of the data,
which can be measured using the coefficient of variation
(COV) between the annotations. The COV is the ratio of the
standard deviation of the measurements to the mean and
provides a measure to indicate the reproducibility of one
strategy [74]. It is common to differentiate between:

& Inter-rater COV: variation of the results between differ-
ent experts.

& Intra-rater COV: variation of the results at different times
with same expert.

As an example, Zijdenbos et al. [75] presented a COVof
44% for the evaluation done with experts from seven differ-
ent institutes. This value indicates that the image data they
used was complicated and resulted in large variability even
among the experts.

Moraal at al. [39] also noted the necessity of training the
radiologists when performing the ground truth. First, the
radiologists checked the image differences in healthy
patients. Subsequently, they checked the difference of brains
with MS lesions (not present in the testing set). Therefore,
when they provided the ground-truth using their software,
they looked for lesions individually, and finally they arrived
at a consensus opinion.

Validation with ground-truth

The validation of an algorithm using ground-truth depends
on its final aim. In many computer aided diagnosis systems
[14, 15], the output is not the accurate segmentation of the
lesion but the capacity of the algorithm to detect lesions. In
these systems, the performance is computed using receiver
operating characteristic (ROC) and free-response receiver
operating characteristic (FROC) analysis. ROC analysis is
performed at a case-level and is used to evaluate the capac-
ity of the algorithm to distinguish between normal or abnor-
mal (containing lesions) cases [10]. In contrast, FROC
analysis is performed at region-level and plots the percent-
age of detected lesions against the number of false-positive
regions detected. This analysis is useful when evaluating the
performance of the algorithm to detect lesions [72]. In this
latter analysis, a region of interest should be defined. For
instance, Yamamoto et al. [71] assume that a lesion is
detected when a single voxel is marked inside the lesion.
On the other hand, to evaluate the performance of a seg-
mentation algorithm, the most common computed measure-
ments are the sensitivity, the specificity, and the Dice
similarity coefficient [13], all of them computed at voxel-
level. The sensitivity measures the percentage of well-
detected voxels among all the lesions in the volume, the
specificity is related to the capacity of an algorithm to avoid
false positive voxels, while the Dice coefficient indicates the
overlap between the automated and the manually delineated
lesions (this measure is also known as similarity index [3]).
Again, the COV coefficient may be used to compare both
the automated and the manual obtained results.

However, in serial analysis, this quantitative evaluation is
less important, since it does not quantify the effectiveness of
the algorithm to track the lesion evolution. In this sense, the
comparison between the result of the automated algorithm
and the ground-truth in terms of absolute [75] and changed
lesion [16, 37] volume may provide a more realistic evalu-
ation of the algorithm. A reliable qualitative evaluation was
performed by Bosc et al. [5], who visually evaluated their
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algorithm using two experts and classified the automatic
detected lesions in three different categories: valid lesion
evolution, valid non-lesion evolution, or false detection.
Although subjective, this evaluation provides a clear indi-
cation of how well the algorithm tracks the evolution of the
lesions.

Validation without ground-truth

Due to the difficulty of obtaining ground-truth in their
experiments, researchers developed different ways to dem-
onstrate the consistency of their approaches. One of the
most common ways to show the robustness of an algorithm
is the scan–rescan validation, where the experiments are
repeated several times to show the differences in the final
result, which can be done with the COV coefficient (COV
for reproducibility or also known as inter-scan COV). Note
that, to correctly perform this validation, patients are re-
moved from the MR room after the first scan and then
repositioned in the MR machine by a different technologist
[16, 21, 35].

Other ways to show the robustness of the approaches is
through temporal coherency and sequence coherency, al-
though some specific features are needed in both cases.
Temporal coherency consists of checking the differences in
lesion volume through the different explorations [57]. The
idea is that the lesioned volume should not drastically
change between two consecutive explorations in time (as-
suming no relapses in that time). This is analog to the
evaluation of SIENAx [51], where the authors computed
the error of their method for atrophy quantification in three-
time exploration by checking if the tissue loss in t1–t2 added
to the loss in t2–t3 were equal to the loss in t1–t3. On the
other hand, the sequence coherency aims to compare the
results of an algorithm when detecting lesions through the
different MRI sequences independently [37]. However,
those algorithms that rely on the analysis of a single se-
quence (i.e., FLAIR) or the use of two or more sequences
together cannot perform this evaluation.

Discussion

Analysis of the reported results

Table 2 summarizes the results of the reviewed lesion de-
tection algorithms in terms of reproducibility (comparison
without ground-truth) and agreement with the experts (com-
parison with ground-truth). Note that the automatic segmen-
tation methods obtain good reproducibility results, even
more if we consider the fact that the MRI sequences are
acquired again. Regarding the comparison with ground-
truth, we can see that the work of Anbeek et al. [1] provides

the highest performances in terms of DSC and sensitivity
(voxel-wise computed). Notice also that most of the works
provide specificity values close to 1. This is due to the fact
that this measure evaluates the ratio between the numbers of
voxels correctly classified as healthy divided by the total
number of healthy voxels. Therefore, considering that
lesions are small spots within the whole volume, the spec-
ificity value always tends to be close to 1 [32]. A different
way to evaluate the performance of an algorithm is to use a
region-wise measure instead of voxel-wise, as it is done in
the work of Yamamoto et al. [71]. In this case, the sensitivity
is computed as the number of detected lesions divided by
the total number of lesions (81.5% in their work), and it is
compared with the total number of false-positive lesions per
volume or slice (2.9 per slice in [71]).

Looking at the results of the algorithms, clustering tech-
niques perform better than conventional segmentation meth-
ods [16], and the use of additional strategies like PVEC or
TDS [65] leads to increased accuracy of the approaches.
Note that these strategies are based on introducing the
experience of the expert into the algorithms, and hence,
supervised segmentation methods perform better than unsu-
pervised methods. Nevertheless, it should be considered that
this additional information which either comes from a train-
ing set or from an anatomical template will bias the accuracy
of the results.

On the other hand, Fig. 6 provides a comparison of the
results obtained by different subtraction methods in terms of
inter-observer agreement, detailing the results for positive and
negative lesion detection. Tan et al. [55] investigated the
lesion evolution from 26 patients using a 2D subtraction-
based approach, while Moraal et al. [38] tested also the use
of a 2D subtraction-based method using 46 pairs of MR
images from 40 patients. In a later work, Moraal et al. [39]
proposed and evaluated a 3D subtraction-based approach
using controls of 14 patients. Comparing the results obtained
by the 2D subtraction approaches, Moraal et al. [38] out-
performed the results of Tan [55], mainly thanks to both the
improvement in the registration algorithms and the use of an
initial normalization step. However, the results of a similar
strategy used with different data [38, 39] were drastically
decreased. On the other hand, comparing 2D and 3D subtrac-
tion, one can see that the 3D subtraction outperforms the 2D
approach, especially in the detection of negative activity.
Furthermore, analyzing the results for each MRI sequence
made it possible to see that the FLAIR sequence provided
the best overall performance, while the use of the MP-RAGE
sequence improves the detection of MS cortical lesions.

Improvements and further trends

Regarding the imaging modalities, the analysis of the
approaches has shown that FLAIR discriminates well
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between lesions and healthy tissue and is used in numerous
approaches to perform the automated lesion segmentation
and lesion evolution analysis [40]. Recent reports have also
stated that 3D FLAIR imaging reduces the artifacts and
provides an excellent signal-to-noise ratio compared with
2D FLAIR images. Notice that 3D FLAIR images provide
3D volume data with isotropic information and minimize

the partial volume effect between small lesions and sur-
rounding tissue. Therefore, the use of 3D FLAIR imaging
may improve the estimates of the WM and GM as well as
the MS lesions.

As the MR images suffer from various image acquisition
issues, pre-processing and post-processing steps play an
important role for MS diagnosis and follow-up MS patients.

Table 2 Summary of the results obtained by different lesion detection approaches

References Methods Data acquisition Dataset Measure Results

[Udupa, 1997] FCS DE FSE T2-w/PD-w 20 MS patients Avg. COV with FCM vs
COVof 3 Experts
without FCM

0.9%

22.6%

[Guttmann,
1999]

EM+PVEC SE/DE-SE T1-w 20×2 RR MS patients Avg. LVE 0.05 cm3
GE Signa 1.5 T

[Kikinis, 1999] EM+PVEC SE/DE/longTR T1-w 1 RR MS patient COV of WML 39.5% vs 52.0%
GE Signa 1.5 T

[Wei, 2002] EM+PVEC DE SE PD-w/T2-w 11×2 CP MS Avg. Inter-Scan COV 7.50%

GE Signa 1.5 T 9×2 RR MS patients Zscore −2.84

EM+TDS Avg. inter-scan COV 2.57%

Zscore 1.84

EM+TDS+
PVEC

Avg. inter-scan COV 4.98%

Z-score −0.99

[Zijdenbos,
2002]

ANN-BP T1-w/2D SE T2-w/PD-w 500×3;100×4 Avg. inter-scan COV 0%

14 Hospitals
North America

MS patients Avg. CC with 7 rater 0.93

Avg. Kappa (Dice) 0.60

[Ashton, 2003] Bayesian (DMSS) SE VE T1-w/T2-w/PD-w 10 dataset for Intra Intra-rater COV 5.1% vs 1.5%

1 dataset for Inter Avg. inter-rater COV 16.5% vs 5.2%

[Ashton, 2003] GEORG SE VE T1-w/T2-w/PD-w 10 dataset for intra Intra-rater COV 5.1% vs 1.4%

1 dataset for inter Avg. inter-rater COV 16.5% vs 2.3%

[Antel, 2003] Bayesian FFE T1-w 18 MS patients with FCD Region-wise sensitivity 0.85%

Voxel-wise sensitivity 0.2%

[Anbeek, 2004] KNN T1-w/T2-w/PD-w/
FLAIR/IR

18 MS patients Avg. DSC 0.81%

Avg. sensitivity 0.971%

Avg. specifity 0.974%

[Wu, 2006] KNN+TDS+
PVEC

DE-SE PD-w/T2-w 6 MS patients Avg. sensitivity(T2L-BH) 0.70%–0.623%

SE/T1c-w Avg. specifity(T2L-BH) 0.987%–

0.997%

[Duan, 2008] SSGE DE PD-w/T2-w MR 10×2 RR MS patients Avg. inter-scan COV 0.98%

GE Signa 1.5 T Avg. LVE 1.50%

[Duan, 2008] CSEG+PVEC DE PD-w/T2-w MR 10×2 RR MS patients Avg. inter-ican COV 8.64%

GE Signa 1.5 T Avg. LVE 11.40%

[Shiee, 2010] FCM T1-MPRAGE/FLAIR 10 MS patients Avg. DSC 0.633%

Avg. sensitivity 0.712%

[Yamamoto,
2010]

LS+SVM T1-w FSE/T2-w/ 3×2 MS patients Avg. DSC 0.77%
FLAIR

[Cerasa, 2011] CNN FLAIR 11 RR MS patients Avg. DSC 0.64%
GE Signa 1.5 T

The datasets are defined by (number of patients)×(number of controls). If not specified, the measures are computed voxel-wise

The acronyms refer to: MRI sequences: DE dual echo, SE spin echo, GE gradient echo, VE variational echo, FSE fast spin echo, FFE fast field
echo; patients: CP chronic progressive, FCD focal cortical dysplasia, RR relapsing remitting TPI traumatic brain injury; measures: CC correlation
coefficient, COV coefficient of variation, DSC Dice similarity coefficient
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Therefore, bias field correction algorithms and global scal-
ing of the images are commonly employed before registra-
tion. Besides, most of the approaches use a normalization
algorithm particularly implemented for MR images (as for
example the recent N4 algorithm [59]).

To perform a better comparison between images of dif-
ferent controls and particularly for the change detection
algorithms, the registration is without any doubt the most
important step. However, the registration procedure includes
a re-sampling an interpolation process which may affect the
images and the posterior measure of the lesion volume.
Moreover, the lesions themselves, for instance, enlarged
lesions or shrunken or resolved lesions, may affect the
registration accuracy negatively. One possible way to reduce
this miss-alignment caused by the lesion evolution is to use
a similarity metric robust to local differences. For instance,
mutual information or normalized mutual information,
which are the most commonly used measures in multi-
modal registration [22, 45, 54], can be used for the serial
MRI registration to reduce the effects of the lesion evolution
and other variations on the images which are caused by
misalignments. The correlation ratio used for this purpose
can be also a good choice for the serial MRI registration, since
it can deal with intensity differences [76] and has been shown
in some cases to be more robust than MI with respect to the
initialization of registration [45]. In order to avoid residual
artifacts caused by the registration, we have seen that some
approaches used also the half-way registration method [5, 39],
which is a robust way to avoid interpolation artifacts and
consists of applying the same interpolation effect on both the
fix and moving images. Notice that the type of interpolation
method used is also important. For instance, using a spline
interpolation will provide better results than using a linear
interpolation method. Some authors also suggested the sinc

interpolation for registering MR images while using a 3D
pipeline [12, 41] since the frequency content of the MR
images is strictly band-limited [12]. Therefore, it is suitable
for a sinc interpolation. However, using a high-level interpo-
lation method drastically increases the processing time with
respect to the number of iterations and resolution. Thus, a
linear interpolation method may be used within the iterations
of the registration, while the principal interpolation method
could be used within the last iterations or just for the final re-
sampling process.

By analyzing the reported approaches, we have seen that the
lesion detection and change detection techniques can be com-
bined. In fact, this may help to carry out the diagnosis and
follow-up of the patients at the same time and compensate for
their inherent weaknesses. For instance, Duan et al. [16] com-
bined a change detection algorithm based on subtraction of
registered serial MR images with a detection algorithm based
on a direct segmentation of the lesions. Rey et al. [44] proposed
a uniform threshold over the Jacobian operator obtained from a
deformation analysis to perform the lesion segmentation.
Though they provided an experimental evaluation, the results
were still far from a desired segmentation. Regarding these
strategies which merge different methods, we believe that the
quantification of the mass effect in vivo for the MS will be a
new challenge for the near future. Besides, the selection of one
MR image sequence (i.e. T1-w, T2-w, PD-w, and FLAIR) for
specific purposes such as registration, detection, or segmenta-
tion, or the combination of some of them will have an impor-
tant effect on the obtained results. In fact, combining the
advance characteristics of the different MR image types is
another important factor, which was also pointed out by
Mortazavi et al. [40]. Some of the reviewed approaches have
already applied multi-spectral algorithms which benefit from
the different signal characteristics of the MR images.

Fig. 6 Inter-observer
agreement of the subtraction-
based approaches. The perfor-
mance of the algorithms
according to the lesion activity
is shown. 2D and 3D refers to
the way the subtraction is
performed
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We want to stress also that performing an exhaustive
evaluation and comparison of the existing works is a very
difficult task. The use of different data sets and different
evaluation measures has been a major obstacle to reviewing
these methods. Ideally, approaches should be applied to a
common database and compared with a ground truth. This
is, however, very difficult due to the lack of common public
databases of real images along with several controls and
their ground truth and the fact that the methods are not
publicly available. Implementation of some significant
works and a comparison with a common database will,
without any doubt, provide a more objective comparison.
However, integration of the expert knowledge and a proper
setting of the algorithm parameters will be another impor-
tant issue when trying to reproduce those results. As an
example, Klein et al. [28] recently evaluated 14 different
nonlinear deformation algorithms applied to human brain
MRI registration. However, the work just focused on de-
formable registration, comparing a set of protocols rather
than independent algorithms.

Conclusion

A review and classification of the classical and up-to-date
approaches for automatic monitoring of MS lesion evolution
has been proposed and discussed in this paper. These tech-
niques, which have been classified according to their nature,
are essential for the diagnosis and follow-up of MS patients
from the MR images. Assessment of MS lesion evolution
involves both detection and quantification of the lesion
change. In accordance, we have also distinguished between
lesion detection and lesion change detection techniques.

The lesion detection-based methods rely on using just a
scan of a patient to detect the lesions, and a posterior
quantification method may be used to determine the lesion
evolution, which is usually carried out by using the total
lesion volume between the image time-series. In this cate-
gory, we have distinguished between supervised and unsu-
pervised techniques, based on the use or not of a priori
training of the algorithm. On the other hand, lesion change
detection techniques make it possible to detect active lesions

and interpret the lesion evolution at the same time. Howev-
er, these algorithms cannot detect static lesions, since they
need changed or deformed regions between the time-series.
We have further sub-divided those strategies into two main
categories: intensity-based and deformation-field based
techniques, the former based on performing subtraction of
successive scans while the latter allowing also to detect the
mass effect of the lesions, which is an aspect overlooked by
lesion detection and intensity-based methods, and which
may be crucial for the MS patients.

Comparing different approaches and highlighting a single
strategy is a difficult task due to the lack of a common
database and a proper gold standard which prevents doing
an exhaustive analysis. Furthermore, the setting of all the
algorithm parameters and the integration of the expert
knowledge are also important aspects to consider for a
proper experimental validation. In this work, we have stud-
ied the reported results of all the analyzed automated MS
lesion detection and quantification methods. We have seen
that, for the lesion detection methods, the work of Anbeek et
al. [1] was the most remarkable approach in terms of preci-
sion since they provided the highest values of DSC and
sensitivity (voxel-wise computed). Other approaches have
used a different way to evaluate the performance using
region-wise measures instead of voxel-wise [71]. We have
also seen that the precision of a proposal may be analyzed
by considering the reproducibility and repeatability. In this
case, the COV measure is a good way to indicate these two
aspects. For example, among the lesion detection methods,
the work of Zijdenbos et al. [75] had the best reproducibility
and reliability since it provided the best COV value. On the
other hand, among the change detection techniques the
approach of Moraal et al. [39] provided the highest perform-
ances with respect to inter-observer agreements.

Summarizing, from the analysis done, we have seen that
the lesion detection approaches are required for detecting
static lesions and for diagnostic purposes, while either quan-
tification of detected lesions or change detection algorithms
are needed to follow up MS patients. In this latter case,
deformation field-based algorithms allow the mass effect
of the lesions to be detected, although analyzing all individ-
ual detected lesions is a time-consuming task and may not

Fig. 7 A possible general
framework for lesion detection
and quantification. This
framework allows the detection
and tracking of evolving lesions
computing their volumetry and
mass effect
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be necessary for the expert radiologists. Figure 7 shows an
overall view of what we think could be a general framework
for the time-series analysis of MS patients. Observe that this
process involves the lesion detection, the volumetric quan-
tification, and the deformation analysis, respectively. Notice
that all MS lesions would be detected before deforming the
MR images, while the regions of interest in the time-series
(i.e., active lesions) and the quantification would be done by
volumetric analysis and deformation analysis. Although this
proposal may miss lesions which include only tissue defor-
mation without any change in intensity, we believe it would
be suitable for clinical practice.
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