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Abstract. Breast MRI to X-ray mammography registration using
patient-specific biomechanical models is one challenging task in medical
imaging. To solve this problem, the accurate knowledge about internal
and external factors of the breast, such as internal tissues distribution, is
needed for modelling a suitable physical behavior. In this work, we com-
pare four different tissue segmentation algorithms, two intensity-based
segmentation algorithms (Fuzzy C-means and Gaussian mixture model)
and two improvements that incorporate spatial information (Kernelized
Fuzzy C-means and Markov Random Fields, respectively), and analyze
their effect to the multi-modal registration. The overall framework con-
sists on using a density estimation software (VolparaTM ) to extract the
glandular tissue from full-field digital mammograms, meanwhile, a bio-
mechanical model is used to mimic the mammographic acquisition from
the MRI, computing the glandular tissue traversed by the X-ray beam.
Results with 40 patients show a high agreement between the amount of
glandular tissue computed for each method.

1 Introduction

Tissue segmentation has been an open problem in medical imaging for decades.
In breast imaging, this problem is of particular importance for cancer screening
due to the fact that breast density is being established as an important risk
factor. Accurate knowledge of the internal tissue of the breast could provide
information to radiologist to localize suspicious areas within the breast.

Magnetic Resonance Imaging (MRI), X-ray mammography and Breast Ultra-
sound are the most common imaging modalities used to early detection and
diagnosis of breast diseases in women. X-ray mammography is considered as the
gold standard in the early diseases detection. However, the 2D-projection hinders
locating suspicious lesions within the uncompressed breast and the sensitivity is
limited in women with dense breast. Sometimes, MRI or ultrasound scans are
acquired to overcome those issues. In fact, radiologists have found that the com-
bination of these modalities leads to a more accurate diagnosis and management
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of the breast diseases [11] and researchers have focused their efforts on develop-
ing algorithms to fuse the information of the different imaging modalities, taking
into account the position of the patient and the loading conditions of the breast
during the imaging acquisition [4,8,9].

To fuse the information between MRI and X-ray mammograms, researchers
have developed algorithms using patient-specific biomechanical models. During
the multi-modal registration process, the biomechanical model is used to mimic
the mammographic acquisition, compressing the model and projecting internal
tissues from the MRI to a 2D space. However, the limited resolution of the MRI
scanner makes almost impossible to get a voxel entirely composed by a single
(adipose or glandular) tissue. In this case, the partial volume effect of the voxels
must be taken into consideration.

This paper aims to analyze the impact of the tissue segmentation (in partic-
ular, of the glandular tissue) during the multi-modal registration. Segmentation
algorithms are divided into two categories, parametric, those which assume that
the intensity histogram follows a probability distribution (usually the Gaussian
distribution), and non-parametric, which classify the voxels using just the inten-
sity of the image, such as K-means or Fuzzy C-means [1].

In our experimental results, first of all, we use the commercial software
VolparaTM to extract the glandular tissue from the X-ray mammograms. These
obtained density maps are considered as the ground truth of our problem. On the
other hand, we use a biomechanical model to mimic the mammographic acquisi-
tion from the MRI and to compute the amount of glandular tissue traversed by
the X-ray beam at each voxel. Four different segmentation algorithms are used to
determine the glandular tissue in the MRI: a Fuzzy C-means (FCM) segmenta-
tion and a Gaussian-mixture model provided by the Expectation-Maximization
algorithm, and two methods that incorporate spatial prior information to them:
the Kernelized Fuzzy C-means and the EM-Markov Random Fields, respec-
tively. Global and local measures are used to quantitatively analyze the obtained
results.

The rest of this document is organized as follows: Sect. 2 introduces
VolparaTM , the MRI segmentation and the biomechanical model used for multi-
modal registration, Sect. 3 shows the experimental evaluation, while Sect. 5 dis-
cusses the main findings of this paper.

2 Methodology

2.1 VolparaTM Density Maps

To compute the spatial distribution of breast glandular tissue from mammo-
grams, we used the commercial software VolparaTM . The basis of VolparaTM

software can be found in the work of Highnam et al. [7].
The starting point is to find an area within the mammogram which is entirely

adipose (fatty) tissue. This area (Pfat) is used as a reference level to compute the
thickness of glandular tissue (hd) at each pixel (x, y) of the mammogram. The
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Fig. 1. Scheme of the process to generate the density maps. On the left, from the
mammography using the VolparaTM software, while on the right, departing from the
MRI.

density map has a resolution equal to 638 × 765 pixels (0.28 × 0.28 millimeters
per pixel).

In addition to local measures, VolparaTM computes the volume of the glandu-
lar tissue, integrating the hd(x, y) values over the entire mammogram, the breast
volume, using the area of the mammogram and the recorded breast thickness,
and finally, the breast density and the Volpara Density Grade (VDG), a value,
between 1 and 4, comparable to the BI-RADS rating for global breast density [3].

2.2 Generating the Density Map from MRI

In order to generate a density map from breast MRI comparable with the one
provided by VolparaTM , the acquisition conditions observed in mammography
have to be reproduced. Figure 1 shows the scheme of the process to generate a
density map. Firstly, each breast is separated from the rest of the body in the
MRI volume. Subsequently, the breast is represented as a 3D model which is
compressed simulating the mammographic acquisition and finally projected into
a 2D plane using a ray-casting approach. This final projection is the density map
obtained from the MRI.

Segmentation. Firstly, image inhomogeneities are corrected using the N4 bias
field correction algorithm [15]. The 3D breast MR volume is segmented from
the background and separated from the rest of the body using a probabilistic
Atlas approach, a methodology similar to the one presented by Gubern-Mérida
et al. [5].
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Subsequently, internal tissues are further segmented using the FCM [2] and
the EM algorithms. We complete this information using two methods that incor-
porate spatial prior information into them: the Kernelized Fuzzy C-means [17]
and the Markov Random Fields, which provides spatial consistency to the
Gaussian model. The main reason to use these two algorithms is to avoid the
misclassification of skin voxels and uncorrected bias field regions close to the
pectoral muscle. Finally, the membership of the voxel to belong to the glandu-
lar tissue class is stored, as a 3D density-probabilistic map of the whole MRI
volume.

Mammographic Acquisition Simulation. The breast surface mesh and a
secondary mesh, belonging to the glandular tissue (voxels with membership
higher than 0.5), are extracted from the MR images by means of the march-
ing cubes algorithm. Previously, a morphological operation closes the internal
tissue, avoiding small isolated regions within the biomechanical breast model.
The tetrahedral mesh is extracted using the open-source package tetgen [13],
getting a high number of elements (approx. 100, 000).

The stress-strain relationship is approximated by a nearly incompressible,
isotropic and hyperelastic neo-Hookean model for each tissue, using the corre-
sponding Young’s modulus measured by Wellman [16] (adipose tissue Efat =
4.46 kPa and glandular tissue Egland = 15.1 kPa at Strain = 0.0 [14]). The
breast-body interface is fitted to a linear surface and the nodes belonging to
this surface are allowed to slide in the parallel direction to the compression
paddle displacement [6]. The simulation is performed by means of the software
NiftySim v.2.3.1 [10], using a frictionless contact model to simulate the com-
pression paddle. The necessary information to reproduce the mammographic
acquisition (breast thickness, view angle, source-to-detector distance, etc.) is
extracted from the DICOM header of the corresponding mammogram.

Finally, a ray-casting algorithm [12], accelerated by a GPU implementation,
is used in conjunction with the compressed breast model, to simulate the mam-
mographic geometry. The amount of glandular tissue traversed by each X-ray
photon at different locations of the receptor is computed as the length of the ray
multiplied by the membership of the traversed voxel.

2.3 Image Registration

After getting the compressed breast image, the biomechanical model is displaced
to align as much as possible both density maps, using a Hill-Climbing optimiza-
tion algorithm (3D/2D registration). The optimization process consists in find-
ing the maximum Dice overlap coefficient between the real mammogram and the
projected one. This map is the one that will be quantitatively compared to the
map obtained with the VolparaTM software.
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3 Experimental Results

3.1 DataSet

The dataset used was acquired at the Radboud University Medical Centre
(Nijmegen, The Netherlands) between April 2005 and September 2009, and con-
tains 40 pre-contrast T1 MR images and 80 CC mammograms from 40 women.
Patients were selected according to their VDG, choosing 10 patients for each
density class. The 40 patients were aged 29 to 59 (mean: 40.91 ± 8.57).

The MRI scanner used was a 1.5 Tesla Siemens scanner (Magnetom Vision,
Magnetom Avanto and Magnetom Trio) with dedicated breast coil (CP Breast
Array, Siemens, Erlangen). Regarding the mammographic device, the images
were acquired by either a GE Senographe 2000D or GE Senographe DS, accord-
ing to the standard clinical settings. Both studies were acquired in the same
day.

3.2 Results

To evaluate our result, each density class is taken independently. Moreover, the
parameter of the FCM was set to 2 based on our initial experiments.

Global and local measures are combined to evaluate the agreement between
the density maps. On one hand, global measures consist in computing the mutual
information (MI) between both density maps and the distance between density
maps histograms. On the other hand, local measures were obtained computing
the statistics (mean and entropy) of the density maps difference.

Figure 2 shows the results obtained when computing the mutual information
between Volpara density maps and the ones obtained from the MRI detailed for
each density class and when using the four segmentation algorithms: Fuzzy C-
means (FCM), Gaussian mixture models (EM), Kernelized FCM (KFCM) and
Markov Random Fields (EM+MRF). We can see that the mutual information
measure is higher in denser classes. Moreover, the performance is similar for all

Fig. 2. Mutual information between histograms detailed for each density class (ordered
in increasing density class). Higher values indicate a better agreement between the
maps.
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the algorithms, although adding spatial information provides better results in
the densest class.

The histogram of the density maps allows to measure, in a global way, the
amount of glandular tissue traversed by the X-ray beam during the projection.
Due to the optimization performed we expected the density maps obtained from
the mammogram (VolparaTM ) and from the MRI to be similar. Figure 3 shows
the Euclidean distance between them. According to this measure, EM seems to
perform better than FCM, specially in fatty breasts. Spatial information does
not provide a significant increase of the algorithms performance.

Fig. 3. Euclidean distance between histograms detailed for each density class. Lower
values indicate a better agreement between the maps.

Finally, we calculate the point-to-point differences between density maps
in order to extract local information of the divergences. In general, statistics
extracted from the difference maps show a high similarity between results. For
instance, the results of the mean of the difference density maps are shown in
Fig. 4. We also observed that the entropy of the difference of the density maps
decreases for denser breasts. Regarding algorithms, FCM performs better than
EM according to this measure, although the use of spatial information helps
to minimize the differences, increasing drastically the performance of the EM
algorithm.

4 Discussion

Local distribution and the pattern of glandular tissue provide information to
radiologist for risk assessment in localized areas. Comparing those measures
from different image modalities (MRI and X-ray mammography) could help to
improve the co-localization of these areas in a 3D-space. Our results show a high
similarity between the amount of glandular tissue computed from each modality.

Comparing the intensity-based segmentation algorithms used on MRI, the
Gaussian mixture model provided better results according to the global criteria
while provided worse results according to the local measures. This is mainly
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Fig. 4. Mean of the difference density maps detailed for each density class. Lower values
indicate a better agreement between the maps.

due to inaccuracies introduced during the multi-modal registration. Moreover,
our experiments have shown that the spatial information aids the segmentation
and improves the obtained density maps. We also observed that the N4 MRI
bias-field correction provided better results in denser breasts.

5 Conclusions

In this paper we analyzed the impact of four tissue segmentation algorithms
during the multi-modal registration of breast MRI to X-ray mammography. Two
of them consider only the gray intensity levels in the images while the others
incorporated spatial information to improve segmentation results. The density
maps obtained from this registration are then quantitatively compared with
the corresponding maps obtained from the VolparaTM software in the full-field
digital mammograms.

Results show a high agreement between density maps. However, inaccuracies
during the registration or the over-/underestimation of glandular tissue for each
voxel reduce the accuracy of results. Further work will include a more robust
multi-modal registration approach.
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