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J. C. Vilanova3, D. Sidibé1, and F. Meriaudeau1
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Abstract

Variations in inter-patient prostate shape, and size

and imaging artifacts in magnetic resonance images

(MRI) hinders automatic accurate prostate segmenta-

tion. In this paper we propose a graph cut based energy

minimization of the posterior probabilities obtained in a

supervised learning schema for automatic 3D segmen-

tation of the prostate in MRI. A probabilistic classifi-

cation of the prostate voxels is achieved with a proba-

bilistic atlas and a random forest based learning frame-

work. The posterior probabilities are combined to ob-

tain the likelihood of a voxel being prostate. Finally, 3D

graph cut based energy minimization in the stochastic

space provides segmentation of the prostate. The pro-

posed method achieves a mean Dice similarity coeffi-

cient (DSC) value of 0.91±0.04 and 95% mean Haus-

dorff distance (HD) of 4.69±2.62 voxels when vali-

dated with 15 prostate volumes of a public dataset in a

leave-one-patient-out validation framework. The model

achieves statistically significant t-test p-value<0.0001

in mean DSC and mean HD values compared to some

of the works in literature.

1. Introduction

Prostate segmentation in MRI facilitates volume es-

timation, multi-modal image registration, surgical plan-

ing and image guided prostate biopsies. Manual seg-

mentation of the prostate in MRI is time consuming and

suffers from inter and intra-observer variabilities. How-

ever, inter-patient prostate shape, size, deformation and

intensity variations along with imaging artifacts chal-

lenge 3D automatic segmentation of the prostate. Atlas
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based prostate segmentation have achieved good seg-

mentation accuracies when validated with large num-

ber of MRI datasets [6]. Motivated by these approaches

we propose a probabilistic classification of the prostate

voxels achieved by the fusion of the posterior proba-

bilities determined with a probabilistic atlas and a su-

pervised learning framework of random forest. Finally,

graph cut based energy minimization [1] of the poste-

rior probabilities produces the 3D segmentation of the

prostate. The proposed method is robust to inter-patient

shape, size and intensity variabilities. The key contribu-

tions of this work are: (1) Fusion of the posteriors from

random forest and probabilistic atlas to achieve proba-

bilistic classification of the prostate. (2) Use of graph

cut in the stochastic domain to achieve segmentation of

the prostate.

2. Proposed Segmentation Framework

The proposed method is developed on three major

components: 2.1) Probabilistic atlas based segmenta-

tion, 2.2) Random forest based probabilistic classifica-

tion of the voxels being prostate, and 2.3) Graph cut

based energy minimization of the combined probabili-

ties. The schema of our proposed method is illustrated

in Fig. 1.

2.1 Probabilistic Atlas

The demons energy [9] is computed from the differ-
ence of voxel intensities between the moving and refer-
ence volumes. The minimization of the energy gradient
provides the corresponding update (U ) of a given trans-
formation field (S). Edge forces of both the moving and
reference volumes improve the registration convergence
and stability. If M and F represent the moving and ref-
erence volumes respectively, then the voxel velocity u
at voxel p with m and f as the respective voxel intensi-
ties is given by Eq. (1) and the demons energy E(u) is
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Figure 1. Schematic representation of our approach. Posteriors from shape restricted random forest classification and probabilistic atlas

based segmentation are combined (
∑

). Graph cut based energy minimization of the combined probabilities provides the segmentation. The

green contour/volume is created from the ground truth and red contour/volume is created from obtained segmentation.

given by Eq. (2).

u =
(m− f)∇f

|∇f |2 + α(m − f)2
+

(m− f)∇m

|∇m|2 + α(m − f)2
(1)

E(u) = ‖F −M ◦ (S + U)‖2 +
σ2
i

σ2
x

‖U‖2 . (2)

where ∇f and ∇m are the respective intensity gradi-

ents and α is a normalization factor that adjusts the

force strength, σ2

i and σ2

x are the constants for inten-

sity and transformation uncertainties respectively. The

process of atlas construction begins with alignment of

N manually segmented training datasets to a common

reference. One among N training datasets is manually

selected by an expert to reduce bias and N − 1 datasets

are registered to the reference dataset. The registration

is done in two stages, intensity based affine registration

of N−1 datasets to the reference dataset is followed by

the non-rigid demons registration. The mean volume

is computed by averaging all patient volumes aligned

to the reference volume. The probability map is ob-

tained by averaging the deformed patient volume labels.

Given a new patient dataset, the atlas is first registered

to the dataset using affine and demons based registra-

tion. Once registered, the transformation of the atlas

probability map determines the probabilistic segmenta-

tion of the new patient dataset given by Pat. Following

[6, 7] we manually select the volume-of-interest encom-

passing the prostate, the bladder and the rectum to re-

duce the computational time.

2.2 Random Forest Based Classification

MRI intensities of the prostate and the background

regions are difficult to differentiate. Also the inter-

patient intensities inside the prostate region may vary

significantly depending on the acquisition parameters

and imaging artifacts. Such intensity variations may af-

fect graph cut based energy minimization framework.

Therefore, to reduce the intensity variations and signif-

icantly differentiate between the prostate and the back-

ground regions we propose to substitute intensities with

posterior probabilities of a voxel being prostate. Our

probabilistic classification problem is addressed in a su-

pervised learning schema of random decision forest [4].

The training phase begins with the normalization of

intensities of the training volumes of interest and with

their rigid alignment to minimize the pose and intensity

variations. The data for training consists of a collec-

tion of 3 × 3 × 3 neighborhood of voxels, centered at

V = (X,F ), with X = (x, y, z) denoting the position

of the voxel associated with a feature vector F . The

feature vector F consists of the mean and standard de-

viation of the 3× 3× 3 voxel neighborhood. Each tree

t in a decision forest of T trees receives the full data set

of V along with the label and selects a test to split V

into two subsets to maximize information gain where,

a test is a feature response threshold. The left and the

right child nodes receive their respective subsets of V

and the process is repeated at each child node to grow

the tree. The growth is terminated if either the informa-

tion gain is minimum or the tree has grown to a max-
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imum specified depth. Each decision tree in the forest

is unique as each tree node selects a random subset of

features and threshold.

During testing, the manually selected volume of in-

terest of the test dataset encompassing the prostate,

the bladder and the rectum with normalized intensi-

ties is rigidly aligned to the pre-registered training data.

Each voxel of the test dataset is propagated through all

the trees by successive application of the relevant bi-

nary test to determine the probability of belonging to

class c. When reaching a leaf node lt in all tree with

t ∈ [1..., T ], posterior probabilities (Pt(c|V )) are gath-

ered in order to compute the final posterior probability

of the voxel defined by P (c|V ) = 1

T

∑T

t=1
Pt(c|V ).

Geremia et al. [4] imposed spatial restriction on the

classified voxels by incorporating spatial information of

the voxels obtained from the atlas. Similarly, to im-

pose probabilistic implicit shape and spatial prior to the

decision forest classification, we obtain a probabilistic

shape and spatial prior model Psp of the prostate by

averaging the intensity-based affine registration of the

ground truth obtained from the training datasets. Psp is

aligned with the center of the volume obtained from de-

cision forest classification and the shape and spatial pri-

ors are imposed on the random forest classification by

obtaining the likelihood value of a voxel being prostate

as Plk = P (c|V )× Psp.

Probabilistic segmentation of the prostate obtained

using a probabilistic atlas (Pat) is fused with the likeli-

hood values Plk to achieve the final probabilistic classi-

fication of the prostate by Pfn = log (Pat) + log (Plk).
Log likelihood minimizes the effect of error incorpo-

rated either from the demon registration or from the ran-

dom forest classification.

2.3 Graph Cut Based Energy Minimization

Our segmentation problem may be formulated as
Maximum A Posteriori estimation of a Markov random
field and could be solved in a graph cut energy mini-
mization framework [1]. The graph G = 〈V x, ǫ〉 is de-
fined as set of voxels V x and a set of edges ǫ connect-
ing neighboring voxels where the objective is to com-
pute the best cut that minimizes the sum of the costs
of the edges. Close neighboring voxels have higher
edge costs. Two specially designated terminal nodes
Sr (source) and Ta (sink) that represent the prostate
and the background have to be manually selected by the
user. However, we use soft classification of the prostate
to automatically determine Sr and Ta. Typically, the
neighboring voxels are interconnected by edges in a
regular grid like structure. The objective of graph cut
based energy minimization is to completely separate the
terminals Sr and Ta, thereby segmenting the prostate
from the background. In our model, we build the graph
with soft classification of the voxels and use graph cut
over the soft classification to achieve the final 3D seg-

Figure 2. Sr(S) and Ta(T ) terminals are identified auto-

matically from posterior probabilities. Graph cut based energy

minimization in 3D provides the segmentation.

mentation of the prostate. Our model could be formal-
ized as; let a be a voxel and B be the set of all voxels
and xa be 0 or 1 depending on a belonging to the back-
ground or the prostate. Let Ea be the individual voxel
matching cost for a; Ea,c vary inversely with the dif-
ference of intensities of voxels a and c. Then the cost
function is given as,

E =
∑

a∈B

Ea(xa) +
∑

(a,c)∈ǫ

Ea,c(xa, xc) (3)

where ǫ is the set edges of neighboring voxels. The

first term represents the cost information related to data,

while the second term represents a smoothness related

cost. Energy E is minimized by max-flow/min-cut

based graph cut [1]. Graph cut based energy minimiza-

tion is illustrated in Fig. 2.

3. Experimental Results and Discussions

We have validated the accuracy and robustness of our

approach with the 15 MRI public dataset of MICCAI

prostate challenge [8] in a leave-one-patient-out vali-

dation strategy. During validation, probabilistic atlas

and decision forest are build with 14 training datasets

as discussed in sections 2.1 and 2.2. The number of

trees were fixed to 100, tree depth to 30 and the lower

bound of information gain to 10−7 in decision forest as

these parameters produced promising results with test

images. The features of random forest were limited to

mean and standard deviation of voxels. During testing,

the probabilistic atlas is registered to the test dataset

and the probabilistic labels are transformed to achieve a

probabilistic segmentation of the prostate. Next a prob-

abilistic classification of the voxels is achieved with

shape restricted decision forest and atlas-based segmen-

tation probabilities as discussed in 2.2. We have used

the popular prostate segmentation evaluation metrics

like Dice similarity coefficient (DSC), and 95% Haus-

dorff distance (HD) to evaluate our method. To have

an overall quantitative estimate of our performance we

have compared our method with the results published

in the MICCAI prostate challenge 2009 [7, 2], with the

work of Gao et al. [3] and with the work of Ghose et

al. [5] in Table 1. Please note that [2] used a probabilis-

tic atlas for their segmentation achiving a DSC value

of 0.73; however, our stochastic framework which com-

bines the probabilities from decision forest and proba-

bilistic atlas produces better results (DSC 0.91). In fact,
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Table 1. Prostate segmentation quantitative results.

VOI=Volume of interest
Method DSC HD Manual Interaction

Merida [7] 0.79 7.11 mm Selection of VOI

Dowling [2] 0.73±0.11 - Selection of VOI

Gao [3] 0.82±0.05 10.22±4.03 Initialization

Ghose [5] 0.88±0.11 6.18±5.15 Initialization

Our

Method

0.91±0.04 4.69±2.62 Selection of VOI

statistically significant improvement in DSC and HD of

student P test t-value < 0.0001 has been achieved com-

pared to [2, 3]. Moreover [3] used shape and local re-

gion based statistics of mean and standard deviation of

the voxels to propagate their levelsets to achieve a de-

terministic segmentation of the prostate. We use simi-

lar features but employ a stochastic approach and use a

MAP-MRF approach to compensate mis-classifications

and achieve better results. Comparing our results to

our previous work of [5] we observe that error in ini-

tialization of our shape and intensity prior model away

from the center of gravity due to slice propagation ad-

versely affected results. The combined framework of

probabilistic atlas and random forest works as the two

approaches produces better results in different zones

of the prostate. The probabilistic atlas produces good

results in the central region of the prostate while ran-

dom forest produces better results in the base and the

apex regions. Quantitatively, atlas based registration

produces a DSC of value of 0.74±0.18, random for-

est produces a DSC value of 0.78±0.25, with average

model refinement of random forest classification a DSC

of 0.81±0.15 is achieved and combining the two prob-

abilities in log scale produced DSC of 0.87±0.09 is ob-

tained. Finally graph cut optimization further refines

mis-classifications and produces a DSC of 0.91±0.04.

Qualitative results are presented in Fig. 3.

4 Conclusions

A novel schema of graph cut based energy min-

imization in a stochastic domain obtained with atlas

based segmentation and shape constrained decision for-

est with the goal of segmenting the prostate in MRI

has been proposed. Our method is robust to signifi-

cant shape, size and contrast variations in MRI com-

pared to some existing work in the literature. The pro-

posed method has shown promising results however the

algorithm should be validated with more datasets and

optimal feature selection may improve the probabilis-

tic classification of the random forest. Furthermore the

sensitivity analysis of manual interaction for model ini-

tialization needs to be studied and the effect of using

other registration methods like B-spline based image

Figure 3. Subset of segmentation results of 2 datasets. The

green contour/volume is created from the ground truth and red

contour/volume is created from obtained segmentation.

registration needs to be analyzed.
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