
A PROBABILISTIC FRAMEWORK FOR AUTOMATIC PROSTATE SEGMENTATION WITH

A STATISTICAL MODEL OF SHAPE AND APPEARANCE
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ABSTRACT

Prostate volume estimation from segmented prostate contours

in Trans Rectal Ultrasound (TRUS) images aids in diagnosis

and treatment of prostate diseases, including prostate cancer.

However, accurate, computationally efficient and automatic

segmentation of the prostate in TRUS images is a challeng-

ing task owing to low Signal-To-Noise-Ratio (SNR), speckle

noise, micro-calcifications and heterogeneous intensity dis-

tribution inside the prostate region. In this paper, we propose

a probabilistic framework for propagation of a parametric

model derived from Principal Component Analysis (PCA)

of prior shape and posterior probability values to achieve the

prostate segmentation. The proposed method achieves a mean

Dice similarity coefficient value of 0.96±0.01, and a mean

absolute distance value of 0.80±0.24 mm when validated

with 24 images from 6 datasets in a leave-one-patient-out

validation framework. Our proposed model is automatic,

and performs accurate prostate segmentation in presence of

intensity heterogeneity and imaging artifacts.

Index Terms— Prostate Segmentation, Expectation Max-

imization, Bayes Classification, Active Appearance Model.

1. INTRODUCTION

Prostate cancer affects life of over 670,000 people worldwide,

accounting for over 32,000 deaths in North America [1].

Prostate volume determined from segmented TRUS images

serves as an important parameter in determining presence

of benign or malignant tumor during diagnosis of prostate

diseases [2]. However, manual segmentation of the prostate

from TRUS images is time consuming and suffers from inter

and intra observer variabilities and personal biases. Com-

puter aided semi-automatic or automatic segmentation of the

prostate from TRUS images is also a challenging task, due to

low SNR, speckle noise, imaging artifacts and heterogeneous

intensity distribution inside the prostate region.

Thanks to VALTEC 08-1-0039 of Generalitat de Catalunya, Spain and

Conseil Régional de Bourgogne, France for funding.

To address the challenges involved with prostate segmen-

tation in 2D TRUS images, we propose a novel Active Ap-

pearance Model (AAM) [3] that is trained, initialized and

propagated by the probabilistic value of a pixel being prostate

given its position and intensity obtained in a Bayesian frame-

work [4]. The performance of our method is validated using

24 images from 6 datasets in a leave-one-patient-out valida-

tion framework, and it is compared to traditional AAM [3],

our previous work on texture guided AAM [5] and with some

of the works of the state-of-the-art. Experimental results show

that our method performs accurate TRUS prostate segmenta-

tion, obtaining better performances compared to [3], and [5]

and comparable to some works in literature [6, 7, 8, 9]. The

key contributions of this work are:

• Use of the likelihood information obtained from prostate

gland pixel intensities and positions in a Bayesian

framework to obtain a probabilistic representation of

the prostate region.

• Use of the probabilistic information in training, au-

tomatic initialization and propagation of a statistical

model of shape and appearance that improves on com-

putational time and segmentation accuracy when com-

pared to the traditional active appearance model [3].

To the best of our knowledge this is the first attempt to

use probabilistic information of the prostate region from a

Bayesian framework in training and propagation of AAM.

The rest of the paper is organized as follows. The probabilis-

tic framework for automatic initialization and propagation of

AAM is formulated in Section 2 followed by the presentation

of quantitative and qualitative evaluation of our method in

Section 3. We finally draw conclusions in Section 4.

2. OUR PROPOSED METHOD

The proposed method is developed on three major compo-

nents: using an Expectation Maximization (EM) model to de-

termine prior class (prostate or background) probability from
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Fig. 1. Schematic representation of our approach. Abbreviations used PDM

= Point Distribution Model, GPA = Generalized Procustes Analysis, GMM

= Gaussian Mixture Model, EM = Expectation Maximization, Pos. = Posi-

tional, Pb. = Probability.

pixel intensities, a Bayesian framework for obtaining pos-

terior probability distribution from prior probabilities of the

EM and the pixel position and finally, the adaptation of tra-

ditional AAM for incorporating probabilistic values for train-

ing, initialization and propagation. The schema of our pro-

posed method is illustrated in Fig. 1.

2.1. Expectation Maximization and Prior Probabilities

The probability of a pixel intensity being prostate is obtained

in an EM [4] framework. Given a model X of observed data,

a set of latent unobserved data Z and a vector of unknown

parameters θ, along with a likelihood function L(θ;X,Z), the

EM algorithm seeks to find the maximum likelihood estimate

by iteratively applying the expectation and the maximization

steps. In Eq. (1), the expectation step calculates the expected

value of the log likelihood function with current estimated

parameters θt and in Eq. (2), the maximization step find the

parameters that maximizes this quantity.

Q
(

θ|θt
)

= EZ|X,θt [logL (θ;X,Z)] (1)

θt+1 = argmaxθ

[

Q
(

θ|θt
)]

(2)

In our model the intensity histogram of a TRUS image
(Fig. 2(a)) is approximated with two class (prostate and back-
ground) Gaussian mixture model (Fig. 2(b)). Maximum a
posteriori estimates of the class means and standard devia-
tions are used to soft cluster the pixels, assigning probabilistic
membership values of being in either classes (Fig. 2(c)). The
likelihood of a pixel location in an image being prostate (Fig.
2(d)) is obtained by normalizing the ground truth values of all
the pixels for all the training images as,

P (xps|Cprs) =
1

N

N
X

i=1

GTi (3)

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 2. Bayesian framework for segmentation (b) Intensity histogram (blue

line), Gaussian mixture model (red line), and two Gaussian class (green line)

(c) Output of EM of image (a). (d) Prior probability of pixels position in

an image being prostate, (e) Posterior probability of a pixel being prostate

after Bayes classification, (f) Centroid (white dot) computed from probability

values for AAM initialization. On initialization the AAM segments prostate

in a multi-resolution framework 2(g), 2(h) and 2(i) to give final segmentation

2(j).

where GT represents ground truth of training images. In our
model the class prior probability is estimated from the fre-
quency of the pixels belonging to a class as,

P (CProstate) =

Pn

i=1
xi

Pm

j=1
xj

(4)

where xi represents all the pixels belonging to prostate region

and xj represents all the pixels in all training images.

2.2. The Bayesian Framework

The prior probabilities of intensity, location and class prior
probabilities are used in a Bayesian framework to achieve a
Bayesian classification of the pixels (Fig. 2(e)). We consider
a pixel in TRUS image to be a n-dimensional feature vector
X = (x1, x2, x3, ....., xn). According to the Bayes rule,

P (Ci|X) =
P (X|Ci) P (Ci)

P (X)
(5)

where P (Ci|X) represents posterior probability distribution
of a class given the prior P (Ci) (i.e. P (CProstate)) and the
likelihood P (X|Ci). P (X) being equal for all classes could
be removed from the formulation. Considering class condi-
tional independence the likelihood could be formalized as,

P (X|Ci) =

n
Y

K=1

P (xk|Ci) (6)

= P (xps|Cprs) .P (xin|Cprs)

2011 18th IEEE International Conference on Image Processing

726



Table 1. Quantitative Comparison of AAMs
Method DSC HD(mm) MAD(mm) MaxD(mm) Specificity Sensitivity Accuracy

AAM [3] 0.94±0.03 4.92±0.96 2.15±0.94 5.3±0.48 0.89±0.03 0.993±0.006 0.97±0.009

Ghose et al. [5] 0.95±0.01 5.08±1.18 1.48±0.36 5.01±1.13 0.92±0.02 0.998±0.001 0.97±0.01

Our Method 0.96±0.01 2.80±0.86 0.80±0.24 2.79±0.80 0.94±0.01 0.991±0.004 0.98±0.005

where the likelihood P (X|Ci) is obtained from the prod-

uct of the probability of a pixel intensity being prostate

(P (xin|Cprs)) from EM framework and the probability of a

pixel location being prostate (P (xps|Cprs)) i.e. obtained by

normalizing the ground truth values.

2.3. Bayesian Guided Active Appearance Model

AAM provides a compact framework built from a priori shape

and texture variabilities knowledge acquired from training

images to segment an unseen image exploiting the prior

knowledge of the optimization space. The process of build-

ing AAM could be subdivided into three major components:

building the shape model, building the texture model and

building the combined shape and texture model.

The Point Distribution Model (PDM) [3] is built from
manually segmented contours, which are aligned to a com-
mon reference frame with Generalized Procrustes Analysis
(GPA). Principal Component Analysis (PCA) of the aligned
PDMs identifies the principal modes of shape variations. In-
tensity distribution are warped into correspondence using a
piece wise affine warp and sampled from shape free refer-
ence. PCA of the intensity distribution is used to identify the
principal modes of intensity variations. The model may be
formalized in the following manner: In Eq. (7) let E {s} and
E {t} represent the shape and intensity models,

E {s} = s + Φsθ

E {t} = t + Φtθ (7)

where s and t are the shape and the intensities of the cor-
responding training images, s and t denote the mean shape
and intensity respectively, then Φs and Φt contain the first p
eigenvectors of the estimated joint dispersion matrix of shape
and intensity and θ represents the corresponding eigenvalues.
The model of shape and intensity variations are combined in
a linear framework and a third PCA ensures the reduction in
redundancy of the combined model. In addition to the param-
eters θ, four parameters, two translations, rotation and scale
are represented by ψ. In order to infer the parameter values
of θ and ψ of a previously unseen image, a Gaussian error
model between model and pixel intensities is assumed. Fur-
thermore, a linear relationship between changes in parameters
and difference between model and image pixel intensities ∆t
is assumed as,

∆t = X

»

∆ψ

∆θ

–

(8)

X is estimated from weighted averaging over perturbation of
model parameters and training examples. Eq. 8 is solved in

least square manner fitting error as,

"

bψ
bθ

#

= (XT
X)−1

X
T
δt (9)

We propose to use the probability values obtained from Bayes

classification in place of intensity values in building mean

model and training the AAM. Given a new instance, Bayes

classification provides the probability value of a pixel being

a prostate (Fig. 2(e)). The centroid of the probability val-

ues (Fig. 2(f)) is utilized for automatic initialization of the

AAM. Consequently, the probability map of the new instance

is used for the propagation of the AAM in a multi-resolution

framework (Fig. 2(g), 2(h) and 2(i)) to segment the prostate

(Fig. 2(j)). Prior probability information obtained in the

EM framework provides an improved prostate tissue model

compared to raw intensities, in presence of intensity hetero-

geneities. Bayes classification with prior probabilities from

EM and pixel position produces a more accurate represen-

tation of the prostate region. The probability values being

close to the mean model, the difference with the mean model

is considerably reduced. This in turn reduces fitting error

producing an accurate prostate segmentation.

3. EXPERIMENTAL RESULTS

We have validated the accuracy and robustness of our ap-

proach with 24 TRUS images with a resolution of 354×304

pixels from 6 prostate datasets in a leave-one-patient-out eval-

uation strategy. We have used most of the popular prostate

segmentation evaluation metrics like Dice Similarity Coeffi-

cient (DSC), 95% Hausdorff Distance (HD), Mean Absolute

Distance (MAD), Maximum Distance (MaxD), specificity,

sensitivity, and accuracy to evaluate our method.

Table 1 shows the obtained results compared with the tra-

ditional AAM proposed by Cootes et al. [3] and our pre-

vious work [5]. It is observed that with respect to overlap

accuracy and contour accuracy, our probabilistic information

guided AAM performs better than traditional AAM [3] and

the texture guided AAM [5]. This could be attributed to the

fact that a probabilistic representation of the prostate region

in TRUS images improves segmentation accuracy compared

to the use of raw intensities [3] or texture [5]. We achieve a

statistically significant improvement in t-test for DSC with

p=0.0027 compared to traditional AAM [3] and p=0.0009

compared to our previous work [5]. Moreover, our proposal

has a statistically significant improvement in t-test for HD and
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Table 2. Prostate Segmentation Evaluation Metrics Comparison for TRUS and MR Images
Reference Year Area Overlap Accuracy Contour Accuracy Datasets

Betrouni [6] 2004 Average Area overlap 93±0.9% Average distance 3.77±1.3 pixels 10 images

Shen [7] 2003 Average Area overlap error 3.98±0.97% Average distance 3.2±0.87 pixels 8 images

Ladak [8] 2000 Average Area accuracy 90.1±3.2% Average MAD 4.4±1.8 pixels 117 images

Cosio [9] 2008 - Average MAD 1.65±0.67 mm 22 images

Our Method Average DSC 0.96±0.01 Average MAD 0.80±0.24 mm/2.86±0.88 pixels 24 images/6 datasets

MAD with p <0.0001 compared to [3] and [5]. Note that a

high DSC value and a low contour error metrics of HD and

MAD are all equally important in determining the segmenta-

tion accuracy of an algorithm. In this context, we can claim

that segmentation accuracy of our method is better compared

to [3] and [5]. Our method is implemented in Matlab 7 on an

Intel Core 2 Duo T5250, 1.5 Ghz processor and 2 GB RAM.

The mean segmentation time is 5.95±0.05 seconds.

The robustness of the proposed method against low

SNR, intensity heterogeneities, speckle noise and micro-

calcification is illustrated in Fig. 3. On automatic initializa-

tion, our AAM successfully avoids the artifact and segments

the prostate (black contour) with an accuracy of 98% (Fig.

3(c)). To provide qualitative results of our method we present

a subset of results obtained in Fig. 3(c), 3(d), 3(e), and 3(f).

A quantitative comparison of different prostate segmentation

methodologies is difficult in absence of a public dataset and

standardized evaluation metrics. Nevertheless, to have an

overall qualitative estimate of the functioning of our method

we have compared our method with some of the works in the

literature in Table 2 (a ‘-’ in the table means information not

available). Analyzing the results we observe that our mean

DSC value is comparable to area overlap accuracy values of

Betrouni et al. [6] and Ladak et al. [8] and very close to the

area overlap error of Shen et al. [7]. However, it is to be

noted that we have used more images compared to Shen et

al. Our MAD value is comparable to [6], [7], [8] and to [9].

From these observations we may conclude that qualitatively

our method performs well in overlap and contour accuracy

measures. However, unlike [6, 7, 8, 9] the strength of our

method lies in the probabilistic approach to the problem.

4. CONCLUSION AND FUTURE WORKS

A novel approach of AAM propagation from probabilistic

texture information estimated in a Bayesian framework with

the goal of segmenting the prostate in 2D TRUS images has

been proposed. Our approach is accurate, computationally

efficient and more robust in segmenting TRUS images com-

pared to traditional AAM [3] and our previous work [5].

While the proposed method is validated with prostate mid

gland images, effectiveness of the method against base and

apical slices is yet to be validated with the extension of the

model for 3D segmentation.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Artifacts in TRUS image of the prostate, A=Low SNR, B=Micro

Calcification, C=Intensity heterogeneity inside prostate, D=Speckle Noise.

(b) Automatic initialization of the mean model, (c) Final segmentation result.

(d), (e), and (f) shows some other examples of segmentation.
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