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Abstract— Imaging artifacts in Transrectal Ultrasound
(TRUS) images and inter-patient variations in prostate shape
and size challenge computer-aided automatic or semi-automatic
segmentation of the prostate. In this paper, we propose to
use multiple mean parametric models derived from principal
component analysis (PCA) of shape and posterior probability
information to segment the prostate. In contrast to traditional
statistical models of shape and intensity priors, we use posterior
probability of the prostate region determined from random
forest classification to build, initialize and propagate our model.
Multiple mean models derived from spectral clustering of com-
bined shape and appearance parameters ensure improvement in
segmentation accuracies. The proposed method achieves mean
Dice similarity coefficient (DSC) value of 0.96±0.01, with a
mean segmentation time of 0.67±0.02 seconds when validated
with 46 images from 23 datasets in a leave-one-patient-out
validation framework.

Index Terms— Prostate segmentation, random forest, statisti-
cal shape and posterior probability models, spectral clustering.

I. INTRODUCTION

Accurate prostate segmentation in TRUS may aid in
biopsy needle placement and multimodal image fusion be-
tween TRUS and magnetic resonance imaging (MRI) to
improve malignant tissue extraction during biopsy [1]. How-
ever, accurate computer aided prostate segmentation from
TRUS images is a challenging task due to low contrast of
TRUS images, speckle, and shadow artifacts, inter-patient
prostate shape, size and deformation variations and hetero-
geneous intensity distribution inside the prostate gland. To
deal with the prostate segmentation challenges we propose
a novel prostate segmentation method in which appearance
and spatial context based information from the training
images are used to achieve a probabilistic classification of
the prostate. Thereafter, the statistical shape and appearance
model derived from PCA of prostate shape and posterior
probabilistic values of the prostate region of the training
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TRUS images propagates in a multi-resolution framework
to segment a test image. However instead of a single mean
model, multiple mean models are created using spectral clus-
tering from the combined shape and appearance parameters
to capture larger variations. Finally, the mean model that has
the lowest fitting error with the test image provides accurate
segmentation of the prostate. The performance of our method
is compared with the traditional AAM [3] and also with our
previous works [11], [14], [13]. The key contributions of
this work are: 1) The use of random forest classification
framework to obtain a soft classification of the prostate. 2)
Use of spectral clustering on prostate shape and probability
priors to group similar prostates creating multiple mean
models.

The remaining paper is organized in the following manner.
Section II provides a description of the proposed segmenta-
tion framework, followed by the results and discussions in
Section III. Finally, the paper is concluded in Section IV
with the conclusions and future works.

II. PROPOSED SEGMENTATION FRAMEWORK

The proposed method is developed on three major compo-
nents: A) supervised learning framework of random forest to
determine posterior probability of a pixel being prostate, B)
adapting statistical models of shape and intensity priors to
incorporate the posterior probabilities of the prostate region
for training, initialization and propagation of the parametric
model and C) use of spectral clustering to group prostate
multiple mean models having similar shape and appearances.
These components of the proposed segmentation method are
described in the following subsections.

A. Random forest based probabilistic classification

In traditional AAM [3], the appearance model is built from
the intensity distribution of the prostate region. However,
depending on that ultrasound image acquisition parameters
and the machine manufacturer, the intensities of the prostate
may vary significantly leading to an inaccurate appearance
model. Therefore, to reduce inter-dataset intensity variations
and intensity variations inside the prostate region, we propose
to determine the posterior probability of the image pixels
being prostate in a supervised learning framework of random
forest and use PCA of the posterior probabilities of the
prostate region to build our appearance model. Decision trees
are discriminative classifiers which are known to suffer from
over-fitting. However, a random decision forest or random
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forest achieves better generalization by growing an ensemble
of many independent decision trees on a random subset of the
training data and by randomizing the features made available
at each node during training [2].

During training, to minimize the pose and intensity
variations, our datasets are rigidly aligned and the inter-
patient intensity variations are normalized. The data consists
of a collection of V = (X,F ), each centered at 3 × 3
neighborhood of pixels. Where, X = (x, y) denotes the pixel
position and the feature vector F constitutes of the mean and
standard deviation of the 3×3 pixel neighborhood. Each tree
τi in random forest receives the full set V , along with the
label and the root node and selects a test to split V into two
subsets to maximize the information gain. A test constitutes
of a feature (like the mean of a pixel neighborhood) and
a feature response threshold. The left and the right child
nodes receive their respective subsets of V and the process
is repeated at each child node to grow the next level of
the tree. Growth is terminated when either the information
gain is minimum or the tree has grown to a maximum depth
specified. Each decision tree in the forest is unique as each
tree node selects a random subset of features and threshold.

During testing, the test image is rigidly aligned to the
same frame of the training datasets and its intensities are
normalized. The pixels are routed to one leaf in each tree by
applying the test (selected during training). Each pixel of the
test dataset is propagated through all the trees by successive
application of the relevant binary test to determine the prob-
ability of belonging to class c. When reaching a leaf node lτ ,
where τ ∈ [1...,Γ], the posterior probabilities (Pτ (c|V )) are
gathered in order to compute the final posterior probability
of the pixel defined by P (c|V ) = 1

Γ

∑Γ
τ=1 Pτ (c|V ).

B. Statistical Shape and Appearance Model

The process of building the parametric statistical model of
shape and appearance variations involves the task of building
a shape model, an appearance model, and consecutively
a combined model of shape and appearance priors. To
build the shape model, a PDM [3] is built by equal angle
sampling of the prostate contours to determine the landmarks
automatically. The PDM of the contours are aligned to a
common reference frame by generalized Procrustes analysis
[5]. PCA of the aligned PDMs identifies the principal modes
of shape variations. Posterior probabilistic information (of
pixels being prostate) of the segmented region are warped
into correspondence using a piece-wise affine warp and are
sampled from a shape-free reference similar to that of AAM
[3]. PCA of the posterior probabilities from Section II-A
is used to identify their principal modes of variation. The
model may be formalized in the following manner. Let s
and t represent the shape and posterior probability models,
then

s = s+Φsθs, t = t+Φtθt (1)
where s and t denote the mean shape and posterior proba-
bility information respectively, then Φs and Φt contain the
first p eigenvectors (obtained from 98% of total variations) of

the estimated joint dispersion matrix of shape and posterior
probability information and θ represent the corresponding
eigenvalues. The model of shape and posterior probability
variations are combined in a linear framework as,

b =

[
Wθs
θt

]
=

[
WΦT

s (s− s)
ΦT

t (t− t)

]
(2)

where W denotes a weight factor (determined as in AAM
[3]) coupling the shape and the probability space. A third
PCA of the combined model ensures the reduction in redun-
dancy of the combined model, and is given as,

b = Eα (3)
where E is the matrix of eigenvectors and α the appearance
parameters.

In our model, we use the optimization framework similar
to that proposed by Cootes et al. [3]. The objective function
of our model is similar to AAM. However, instead of mini-
mizing the sum-of-squared differences of intensities between
the mean model and target image, we minimize the sum-
of-squared differences of the posterior probabilities of the
mean model and the target image. The prior knowledge of the
optimization space is acquired by perturbing the combined
model with known model parameters and perturbing the pose
(translation, scale and rotation) parameters. Linear relation-
ships between the perturbation of the combined model (δc)
and the residual posterior probability values (δt) (obtained
from the sum-of-squared differences between the posterior
probabilities of the mean model and the target image), and
between the perturbation of the pose parameters (δp) and
the residual posterior probability values are acquired in
multivariate regression frameworks as,

δc = Rcδt, δp = Rpδt (4)
Rc and Rp refer to the correlation coefficients. Given a test
image, the posterior probability values of the pixels being
prostate is determined with random forest soft classification.
The sum-of-squared differences of the posterior probability
values with the mean model is used to determine the residual
value δt. The combined model (δc) and the pose parameters
(δp) are then updated using Eq. (4) to generate a new shape,
and combined model and consequently the new posterior
probabilities. The process continues in an iterative manner
until the difference of the mean model with the target image
remains unchanged.

C. Spectral clustering and multiple mean models

Traditionally a statistical shape and appearance model
assumes the shape and the appearance spaces to be Gaus-
sian. However in real cases, inter-patient prostate intensity
distribution, prostate shapes and sizes may vary significantly.
In such circumstances, a single mean model is inefficient to
capture the variations of shape and appearance spaces and
it would be inappropriate to approximate them with a single
Gaussian distribution. To address this problem, we propose
to use multiple mean models. Therefore, the objective is
to employ a grouping scheme that considers the prostates
with similar shape and appearance parameters to build a
set of mean models and produce an accurate optimization
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space as described in Section II-B. Furthermore, the number
of mean models should change dynamically depending on
combined shape and appearance parameters of the training
datasets. To address both the issues, we propose to use
spectral clustering in the combined space of shape and
appearance parameters. Spectral clustering relies on the eigen
structure of a similarity matrix to partition points into disjoint
clusters with high intra-cluster similarity and also high inter-
cluster dissimilarity. Moreover, the number of clusters could
be determined dynamically from the principal components
in the eigen space. During training, the combined shape
and appearance eigenvectors are obtained by Eq. (2) and
Eq. (3). Cosine similarities of the combined vectors (E) of
P eigenvectors are used to construct a P × P similarity
or affinity matrix W that measures the similarity between
the P points. Wi,j is large when the points indexed by i
and j are likely to be in the same cluster. The problem
may be defined in terms of a complete graph with vertices
υ = 1, ...,P and an affinity matrix with weights Wi,j , for
i, j ∈ υ. The objective is to determine K disjoint clusters
A = (Ak)k∈1,....,K , where

∪
k Ak = υ, that optimizes the

cost function of K−way normalized cut defined as,

C(A,W) =
K∑

k=1

 ∑
i∈Ak,j∈υ\Ak

Wi,j

 /

 ∑
i∈Ak,j∈υ

Wi,j


(5)

The K−way normalized cut C(A,W) may be simplified as
D−1/2WD−1/2 where D = diag(W) [15]. The algorithm
may be summarized as,

1) Input:Similarity matrix W ∈ RP×P

2) Compute first k eigenvectors of D−1/2WD−1/2 where
D = diag(W) to build the matrix U .

3) Re-normalize the matrix U .
4) Perform k-means clustering on the normalized U .
5) Output: Similar disjoint clusters k.

The number of clusters k is determined by the number
of the largest k-eigen vectors (obtained from 98% of total
variations) of the normalized Laplacian C(A,W) of the
affinity matrix. The k-means clustering therefore groups the
similar prostates to form k mean models.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

We have validated the accuracy and robustness of our
method with 46 axial mid gland TRUS images of the prostate
with a resolution of 348×237 pixels from 23 prostate datasets
in a leave-one-patient-out evaluation strategy. Manual seg-
mentations performed by an expert radiologist were validated
by an experienced urologist to prepare the ground truth.
For the random forest based classification, we have fixed
the number of trees to 100, the tree depth to 30 and the
lower bound of information gain to 10−7. These parameters
were chosen empirically as they produced promising results
with the test images. During validation, the test dataset is
removed and multiple mean models are built with the aid
of spectral clustering. The number of mean models varied
between 5 to 7 depending on the training datasets. Given an

TABLE I
PROSTATE SEGMENTATION QUANTITATIVE COMPARISON (HD, AND

MAD ARE IN MM.)
Method DSC HD MAD
AAM [3] 0.94±0.03 4.92±0.96 2.15±0.94
Ghose [14] 0.95±0.06 2.53±1.94 0.87±1.23
RF-AAM 0.95±0.06 3.76±2.03 1.40±0.91
Our Method 0.96±0.01 2.51±0.93 0.84±0.31

(a) (b)

Fig. 1. Improvement in segmentation accuracies with spectral clustering
and multiple mean models. (a) shows segmentation without multiple mean
models and (b) shows segmentation with multiple mean models.

image of the test dataset, all the mean models are applied
for segmentation in parallel. Fitting or registration errors
between the mean models after final deformation and the test
image are computed by normalizing the pixel-wise intensity
differences. Finally, the segmentation by the mean model
that provided the least fitting error is selected as optimum
segmentation. We have used most of the popular prostate
segmentation evaluation metrics like DSC, 95% Hausdorff
Distance (HD), and mean absolute distance (MAD) to eval-
uate our method. Furthermore, the results are compared with
the traditional AAM proposed by Cootes et al. [3] and to
our previous work [14]. It is observed from Table I that
a probabilistic representation of the prostate appearance in
TRUS images significantly improves segmentation accuracy
when compared to traditional AAM. We achieved a statis-
tically significant improvement in t-test p-value<0.0001 for
DSC, HD and MAD compared to traditional AAM [3]. As
observed in Table I that [14] and RF-AAM (that uses pos-
terior probalities from random forest classification) provide
better results compared to AAM justifying the use of poste-
rior probability of the prostate region instead of intensity.
However, our proposed method provides excellent results
when compared to [14] and RF-AAM, suggesting that the use
of both posterior probability and multiple mean models are
essential to improve segmentation accuracies as illustrated in
Fig. 1. In Fig. 2 we illustrate the necessity of a deformable
model based segmentation after random forest classification.
We observe that random forest classification produces mis-
classified regions as shown in Fig. 2(a). Our statistical shape
and probability prior models working on initial segmentation
improve segmentation accuracies as observed in Fig. 2(c).
To provide qualitative results of our method we present a
subset of results in Fig. 3. The first row shows the results
achieved with AAM [3] and the second row shows the
results achieved with our method. A quantitative comparison
of different prostate segmentation methodologies is difficult
in absence of a public dataset and standardized evaluation
metrics. Nevertheless, to have an overall qualitative estimate
of the functioning of our method we have compared with
some of the existing works in Table II. Analyzing the results
we observe that our mean DSC value is better compared
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(a) (b) (c)

Fig. 2. Illustration of the requirement of shape and probability prior model.
(a) is the images to be segmented, (b) shows the random forest classification
with mis-classified regions and (c) shows the final segmentation achieved.

Fig. 3. The green contour gives the ground truth and the red contour gives
the obtained result. Row 1 show the results achieved with AAM and row 2
show results of our model for the corresponding prostates.

to area overlap accuracy values of [8], [9], [13], and very
close to the area overlap error value of [10]. However, it
is to be noted that we have validated with more images
compared to [10]. Our MAD value is better compared to [8],
[10], [9] and [13]. From these observations we may conclude
that qualitatively our method performs well in overlap and
contour accuracy measures. Our method is implemented in
Matlab 7 on an Intel Core i5, 2.8 GHz processor and 8
GB RAM. The mean segmentation time of the method is
0.67±0.02 seconds with an unoptimized Matlab code. Even
with an unoptimized Matlab code in Table II we observe
that our mean segmentation time is less when compared to
[8], [10], [12], [13], [11] and only more compared to [1].
However, [1] used an optimized C++ code to achieve their
results.

Comparing our proposed model with our previous work
[11] we observe that we achieve similar contour and area
overlap accuracies. However, our proposed method achieves
prostate segmentation in significantly less time compared to
[11]. The mean segmentation time of [11] with current ma-
chine configuration is 4.33±0.21 seconds while the proposed
method using supervised learning with random forest takes
0.67±0.02 seconds without compromising the segmentation
accuracies. Mean segmentation time is often a critical ele-
ment in selecting one segmentation method over the other for
near real-time multimodal image fusion between TRUS and
MRI to improve malignant tissue sampling during biopsy. In
this context, we may claim that our present method shows
improvement over our previous work in [11]. In contrast to
[11] where the number of mean models was dependent on a
user defined threshold of fitting error, our present work uses
spectral clustering to determine the number of mean models.

IV. CONCLUSIONS AND FUTURE WORKS

A novel approach of multiple statistical models of shape
and posterior probability information of prostate region with

TABLE II
QUALITATIVE COMPARISON OF PROSTATE SEGMENTATION. TIME IS

MEASURED IN SECS, PXS=PIXELS, MM=MILLIMETER
Reference Area Acc. Contour Acc. Datasets Time
Betrouni
[8]

Overlap
93±0.9%

Dist-3.77±1.3 pxs 10 images 5

Shen [10] Error
3.98±0.97%

Dist-3.2±0.87 pxs 8 images 64

Ladak [9] Accuracy
90.1±3.2%

MAD-4.4±1.8 pxs 117 images -

Cosio [12] - MAD-1.65±0.67
mm

22 images 660

Yan [1] - MAD-2.10±1.02
mm

19 datasets/
301 images

0.3

Ghose
[13]

DSC
0.95±0.02

MAD-1.26±0.51
mm

6 datasets/
24 images

1.50

Ghose
[11]

DSC
0.97±0.006

MAD-1.82±0.76
pxs

23 datasets/
46 images

5.97

Our
Method

DSC
0.96±0.01

MAD-3.00±1.22
pxs/0.84±0.34 mm

23 datasets/
46 images

0.67

the goal of segmenting the prostate in 2D TRUS images
has been proposed. Our approach is accurate, and robust
to significant shape, size and contrast variations in TRUS
images when compared to traditional AAM. While the pro-
posed method is validated with prostate mid gland images,
effectiveness of the method on the base and the apical slices
is yet to be validated.
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