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Abstract

Thousands of images are generated every day, which implies the necessity to classify, organise and access them using an easy, faster
and efficient way. Scene classification, the classification of images into semantic categories (e.g. coast, mountains and streets), is a chal-
lenging and important problem nowadays. Many different approaches concerning scene classification have been proposed in the last few
years. This article presents a detailed review of some of the most commonly used scene classification approaches. Furthermore, the sur-
veyed techniques have been tested and their accuracy evaluated. Comparative results are shown and discussed giving the advantages and
disadvantages of each methodology.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Scene classification has the aim of labelling automatical-
ly an image among a set of semantic categories (e.g. coast,
mountain and street). Fig. 1 shows several representative
categories and images to illustrate this topic. It is an impor-
tant task which helps to provide contextual information to
guide other processes such as object recognition [1]. From
an application viewpoint, scene classification is relevant in
systems for organisation of personal and professional
imaging collections, and has been widely explored in con-
tent based image retrieval systems [2–4]. Scene classifica-
tion is valuable in image retrieval from databases because
an understanding of the scene content can be used for effi-
cient and effective database organisation and browsing. In
addition, image filtering and enhancement operations may
be adjusted depending on the scene type, so that the best
rendering can be achieved.

This goal is not as ambitious as the general image under-
standing problem which tries to recognise every object in
the image. Scenes can be often classified without having a
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full knowledge of every object. In some cases the use of
low-level information, such as colour and texture, might
be enough to classify some scenes. However in complex
applications, although object recognition might be neces-
sary, probably it is sufficient with a coarse recognition of
not necessarily every object in the image. For instance, if
a person sees trees at the top of an image and grass at
the bottom, he can hypothesise that he is looking at a forest
scene, even if he can not see every detail in the image [5]
(Fig. 2).

Are image features enough to describe an scene or do we
need to know which objects are present? The problem of
scene modelling for classification using low-level features
has been studied in image and video retrieval for several
years [6]. Pioneering works used colour, texture and shape
features directly from the image in combination with super-
vised learning methods to classify images into several
semantic classes (indoor, outdoor, city, landscape, sunset,
forest, . . .). On the other hand, the modelling of scenes
by a semantic intermediate representation was next pro-
posed in order to reduce the gap between low-level and
high-level image processing, and therefore to match the
scene model with the perception we humans have (e.g. a
street scene mainly contains road and buildings). The
way to model an scene contains one of the main criteria
e best way to organize/classify images by content?, Image and
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Fig. 1. Examples of images used for the scene classification problem: coast, forest, mountain, highway, street and kitchen.
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when identifying basic strategies which tackle the scene
classification problem. Hence, the answers that authors
have proposed to this modelling reveal these two major
approaches: low-level and semantic modelling.

Furthermore, the question of whether feature informa-
tion is sufficient is still open nowadays. Thorpe et el. [7]
found that humans are able to categorise complex natural
scenes containing animals or vehicles very quickly. Fei-Fei
et al. [8] later showed that little or no attention is needed
for such rapid natural scene categorisation. Both of theses
studies posed a serious challenge to the currently accepted
view that to understand the context of a complex scene,
one needs first to recognise the objects and then in turn rec-
ognise the category of the scene [9]. Moreover, recent pro-
posals have extended the meaning of semantic modelling to
semantic concepts further than objects.

In this work, we will review the most recent and signif-
icant works in the literature on scene classification. Besides,
we consider that the high number and diversity of recent
proposals make necessary a finer classification than the
classical two class modelling strategy. Hence, we have iden-
tified key approaches based on that criteria and we have
classified the analysed works. Among the low-level meth-
ods, we distinguish between those that model the image
as a single object, and those that partition the image in
sub-blocks. Among the semantic methods, we distinguish
three different approaches according to the meaning they
give to the semantic of scenes, and hence which is the rep-
resentation they build: techniques which describe the image
by the objects and those that build the semantic represen-
tation from local information, and proposals which
describe the image by semantic properties. Besides, we have
implemented different algorithms in order to carry out a
Please cite this article as: Anna Bosch, et al., A review: Which is th
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quantitative evaluation and a comparison of these
approaches over a wide dataset.

The paper is structured as follows: firstly, we define and
classify methods that use low-level features which will be
referred to as global methods (Section 2), and then meth-
ods based on a semantic modelling (Section 3). We analyse
in depth the review methods, what kind of features are
employed, and the number of scene categories that the sys-
tems are able to recognise. Next, a quantitative evaluation
of different approaches is shown in Section 4, along with
the discussion of the results. A summary and conclusions
from this work end this paper.

2. Low-level scene modelling

The problem of scene categorisation is often
approached by computing low-level features (e.g. colour
and texture), which are processed with a classifier engine
for inferring high-level information about the image.
These methods consider therefore that the type of scene
can be directly described by the colour/texture properties
of the image. For instance, a forest scene presents highly
textured regions (trees), a mountain scene is described by
an important amount of blue (sky) and white (snow), or
the presence of straight horizontal and vertical edges
denotes an urban scene.

A number of recent studies have presented approaches to
classify indoor vs outdoor, or city vs landscape, using global
cues (e.g. power spectrum, colour histogram information).
Among them it is possible to distinguish two trends:

(1) Global: the scene is described by low-level features
from the whole image.
e best way to organize/classify images by content?, Image and
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Fig. 2. Scene classification approaches. Low-level or semantic modelling, is the main property to distinguish basic strategies to tackle the proposed
classification. Several approaches have been identified in both main strategies depending on how they achieve the final scene classification.
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(2) Sub-blocks: the image is first partitioned into several
blocks, and then features are extracted from each of
those blocks.

In this section a review of the most recent and represen-
tative proposals of both global and sub-block approaches
is presented.

2.1. Global

Vailaya et al. [10–12] consider the hierarchical classifica-
tion of vacation images, and show that low-level features
can successfully discriminate between many scenes types
using a hierarchically structure. Using binary Bayesian
classifiers, they attempt to capture high-level concepts from
low-level image features under the constraint that the test
image belongs to one of the classes. At the highest level,
images are classified as indoor or outdoor; outdoor images
are further classified as city or landscape; finally, a subset
of landscape images is classified into sunset, forest, and
mountain classes. Different qualitative measures, extracted
from the whole image, are used at each level depending on
the classification problem: indoor/outdoor (using spatial
colour moments); city/landscape (edge direction coherence
vectors), and so on. The classification problem is addressed
by using Bayes decision theory. Each image is represented
by a feature vector extracted from the image. The probabi-
listic models required for the Bayesian approach are esti-
mated during a training step. Consider n training samples
from a class w. A vector quantiser is used to extract q code-
book vectors, vj, from the n training samples. The class-
conditional density of a feature vector y given the class
w, i.e., fY(y|w), is then approximated by a mixture of Gaus-
Please cite this article as: Anna Bosch, et al., A review: Which is th
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sians (with identity covariance matrices), each centered at a
codebook vector, resulting in:

fY ðyjwÞ /
Xq

j¼1

mj expð�ky � vjk2
=2Þ ð1Þ
where mj is the proportion of training samples assigned to
vj. The Bayesian classifier is then defined using the maxi-
mum a posteriori (MAP) criterion as follows:

ŵ ¼ arg maxw2XfpðwjyÞg ¼ arg maxw2XffY ðyjwÞpðwÞg ð2Þ
where X is the set of pattern classes and p(w) represents the
a priori class probability. The proposal reports an excellent
performance at each level of the hierarchy over a set of
6931 images. However, it suffers a limitation inherent to
hierarchical classifiers that is the cascading of errors. To
classify a test image, for example a forest, into a category
implies that we have to successfully classify the image at
several stages (1) outdoor, (2) landscape, and (3) forest,
with the probability of missing at each level. And obviously
an initial mistake can not be solved at lower levels.

Also in [13] global features are used to produce a set of
semantical labels with a certain belief for each image. They
manually label each training image with a semantic label
and train k classifiers (one for each semantic label) using
support vector machines (SVM). Each test image is classi-
fied by the k classifiers and assigned a confidence score for
the label that each classifier is attempting to predict. As a
result, a k-nary label-vector consisting of k-class member-
ship is generated for each image. This approach is specially
useful for Content Based Image Retrieval (CBIR) and Rel-
evance Feedback (RF) systems. Other authors have fol-
lowed this global approach, although they have taken
other aspects into account. For example, Shen et al. [14]
e best way to organize/classify images by content?, Image and
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Fig. 3. Scene classification using semantic modelling: (i) each patch of the
image is classified as a local semantic concept, (ii) each image is classified
as an scene. Images are obtained from the Outex dataset [19].
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makes emphasis on the type of features that must be used.
The authors argue that due to the complexity of visual con-
tent, a classification system can not be achieved by consid-
ering only a single type of feature such as colour, texture
and shape alone and proposed Combined Multi-Visual
Features. It produces a low-dimensional feature vector use-
ful for an effective classification. Their method is tested on
image classification using three different classifiers: SVM,
K-Nearest Neighbours (K-NN) and Gaussian Mixture
Models (GMM).

2.2. Sub-blocks

The scene can also be modelled by low-level features,
but not from a single, whole image representation. Several
proposals first split the image into a set of subregions,
which are independently described by their low-level prop-
erties. These blocks are then classified, and finally the scene
is categorised from the individual classification of each
block.

The origin of this approach can be found in 1997, when
Szummer and Picard [15] proposed to independently classi-
fy image subsections to obtain a final result using a major-
ity voting classifier. The goal of this work was to classify
images as indoor or outdoor. The image is first partitioned
into 16 sub-blocks from which Ohta-space colour histo-
grams and MSAR texture features are then extracted. K-
NN classifiers are employed to classify each sub-block
using the histogram intersection norm, which measures
the amount of overlap between corresponding buckets in
the two N-dimensional histograms X and Y and is defined
as:

distðX ; Y Þ ¼
XN

i¼1

ðX ðiÞ �minðX ðiÞ; Y ðiÞÞÞ ð3Þ

Finally the whole image is classified using a majority voting
scheme from the sub-block classification results. They ob-
tain a 90.3% of performance, showing how high-level scene
properties can be inferred from classification of low-level
image features, specifically for the indoor/outdoor scene
retrieval problem. They also demonstrated that perfor-
mance is improved by computing features on sub-blocks,
classifying these sub-blocks, and then combining theses re-
sults in a way reminiscent of stacking. Similar results were
also obtained by Paek and Chang [16]. Moreover, they
developed a framework to combine multiple probabilistic
classifiers in a belief network. They trained classifiers for
indoor/outdoor, and sky/no sky and vegetation/no vegeta-
tion as secondary cues for the indoor/outdoor problem.
The classification results of each one are then feeded into
a belief network to take the integrated decision.

The proposal of Serrano et al. [17] in 2004 shares this
same philosophy, but using SVM for a reduction in feature
dimensionality without compromising classification accu-
racy. Also colour and texture features are extracted from
image sub-blocks and separately classified. Thus indoor/
Please cite this article as: Anna Bosch, et al., A review: Which is th
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outdoor labels are obtained for different regions of the
scene. The advantage of using SVM instead of K-NN clas-
sifier is that the sub-block beliefs can be combined numer-
ically rather than by majority voting, which minimises the
impact of sub-blocks with ambiguous labelling.

Even the good performance obtained by above propos-
als, one problem with the methods using image features for
scene categorisation is that it is often difficult to generalise
theses methods to additional image data beyond the train-
ing set. More importantly, they lack of an intermediate
semantic image description that can be extremely valuable
in determining the scene type. Hence, we draw our atten-
tion to systems that do attempt to find objects or other
semantic concepts.

3. Intermediate semantic modelling

Scene content such as the presence of people, sky, grass,
etc. may be used as cues for improving the classification
performance obtained by low-level features alone [17],
allowing to deal with the gap between low- and high-level
features. Thus, an intermediate representation which mod-
els the content of the image is posteriorly used for scene
classification. This intermediate representation is refered
to as semantic modelling. Fig. 3 shows a graphical example.
In this case, there are five semantic local concepts, and each
‘‘patch’’ of the image is assigned to one of them. Subse-
quently, images are classified as belonging to a certain
scene according to their semantic concepts distributions.
Note that in this Figure, all the images are road scenes
and have similar semantic concepts distributions. In this
case, local semantic concepts were obtained using probabi-
e best way to organize/classify images by content?, Image and
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listic Latent Semantic Analysis – pLSA (see Section 3.2.1)
and we limited the images to road scenes to simplify the
schema.

Nevertheless, the meaning of the semantic of the scene
is not unique, and authors have proposed different seman-
tic representations of images. A classical approach identi-
fies the semantic as the set of objects that appear in the
image (e.g. sky, grass, and mountains), and the scene is
described by the occurrence of these semantic objects.
Hence, these works imply an initial object detection step
in the images. Some recent proposals try to avoid object
segmentation and detection, and use more general inter-
mediate representations. In this case, they first identify a
dictionary of visual words or local semantic concepts,
and further learn the visual words distribution for each
scene category. Local semantic concepts define the seman-
tic of the image from local information. These local con-
cepts generally identify objects like blue sky, gray sky,
water with waves, mountain with snow, or mountain without

snow (this will be further analysed in Section 4.3). Fur-
thermore, the last semantic definition can be clearly exem-
plified by the work of Oliva and Torralba [18] where the
scene is described by local and global qualities related to
the scene structure such as ruggedness, expansiveness, etc.
We refer to these methods as the ones which use Semantic

Properties. Following we summarise the three meanings of
semantic modeling:

(1) Semantic Objects: objects of the image are detected to
describe the scene. It mainly relies on an initial seg-
mentation of the image into meaningful regions.
Next, regions are labelled as known objects (semantic
objects).

(2) Local Semantic Concepts: semantic of the image is
represented by intermediate properties extracted from
local descriptors around points.

(3) Semantic Properties: semantic of the image is
described by a set of statistical properties/qualities
of the image, such as naturalness, openness and
roughness.

The intermediate semantic modelling makes more difficult
the problem we are tackling because it habitually involves a
local/region processing like (a not necessarily accurate) object
recognition. On the other hand, it provides a potentially larger
amount of information that must be exploited to achieve a
higher performance on scene classification.

In this section, we review and classify different recent
methods proposed in the literature which apply a semantic
strategy.

3.1. Semantic objects

These methods are mainly based on first segmenting the
image in order to deal with different regions. Subsequently
local classifiers are used labelling the regions as belonging
to an object (e.g. sky, people, cars, grass, etc.). Finally,
Please cite this article as: Anna Bosch, et al., A review: Which is th
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using this local information, the global scene is classified.
Different ways to carry out the scene classification using
this strategy have been proposed recently.

Fan et al. [20] used concept sensitive salient objects as
the dominant image components to achieve automatic
image annotation at a content level. To detect the con-
cept-sensitive salient objects, a set of detection functions
is learned from the labelled image regions and each func-
tion is able to detect a specific type of these salient objects.
Each detection function consists of three parts: (i) automat-
ic image segmentation by using the mean shift technique,
(ii) binary image region classification by using the SVM
classifiers with an automatic scheme for searching the opti-
mal model parameters and (iii) label-based aggregation of
the connected similar image regions for salient object gen-
eration. To generate the semantic image concepts, the finite
mixture models are used to approximate the class distribu-
tions of the relevant objects. After detecting the semantic
salient objects they carry out the semantic image classifica-
tion. The class distribution of these concept-sensitive sali-
ent objects Il = S1, S2 ,. . .,Sn is then modeled as a finite
mixture model P(X, Cj|k, Wcj, Hcj). The test image Il is
finally classified into the best matching semantic scene con-
cept Cj with the maximum posterior probability:
P ðCjjX ; Il;HÞ ¼
P ðX ;Cjjk;wcj;HcjÞP ðCjÞ

RNc
j¼1P ðX ;Cjjk;W cj;HcjÞP ðCjÞ

ð4Þ

where Nc is the number of classes (semantic scene con-
cepts), wcj is the set of the relative weights among the mul-
tivariate mixture components, X is the n-dimensional visual
features that are used for representing the relevant concept-
sensitive salient objects, k indicates the optimal number of
multivariate mixture components, and P(Cj) is the prior
probability of the semantic image concept Cj in the data-
base. H = k, wcj, Hcj, j = 1,. . .,Nc is the set of mixture
parameters and relative weights for the classifiers. An
adaptative EM algorithm has been proposed to determine
the optimal model structure and model parameters simulta-
neously. In addition, a large number of unlabelled samples
are integrated with a limited number of labelled samples to
achieve more effective classifier training and knowledge
discovery.

Luo et al. [21] proposed an hybrid approach: low-level
and semantic features are integrated into a general-purpose
knowledge framework that employs a Bayesian Network
(BN). BN are directed, acyclic graphs that encode the
cause-effect and conditional independence relationships
among variables in the probabilitic reasoning system. The
directions of the links between the nodes (variables) repre-
sent causality in the sense that those links express the con-
ditional probabilities of inferring the existence of one
variable given the existence of the other variable. Each
node can have many such directed inputs and outpus, each
specifying its dependence relationship to the nodes from
which the inputs originate (parents) and nodes where the
outputs go (children). According to the Bayes rule, the pos-
e best way to organize/classify images by content?, Image and
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terior probability can be expressed by the joint probability,
which can be further expressed by the conditional and prior
probabilities:

P ðSjEÞ ¼ P ðS;EÞ
P ðEÞ ¼

PðEjSÞP ðSÞ
P ðEÞ ð5Þ

where S denotes the semantic task and E denotes evidence.
The efficacy of this framework is demonstrated via three
applications involving semantic understanding of pictorial
images: (i) detection of the main photographic subjects in
an image [22], (ii) selecting the most appealing image in
an event, and (iii) classifying images into indoor or outdoor
scenes. This last application refers specifically to the prob-
lem of scene classification [23]. The performance is quantit-
ativelly evaluated using only low-level features (Ohta
colour space histograms and MSAR texture features as in
[15]), and incorporating semantic features (sky and grass
objects). They demonstrate that the classification perfor-
mance can be significantly improved when semantic fea-
tures are employed in the classification process.

Aksoy et al. [24] also applied a Bayesian framework in a
visual grammar. Scene representation is achieved by decom-
posing the image into prototype regions and modelling the
interactions between these regions in terms of their spatial
relationships. Initially an image segmentation is performed
using a classical split-and-merge algorithm. Then, the tech-
nique automatically learns representative region groups
which discriminate different scenes and builds visual gram-
mar models. Similarly, in [25], after segmenting the image
into regions, features are extracted and regions classified.
Finally, based on this local classification the algorithm clas-
sifies the entire image. Their main contribution is that they
found that the addition of eigenregions (the principal com-
ponents of the intensity of the region) to the feature vector
improves region classification results and furthermore the
image classification rates. A similar approach was proposed
by Mojsilovic et al. [26] where authors first segment the
image using colour and texture information to find the
semantic indicators (e.g. skin, sky, water, etc.). Then, these
objects are used to identify the semantic categories (i.e. peo-
ple, outdoor, landscapes, etc.).

Finally, we can also include in this approach the propos-
al of Vogel and Schiele [27,28], although in this case the
segmentation is performed by a simple spatial grid layout
which splits the image into regular subregions. The tech-
nique uses both colour and texture to perform landscape
scene classification and retrieval based on a two-stage sys-
tem. First, the image is partitioned into 10 · 10 subregions,
and each one is classified using K-NN or SVM. An image is
then represented by a so-called concept occurrence vector
(COV), which measures the frequency of different objects
in a particular image. The average COV over all members
of a category defines the category prototype (Pc):

P c ¼
1

N c

XNc

j¼1

COVðjÞ ð6Þ
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where c refers to one of the scene categories and Nc to the
number of images in that category. Given this image repre-
sentation, a prototypical representation for each scene cat-
egory can be learnt. Scene classification is carried out by
using the prototypical representation itself or Multi-SVM
approaches.

3.2. Local semantic concepts

In the last years we can find in the literature on scene
classification, an increasing number of proposals which
make use of local semantic concepts. Hence, an intermedi-
ary semantic level representation is introduced as a first
step between image properties and scene classification in
order to deal with the semantic gap between low-level fea-
tures and high-level concepts. Nevertheless, all these pro-
posals do not rely on an initial segmentation. Otherwise,
the content of the scene is described by local descriptors,
for example codewords [29–32] as shown in Fig. 4. These
methods have in common that work over the bag-of-words,
a technique used for the statistical text analysis.

3.2.1. Bag-of-words

The bag-of-words methodology was first proposed for
text document analysis and further adapted for computer
vision applications. The models are applied to images by
using a visual analogue of a word, formed by vector quan-
tising visual features (colour, texture, etc.) like region
descriptors. Recent works have shown that local features
represented by bags-of-words are suitable for scene classifi-
cation showing impressive levels of performance [33–36].
Fig. 4. Local descriptors represented by 5 · 5 patches at greyscale.

e best way to organize/classify images by content?, Image and
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Fig. 6. (a) pLSA graphical model. Filled circles indicate observed random
variables and the unfilled are unobserved, (b) LDA graphical model.
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Constructing the bag-of-words from the images involves
the following steps: (i) Automatically detect regions/points
of interest, (ii) compute local descriptors over those
regions/points, (iii) quantise the descriptors into words to
form the visual vocabulary, (iv) find the occurrences in
the image of each specific word in the vocabulary in order
to build the bag-of-words (histogram of words). Fig. 5
schematically describes the four steps involved in the defi-
nition of the bag-of-words model.

Some Bayesian text models, such as probabilistic Latent
Semantic Analysis (pLSA) [37] and Latent Dirichlet Anal-
ysis (LDA) [38,39] have been adapted and used to model
scene categories. In text analysis they are used to discover
topics in a document using the bag-of-words document
representation. Here we have images as documents and we
discover topics as object categories (e.g. grass, houses, blue

sky, gray sky), so that an image containing instances of sev-
eral objects is modelled as a mixture of topics. This topics
distribution over the images is used to classify an image as
belonging to a certain scene (e.g. if an image contains water

with waves, sky with clouds and sand will be classified as a
coast scene).

Suppose that we have a collection of images D =
d1 ,. . .,dN with words from a visual vocabulary W =
w1 ,. . .,wV. One may summarize the data in a V · N co-oc-
currence table of counts Nij = n(wi, dj), where n(wi, dj)
denotes how often the word wi occurred in an image dj. In
pLSA there is also a latent variable model for co-occurrence
data which associates an unobserved class variable z 2
Z = z1 ,. . .,zZ with each observation. A joint probability
model P(w,d) over V · N is defined by the mixture:

P ðwjdÞ ¼
X
z2Z

P ðwjzÞP ðzjdÞ ð7Þ

where P(w|z) are the topic specific distributions and, each
image is modelled as a mixture of topics, P(z|d). The pLSA
model is shown in Fig. 6a.
Fig. 5. Four steps to compute the bag-of-words when working with
images. (i–iii) obtain the visual vocabulary by vector quantizing the
feature vectors, and (iv) compute the image histograms – bag-of-words –
for images according the obtained vocabulary.
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In contrast to pLSA, LDA treats the multinomial
weights P(z|d) over topics as latent random variables. The
pLSA model is extended by sampling those weights from
a Dirichlet distribution, the conjugate prior to the multino-
mial distribution [40]. This extension allows the model to
assign probabilities to data outside the training corpus
and uses fewer parameters, thus reducing overfitting. The
LDA model is shown in Fig. 6b, where Wd is the number
of words in document d. The goal is to maximize the fol-
lowing likelihood:

P ðwj/; a; bÞ ¼
Z X

z

P ðwjz;/ÞP ðzjhÞP ðhjaÞPð/jbÞdh ð8Þ

where h and / are multinomial parameters over the topics
and words respectively and P(h|a) and P(/|b) are Dirichlet
distributions parameterized by the hyper parameters a and b.

Bosch et al. [33] provided an approach which uses bag-
of-words to model visual scenes in image collections, based
on local invariant features and pLSA. They successfully
classified up to 13 categories out performing the state of
the art on three known datasets (they report a 73.4% of
correct classification). Quelhas et al. [35] used a similar
approach presenting differences in terms of: (i) the number
of scenes that the try to classify (3 in [35] and up to 13 in
[33]), and (ii) how the features are used: In [35] SIFT
descriptors are computed around an interest point – sparse
descriptors, while in [33] SIFT features are computed on a
regular grid and using concentric patches around each
point to allow scale variance – dense descriptors. More-
over, it has been demonstrated that when working with
scene classification, and concretely with natural images
such as coast or open country, dense descriptors outperform
the sparse ones (see also [34]).

Fei-Fei and Perona [34] independently proposed two
variations of LDA firstly proposed by Blei et al. [38,39]
which was designed to represent and learn document mod-
e best way to organize/classify images by content?, Image and
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els. In this framework, local regions are first clustered into
different intermediate themes (local semantic concepts),
and then into categories. Probability distributions of the
local regions as well as the intermediate themes are both
learnt in an automatic way, bypassing any human annota-
tion. No supervision is needed apart from a single category
label to the training image. Performances are shown in a
dataset consisting of 13 categories.

Recently, Perronnin et al. [41] defined a universal vocab-
ulary, which describes the content of all the considered
scenes, and class visual vocabularies which are obtained
through the adaptation of the universal vocabulary using
class-specific data. While previous approaches characterise
an image with a single histogram, here an image is repre-
sented by a set of histograms, one per class. Each histo-
gram describes whether an image is more suitably
modelled by the universal vocabulary or the corresponding
adapted vocabulary. They represent a vocabulary of visual
words by means of a GMM where k = wi, li, Ri,
i = 1,. . .,N. k denotes the set of parameters of a GMM,
wi, li and Ri denote respectively the weight, mean vector
and covariance matrix of Gaussian i and N denotes the
number of Gaussians. Each Gaussian represents a word
of the visual vocabulary. The Universal vocabulary is
trained using maximum likelihood estimation (MLE) and
the class vocabularyies are adapted using the maximum a
posteriori (MAP) criterion. They successfully test the
method classifying scene images from three different data-
sets consisting on scenes like sunrise/sunset, underwater,
waterfalls, buildings, etc.

3.2.2. Bag-of-words with context

Habitual bag-of-words techniques, as the described
above, do not take the spatial information into account.
However, in complex natural images, scene classification
systems can be further improved by using contextual
knowledge like common spatial relationships between
neighbouring local objects [42] or the absolute position of
objects in certain scenes. While the above methods have
shown to be effective, their neglect of spatial structure
ignores valuable information which could be useful to
achieve better results for scene classification.

In [36] they proposed a method for recognizing scene
categories based on approximate global geometric corre-
spondence. The technique works by partitioning the image
into increasingly finer sub-regions and computing histo-
grams of local features found inside each sub-region. The
resulting spatial-pyramid is a simple computationally effi-
cient extension of an orderless bag-of-words image repre-
sentation. The scene classification is performed using a
pyramid matching approach:

KLðX ; Y Þ ¼
1

2L I0 þ
XL

l¼1

1

2L�lþ1
Il ð9Þ

where X and Y are the two sets of vectors in a d-dimension-
al feature space, L is the grid resolution, such the grid at
level l has 2l cells along each dimension and Il is the histo-
Please cite this article as: Anna Bosch, et al., A review: Which is th
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gram intersection function at level l. A pyramid matching
works by placing a sequence of increasingly coarser grids
over the feature space and taking a weighted sum of the
number of matches that occur at each resolution level.
Multi-class classification is done with SVM. This method
achieves high accuracy (a total of 81.4%) on a large data-
base of 15 natural scene categories.

In [43], Fergus et al. develop two new models, ABS-
pLSA and FSI-pLSA, which extend pLSA to include abso-
lute position and spatial information in a translation and
scale invariant manner respectively. Although this method
is used for object classification, it could be easily adapted
for scene classification tasks.

3.3. Semantic properties

Finally, the last group of works that make use of a
semantic description as intermediate layer, has exploited
the statistical properties of the scene. It breaks with a com-
mon trend of the above approaches since the semantic is
here related to global configurations and scene structure,
instead of local objects or regions. Consequently, neither
segmentation nor the processing of local regions or objects
is required. Therefore the image is described by visual
properties, which are shared by images of a same category.

Oliva and Torralba [18,44,45] proposed a computational
model for the recognition of real world scenes (four natural
scenes and four man-made scenes) that bypasses the seg-
mentation and the processing of individual objects or
regions. The procedure is based on a very low dimensional
representation of the scene, that they refer to as the Spatial
Envelope. It consists of five perceptual qualities: natural-
ness (vs man-made), openness (presence of a horizon line),
roughness (fractal complexity), expansion (perspective in
man-made scenes), and ruggedness (deviation from the
horizon in natural scenes). However, the contribution of
each feature cannot be understood as they stand, and more
importantly, they are not directly meaningful to human
observers. Each feature corresponds to a dimension in
the spatial envelope space, and together represent the dom-
inant spatial structure of a scene. Then, they show that
these dimensions may be reliably estimated using spectral
and coarsely localised information. The model generates
a multidimensional space in which scenes sharing member-
ship in semantic categories are projected close together.
Therein it is possible to assign a specific interpretation to
each dimension: along the openness dimension, the image
refers to an open or a closed environment, etc.

The estimation of each attribute s from the global spec-

tral features v of a scene picture can be written as:

ŝ ¼ vT d ¼
XNG

vidi ¼
Z Z

Aðfx; fyÞ2DST ðfx; fyÞdfxdfy ð10Þ

with

DSTðfx; fyÞ ¼
XNG

diWiðfx; fyÞ ð11Þ
e best way to organize/classify images by content?, Image and
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Eq. 10 shows that the spatial envelope property s is esti-
mated by a dot product between the amplitude spectrum
of the image and a template DST(fx,fy). The DST (discrim-
inant spectral template) is a function that describes how
each spectral component contributes to a spatial envelope
property. The DST is parametrized by the column vector
d = di which is determined during a learning stage. A sim-
ilar estimation can be performed when using the specto-

gram features w:

ŝ ¼ wT d ¼
XNL

widi ¼
X

x

X
y

Z Z
Aðx; y; fx; fyÞ2

WDSTðx; y; fx; fyÞdfxdfy ð12Þ

with

WDSTðx; y; fx; fyÞ ¼
XNL

diWiðx; y; fx; fyÞ ð13Þ

The WDST (windowed discriminant spectral template) de-
scribes how the spectral components at different spatial
locations contribute to a spatial envelope property. The
performance of the spatial envelope model shows that spe-
cific information about object shape or identity is not a
requirement for scene categorisation and that modelling a
holistic representation of the scene informs about its prob-
able semantic category. NG and NL are the number of func-
tions used for the approximations and determine the
dimensionality of each representation and W(fx, fy) are
the KL basis of the energy spectrum.
4. Evaluation

A robust and objective methodology for the evaluation
of existing approaches to scene classification is needed in
order to discern the best method for an specific application
field. Thus, albeit necessary, is not a trivial task due to the
heterogenous data and classification implementations, and
has often been misregarded in the existing literature on that
specific topic. Proposals differ on objectives they try to sat-
isfy (e.g. number and kind of scenes to classify), and the
image data over they work with (specially constrained in
some cases). Furthermore, test details as how the images
were split into training and test sets are often not specified
in published works. Hence, unless a given system is imple-
mented and tested for specific image data, it is very difficult
to evaluate from the published works how well it would
work for that data.

It is our aim here, to provide and evaluation of although
not all existing methodologies, the must representative
works derived from each criteria reviewed so far. We
designed and implemented three algorithms representative
of the main approaches identified in this work. We then test-
ed them over the same dataset used by Vogel and Schiele
[27], which allowed us to compare their performance to
the existing results published. We compared the results on
scene classification obtained by four different methods men-
tioned above: (i) low-level image representation (LLI), (ii)
Please cite this article as: Anna Bosch, et al., A review: Which is th
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low-level block representation (LLB), (iii) image segmenta-
tion by classifying present objects (IS) and (iv) bag-of-
words model using pLSA (BOW). The Vogel and Schiele
[28] dataset used includes 700 natural scenes from the Corel
Database consisting of six categories: 144 coasts, 103 for-
ests, 179 mountains, 131 open country, 111 river and 34
sky/clouds. The size of the images is 720 · 480 (landscape
format) or 480 · 720 (portrait format). Every scene catego-
ry is characterised by a high degree of diversity and presents
potential ambiguities since it depends strongly on the sub-
jective perception of the viewer. For example in Fig. 7a,
the three river scenes could be also labelled as forest for
someone, yet there is also a forest in these images. More-
over, we also evaluated the computational cost of the
methods.

4.1. Features and methodology

We used 600 randomly selected training images and the
rest for testing as in [27]. Features used are a concatenation
of an 84 HSI histogram (with 36 bins for H, 32 bins for S,
and 16 bins for V), 24 features of the gray-level co-occur-
rence matrices (32 gray levels): contrast, energy, entropy,
homogeneity, inverse difference moment, and correlation,
for the displacements 1; 0

�!
, 1; 1
�!

, 0; 1
�!

, and �1; 1
���!

, and a 72-
bin edge direction histogram. The final feature vector is
then 180-dimensional. Moreover, we have evaluated opti-
mum parameters values for each technique. Here, only
the best results obtained with theses parameter values are
shown. The methodologies for each strategy are the
following:

(1) LLI: The algorithm computes global features for
each training image, then each image is represented
by a 180-dimensional vector. A test image is classified
using K-NN (with K = 10).

(2) LLB: The algorithm extracts vector features for
each block in the training image following the
strategy proposed by Szummer and Picard [15].
We divided the image into 2 · 2 and 4 · 4
blocks. Each block from the test image is classi-
fied using K-NN (with K = 10) and then combin-
ing these results we classify the image by a
majority voting.

(3) IS: This is the method implemented in [27]. They first
classify each image patch (10 · 10 grid) providing
from a certain object and using the object distribution
the image classification is carried out. Authors in [27]
worked with the same dataset and features as the
used here in for evaluation. Thus we have used their
published performance to compare it to other
approaches in this paper.

(4) BOW: A 5 · 5 square neighbourhood around a pixel
is used to compute the feature vector. The patches are
spaced by 3 pixels on a regular grid. In this case we
have lots of feature vectors and we quantize them
using the k-means algorithm to form the visual
e best way to organize/classify images by content?, Image and
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Forest River

Mountain Coast

Fig. 7. Some typical scenes confused when using global method LLI for classification. (a) river images confused as forest, (c) coast images confused as
mountain. (b and d) HSI histograms from the above images.
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vocabulary. Then we classify each image using pLSA.
We used K = 700 for the k-means algorithm (vector
quantization) and Z = 25 when running pLSA.

The classification task is to assign each test image to one
of the six categories. The performance is measured using a
confusion table, and overall performance rates are mea-
sured by the average value of the diagonal entries of the
confusion table.

4.2. Classification results

Classification results are shown in Table 1. As it is clearly
stated, worse results were obtained by low-level approaches.
A 53.25% of correct classification was achieved by the LLI
algorithm, while a poor 49.12% was reached by the LLB
algorithm. A low-level strategy, which considers the scene
as an individual object, is normally used to classify only a
Table 1
Performance of the compared approaches over a same dataset. LLI, LLB,
BOW have been implemented by ourselves, while IS performance is the
score published in [27]

LLI (%) LLB (%) IS (%) Bow (%)

53.25 49.12 74.10 76.92

Please cite this article as: Anna Bosch, et al., A review: Which is th
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small number of scene categories (indoor versus outdoor,
city versus landscape, etc.). The six categories considered
in our experiments are too complex to be distinguished by
low-level scene properties.

If we look at Fig. 7a, the ground truth of left image is
forest while the ground truth of the other ones is river.
However their colour and texture distribution is very sim-
ilar (Fig. 7b shows the HSI histograms) and low-level
method LLI fails when it tries to classify river scenes, clas-
sifying them as forest scenes. Something similar happens
with Fig. 7c, where coast images are confused as mountain.

In fact, the set of images and categories used by most of
the authors are often constrained. As an example, the cat-
egories used by Vaiyala [11] were chosen specifically to be
nicely separable. The same author recognised in [11]: ‘‘we
thus restricted classification of landscape images into three
classes that could be more unambiguously distinguished,
namely sunset, forest, and mountain classes. Sunset scenes
can be characterised by saturated colours (red, orange or
yellow), forest scenes have predominately green colour dis-
tribution due to the presence of dense trees and foliage, and
mountain scenes can be characterised by long distance
shots of mountains’’.

In contrast, when using local semantic concepts, or
object segmentation, we can deal with objects (or concepts)
in the images, and classify them in an easy way, according
e best way to organize/classify images by content?, Image and
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to their distribution. Semantic techniques which make use
of an intermediate representation achieved best the results,
scores from 74% to almost 77% have been obtained (see
Table 1). They can deal with the parts of the image that
correspond to trees, and the ones that correspond to the
river, and it will allow to distinguish between forest and
river scenes (see Fig. 8). Note that we have not provided
a comparison for the semantic properties-based methodol-
ogies, however it has been demonstrated in [33] that bag-
of-words methods perform better than the representative
proposal of Oliva and Torralba [18].

Computational Cost. Low-level strategies have two clear
advantages: their simplicity and their low computational
cost. Over the set of 600 training images, 3 min are needed
to construct the classifier when using LLI, and 6 min and
40 s when LLB. This computational cost is much higher
when using BOW. This is because we use more information
from the images. We need a preprocessing step to construct
the visual vocabulary which is a bit expensive: around 4 h
extracting 6400 descriptors per image and running k-means
with 700 clusters. The step for fitting pLSA takes 10 min.
However, the costs to classify a test image are comparable:
2 and 7 s for LLI and LLB respectively and 15 s for BOW.
Authors in [27] did not give the computational cost of their
algorithm.

All above experiments have been done on a 1.7 GHz
Computer and Matlab implementation.

4.3. Discussion

Although low-level strategies present a lowest computa-
tional cost, they have a poor performance, because they are
unable to distinguish between complex scenes. Hierarchic
Forest River
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Fig. 8. Some scenes confused when using low-level methods and well classifi
assigned by pLSA to each patch, (c) topic distribution – P(z|d) – for each image
according to its kind of scene, which allows to obtain a better classification ra

Please cite this article as: Anna Bosch, et al., A review: Which is th
Vision Computing (2006), doi:10.1016/j.imavis.2006.07.015
schemes have been proposed to overcome this drawback,
however our results seem to corroborate the inappropriate
of these methods when the number of categories is
increased.

On the other hand, the best results have been obtained
when using Local Semantic Concepts with the bag-of-words
and pLSA method (76.92%). Besides, this approach has a
nice, very relevant property; local semantic approaches are
also the ones which require less user intervention to learn
‘‘intermediate’ representations: they directly learn from the
data by an unsupervised (e.g. [35,33]) or semi-supervised
(e.g. [34]) way. Contrarily, a main requirement of the other
semantic modelling approaches is the manual annotation
of these properties. In Oliva and Torralba work [18], human
subjects are instructed to rank each of the hundreds of train-
ing scenes into 6 different properties. In [27], human subjects
are asked to classify near 60,000 local patches from the train-
ing images into nine different ‘‘semantic concepts’’. Both
cases involves tens of hours of manual labelling. Hence, a
drawback of these strategies is their preprocessing cost,
although this step could be done off-line.

Focusing on the semantic approaches, the main drawback
when using segmentation techniques (IS) respect to the ones
which use local semantic concepts (BOW), is probably the
accuracy of the segmentation method. If objects are not well
segmented all the posterior classification stages will probably
fail. In contrast, when using local semantic concepts the seg-
mentation process is omitted and the image is classified look-
ing at the local patches. Furthermore, another important
feature, to understand the best results obtained by BOW
technique, is probably its freedom to choose appropriate
concepts (Z = 25) for a dataset. The system organises them
in his own way in order to have different object representa-
Mountain Coast
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Table 2
Summary of the analysed scene classification systems

Author Objects Scenes Features #scenes

Low-level strategies

Global Vaialya et al. [10,12] – Bayesian classifiers LUV and HSV color space (spatial
moments, histograms, coherence vectors);
MSAR; edge directions histograms,
coherence vectors

5: indoor, city, sunset, forest and
mountain

Chang et al. [13] – SVM; Bayes point machine Color, texture 15: architecture, bears, clouds, elephants,
fabric, fireworks, flowers, food,
landscape, object images, people, texture,
tigers, tools, and waves

Shen et al. [14] – SVM; K-NN; GMM Color; texture; shape 10: natural scenery, architecture, plants,
animals, rocks, flags, buses, food, human
faces and roses

Sub-blocks Szummer and Piccard [15] – K-NN; 3-layer NN; mixture of
Experts classifier

Ohta color space; MSAR; shift-invariant
DCT

2: indoor and outdoor

Serrano et al. [17] – SVM LST color space; wavelet texture 2: indoor and outdoor

Semantic strategies

Objects Fan et al. [20] SVM Bayesian framework coverage ratio, region center, region
rectangular box, Tamura texture, wavelet
texture/color LUV,

6: mountain, view, beach, garden, saliling,
skiing and desert

Luo et al. [21,23] K-NN Bayesian Network Ohta Color space, MSAR 2: indoor, outdoor
Fredembach et al. [25] Multivariate

gaussin analysis
based on the
maximum a
posteriori rule

Probabilistic method RGB, Lab, co-occurrence matrix,
amplitude spectrum of the fourier
transform

3: vegetation, sky and skin

Mojsilovic et al. [26] Naive Bayes
classifier

Bayesian framework region spatial relationships Portraits, people, outdoor, crowes, city,
indoor, lanscapes, etc.

Vogel and Schiele [27,28] K-NN; SVM M-SVM; SSD between category
prototypes

Color (HSV,RGB) and edge histograms;
co-occurrence matrix

6: sky, coast, mountains, field, river and
forest

Concepts Fei-Fei et al. [34] Implicit with the
method

Bag-of-words and LDA
extension

Dense SIFT and gray level descriptors on
a regular grid

13: forest, coast, mountain, open country,
street, inside city, tall buildings, high way,
bedroom, suburb, living room, kitchen
and office

Quelhas et al. [35] Implicit with the
method

bag-of-words and pLSA sparse SIFT around interest points 3: indoor, city and landscape

Bosch et al. [33] Implicit with the
method

Bag-of-words and pLSA Dense SIFT on a regular grid – concentric
patches allow scale variation

Up to 13: the same as in [34]

Perronin et al. [41] Implicit with the
method

Bag-of-words and GMM dense SIFT on a regular grid Up to 10: Africa, beach, buildings, buses,
dinousaurs, elephants, flowers, horses,
mountains and food

Lazebnik et al. [36] Implicit with the
method

Bag-of-words and pyramid
kernels

Dense SIFT on a regular grid 15: the same as in [34] plus industrial and
store

Propert. Oliva and Torralba [18,44,45] Implicit with the
method

K-NN Spatial envelope (DST WDST) 4 man-made: street, high way, tall
buildings and inside city; 4 natural: forest,
coast, mountain and open country
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tion for the different scenes. For example, it distinguishes the
sky as three different objects: blue sky, grey sky, and sky with

clouds. It gives us additional information to classify scenes
because image representation is more discriminative. In con-
trast, when using the semantic object-based method we clas-
sify the regions among nine objects, and most of these are in
all the six categories (e.g. sky object), and makes the scene
representation more ambiguous. We believe this freedom
to select the most adequate concepts for each dataset is prob-
ably responsible of the superior performance of the scene
classifier [33,46].

5. Summary and conclusions

For the purpose of providing an overview of the present-
ed systems, Table 2 summarises the most relevant and
recent approaches to scene classification. The first column
identifies the different systems by giving authors names
with referred papers. Next two columns refer to the strate-
gy used in order to carry out the semantic concepts classi-
fication and the posterior scene classification. Finally, the
last two columns summarise the features used and the num-
ber of scene categories classified in each paper.

We implemented and evaluated two low-level strategies
as well as two approaches that use intermediate representa-
tions. We demonstrated that a better classification is
achieved when a semantic representation is used in order
to deal with the gap between low- and high-level. Low-level
strategies are useful when a small number of categories
have to be recognised, and also when the categories are eas-
ily separable. However, as the number and ambiguity of
the categories increase it is clear that approaches using
intermediate semantic concepts are more appropriate.

Latest trends are using the bag-of-words representations
jointly with different techniques firstly proposed in the text
document retrieval literature [47]. We also demonstrated
that this method is the one which obtains the best classifi-
cation results in our experiments. This approach provides a
categorisation of individual features, and moreover in [48]
it is shown that pLSA is also useful to model the object in
the scene providing its segmentation. Besides, firstly pro-
posed text models have been very recently extended to
include contextual information in order to improve the
scene classification. All these techniques are also very inter-
esting due to the fact that they can discover the topic dis-
tribution even perform all the scene classification in an
unsupervised way. In that sense, avoiding the tedious and
time-consuming task of hand annotation and also the fact
that expert-defined labels are somewhat arbitrary and pos-
sibly sub-optimal.
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[25] C. Fredembach, M. Schröder, S. Süsstrunk, Eigenregions for image
classification, IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (12) (2004) 1645–1649.

[26] A. Mojsilovic, J. Gomes, B. Rogowitz, Isee: Perceptual features for
image library navigation in: Proc. SPIE Human vision and electronic
imaging, vol. 4662, San Jose, California, 2002, pp. 266–277.

[27] J. Vogel, Semantic Scene Modeling and Retrieval, no. 33 in Selected
Readings in Vision and Graphics, Houghton Hartung-Gorre Verlag
Konstanz, 2004.

[28] J. Vogel, B. Schiele, Natural scene retrieval based on a
semantic modeling step, in: International Conference on Image
and Video Retrieval, LNCS, vol. 3115, Dublin, Ireland, 2004,
pp. 207–215.

[29] M. Varma, A. Zisserman, Texture classification: Are filter banks
necessary?, in: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Vol. 2, Madison, Wisconsin, 2003,
pp. 691–698.

[30] T. Leung, J. Malik, Representing and recognizing the visual appear-
ance of materials using three-dimensional textons, International
Journal of Computer Vision 43 (1) (2001) 29–44.

[31] J. Portilla, E. Simoncelli, A parametric texture model based on joint
statistics of complex wavelet coefficients, International Journal of
Computer Vision 40 (1) (2000) 49–70.

[32] S. Lazebnik, C. Schmid, J. Ponce, A sparse texture representation
using affine-invariant regions, in: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 2, Madison,
Wisconsin, 2003, pp. 319–324.
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