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Abstract

A scene description and segmentation system capable of recognising natural objects (e.g. sky, trees, grass) under different outdoor
conditions is presented. We propose an hybrid and probabilistic classifier of image regions as a first step in solving the problem of scene
context generation. We focus our work in the problem of image regions labeling to classify every pixel of a given image into one of several
predefined classes. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an
unknown segmented object. Classification performance has been evaluated with the Outex dataset and compared to the approach of
Martı́ et al. (IVC 2001) and He et al. (CVPR 2004) using their own datasets, showing the superiority of our method.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We tackle in this paper the problem of natural object
labeling to classify every pixel of a given image into one
of several predefined classes. Hence, we might consider
images of outdoor scenes and we would like to classify each
pixel as sea, snow, road, etc. To achieve this goal, and in the
absence of any prior information, the scene classification
task requires the knowledge of objects contained in the
image. There are a lot of researchers that assume as knowl-
edge only the appearance of objects (colour, texture and
shape). As recent examples, Vailaya et al. [1] used spatial
colour moment and edge direction histograms in order to
classify scene categories, such as indoor/outdoor, city/land-
scape. Barnard et al. [2,3] considered colour, texture and
shape information to solve the object recognition problem,
and similar descriptors are used in [4] to generate maps seg-
mented into objects of interest: buildings, vegetation and so
on. Li et al. [5] have used gray level patches and SIFT fea-
tures to classify themes in natural scenes without supervi-
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sion. SIFT features are also used in [6,7]. Nevertheless, it
is increasingly being recognised in the vision community
that context information is necessary for a reliable extrac-
tion of the image regions and objects [8–11].

Another important issue in image understanding is the
overall control of the system (in which step will we use
the knowledge information acquired during the learning?).
Batlle et al. [12] describe three types of hierarchical control:
top-down [13–15], bottom-up [16–18] and hybrid [4,19,20].
The first of them, can be described as hypothesise-and-test,
once a hypothesis is generated it uses the knowledge
acquired at the learning stage to verify the hypothesised
object. This approach is limited by its inability to handle
unexpected regions (corresponding to unknown objects),
but can handle variations, exceptions and special cases that
are known a priori. On the other hand, bottom-up systems
follow an opposite approach, they do not use the knowl-
edge at the low level image processing stages, which are
mainly based on a general purpose image segmentation.
Hence, these kind of systems are much better at handling
unexpected regions than those using a top-down strategy,
therefore they even would be able to provide a description
of unknown objects found in the image. Finally, hybrid
approaches seek to get the best of both approaches.
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Our previous approach [13] (proposed in 2001) was a
top-down control system which labeled every pixel in the
image as a certain object (e.g. leaves, road). The technique
achieved successful results and had two main characteris-
tics to remark: (i) the facility to teach the system, providing
a very easy and intuitive interface; and (ii) the way which
the system deals with different outdoor conditions. Howev-
er it had also some drawbacks: first, the system takes
advantage of a top-down approach to recognise learned
objects in the image. Nevertheless, it is not able neither
to handle nor give information about segmented unknown
objects. Second, it used a set of discriminative classifiers (a
decision tree for each object) to label each pixel. Thus, a
pixel can be labeled as two different objects without know-
ing which one is the best. Third, the system is not capable
to improve results when initial over-segmentation (it can-
not rectify initial wrong labels).

The proposed method solves the drawbacks men-
tioned above. We propose a probabilistic classifier (tak-
ing appearance and contextual information into
account) to recognise regions belonging to scenes pri-
marily containing natural objects. Furthermore, the
technique handles with known and unknown objects in
the image by following an hybrid control. The approach
is inspired in particular by three previous papers: (i)
using information about the learned models and also
information provided from the test image to perform
the classification [18]; (ii) the use of active regions to
perform the classification [21] and take the neighbours
of a pixel into account; and (iii) the use of a supervised
learning with a very intuitive interface to acquire the
knowledge about objects [13] taking the different seasons
and meteorology conditions into account. We have
made extensions over all three of these works as we will
show in the rest of the paper.

This paper is organised as follows. Section 2 describes
our proposal, taking the phase of learning and recogni-
tion into account. In Sections 3 and 4, we explain the
used datasets to evaluate the system and we give the
implementation details: features used and value of
parameters, as well as an explanation of the methodolo-
gy used to evaluate the system performance. In Section
5, some experimental results are shown and discussed
in Section 6. We evaluate the performance of our system
and its ability to handle with known and unknown
objects. Moreover, the results are compared with the
results of [13] and the results of a recent work [22] with
their own datasets. We finish the paper with the conclu-
sions and some ideas of further work.

2. System overview

Three questions have to be addressed in order to pursue
our idea: How to use the learning information? How to
obtain the classification and segmentation of the known
and unknown objects of the test image? How to use contex-
tual information? In this section, we address these ques-
tions in a Bayesian setting and by an specific active
region-based segmentation.

We propose to solve these questions by using few
images to train the system obtaining a simple and ‘gener-
al’ initial model for each object, which contains its
appearance and absolute context. The learning carries
out a feature selection process to chose for each single
object the specific subset of features which best differenti-
ate the current object from the remaining ones. The rec-
ognition process starts by using the knowledge of the
learned objects to obtain the probability of each pixel to
belong to each object. This provides us a set of probabi-
listic pixel maps (one map for each object). The most
probable pixels of each map are detected, and are going
to constitute the core of objects (CO). The COs are used
to extract a new and more accurate object model. The
posterior growing of specific active regions from these
CO allows us to classify and segment the image. Until
here the algorithm follows a top-down control, since the
knowledge is used at the beginning of the process. Fol-
lowing, a bottom-up control is applied to perform a gen-
eral purpose segmentation of not-classified areas. This
extracts the unknown objects without any previous infor-
mation of them. Finally, a last stage of region belief
fusion exploits the contextual information provided by
neighbouring objects to refine the initial classification of
unknown regions. Fig. 1 shows the basic architecture of
our proposal, and each stage is described at the following
sections.

2.1. Learning

In recent but conventional schemes [18,22–25], a model
for each class is learnt using a lot of training data belong-
ing to that class and a probability based on the learnt
model is assigned to the newly observed data. However,
it is possible that the input test image has been generated
from a subset of the full generative model support, and
using the full model to assign generative probabilities
can produce serious artifacts in the probability assign-
ments. In [18] they proposed a method to constraint the
overall model using the distribution of the newly observed
data.

Learning a new object for humans is fast and easy,
sometimes requiring very few training examples in contrast
to above approaches. The proposal of [26–28] is able to
learn object categories (e.g. cars, airplanes) from just few
images. The advantage of using few images is that the stage
of learning is not so hard, and the assisted steps are
reduced which alleviates the user of an habitually tedious
and expensive task. On the other hand, the main drawback
of using few images in natural images is that the results
may not be satisfactory, because not the whole region of
the model can be found. Hence our goal at this stage is
to perform the learning by using few images, and to consid-
er how to model the information to carry out the later
recognition.
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Fig. 1. Proposed hybrid method for the classification and segmentation of the image.
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The learning stage consists of three phases which are
shown in Fig. 2 and explained in the following sections:

2.1.1. Select the training images

The user must select a set of training images that contain
all the objects that he/she wants to teach to the system.
This allow us to learn new categories from few training
examples. In order to handle with objects in different
weather conditions, we model each object as a set of object

classes. An object class is a prototype of a real object
described in terms of colour and textural features under
specific outdoor conditions like in [13]. Thus, we will have
the object sky with, for example, three object classes:
cloudy sky, sunny sky and storm sky.

2.1.2. Feature extraction

The objects to be learnt must be shown to the system.
We developed a very easy and intuitive web interface to
carry out this stage, where the user selects meaningful
examples of objects by drawing a square on the object of
interest (see Fig. 2). From this selected area, a set of pixels
is extracted and considered as samples of the object. Next,
a large number of colour and texture features are measured
(see Section 4.1 for more details about the features used).

Besides, the system learns the absolute contextual infor-
mation of the object to know where the object is generally
placed in the image (see Fig. 2). This information is comput-
ed by using a vote score: we split the image into three hori-
zontal areas, and we consider that each object could be
located at top if yj2 [0,YT) (where yj means the y position
of pixel j), middle if yj2 [YT,YB) or bottom of the image if
yj2 [YB,YSIZE]. Note that 0 is at top of the image and YSIZE

at the bottom. Then every time that the system learns a new
object sample, it computes where it is located, and incre-
ments the corresponding position score of the object. Fol-
lowing this, each object location is represented by a
normalised three-dimensionality vector (the positions repre-
sent top, middle and bottom). For instance, the location of sky

object will be represented by (1,0,0), which means that it is
always at top position, and never at middle or bottom.



TOP MIDDLE BOTTOM
PT(j) = 1.0

Y_SIZEyj

PM(j) = 0.8

PB(j) = 0.6

Fig. 3. Fuzzy rules for the initial context information, which provide the
position of a pixel in the image. The origin 0 of Y_Size is considered at the
top of the image.

Fig. 2. Three phases for the learning stage of our system: (i) select the
training images; (ii) feature extraction; and (iii) object model generation.
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2.1.3. Object model generation

From these samples, a set of initial objects (ØI) with
their characteristics vectors ØI ¼ ½ØI1ðf1

!
; . . . ; fn

!Þ; . . . ;
ØIkðf1
!
; . . . ; fn

!Þ� is computed. Nevertheless, it is well known
that using the whole set of features does not always mean
to improve the quality of classification. Moreover, due to
the complexity of outdoor scenes, it is necessary to empha-
sise that not all object classes are defined in terms of the
same attributes. Consequently, every single object can be
described by specific features, in order to facilitate the char-
acterisation and later recognition process, and improve the
accuracy classification. The system performs a feature
selection process for each single object, with the goal to
find the subset of features which best differentiates the
current object to the remaining ones. A classical Sequential
Forward Floating Search (SFFS) algorithm [29] is
used with this aim. As a result, a new set of objects with
fewer characteristics called ØF is obtained: ØF ¼
½ØF 1ðfp

!
; . . . ; fq

!Þ; . . . ;ØFkðfl
!
; . . . ; fm

!Þ� where 0 < p,q,
l,m 6 n. Next, considering the selected features, we assume
that each object is modeled by a Gaussian distribution
characterised by li

! (the mean vector of the object i) and
Ri (its covariance matrix). Hence, the final learned object
model set can be defined as: ØL ¼ ½ØL1ðl1

!;R1Þ; . . . ;
ØLkðlk
!;RkÞ�.

2.2. Segmentation and classification

Recognition of objects is performed by using the models
acquired on the previous learning. This initial knowledge is
used to obtain a probabilistic pixel map for each object,
and also a first classification. However, we consider this
pixel-level classification only as a first step in the recogni-
tion process with the aim to initiate the object recognition
by specific active region segmentation. The inclusion of a
higher region-level information allows the system to take
into account the spatial consistency of objects in the image,
which highly improves the classification accuracy [4].

2.2.1. Probabilistic pixel map

The system starts by an initial classification of image pix-
els in order to obtain a set of probability maps. Each map is
associated to a known object and contains the probability
for every pixel of the test image to be classified as the current
object. We use the models acquired from the learning to cal-
culate the probability that a pixel belongs to an object.

The appearance probability of a pixel j characterised by
the features xj

! of belonging to a object ØLi is given, under a
Gaussian assumption [30], by the probability density
function:

P AðjjØLiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞkjRij
q expf�1

2
ðxj
!� li

!ÞTR�1
i ðxj
!� li

!Þg

ð1Þ
where li

! is the mean vector of the object ØLi, Ri its covari-
ance matrix, and k the number of characteristics. Note that
k is also the dimensionality of xj

! and li
! vectors. This

dimension is the number of features used to represent each
object and its value depends on the feature selection pro-
cess (see Section 2.1.3 for the feature selection process
and Section 4.1 for the features which best represent each
object).

At this stage, we compute a contextual probability by
using a fuzzy rule based approach (see Section 4.1 for the
fuzzy rules implementation). For each object we learned
its habitual location in the image, which is described by
the percentages of being at the top, middle and bottom of
an image, (LT i ; LMi , and LBi , respectively). Now, at the rec-
ognition stage, the y position of all pixels is obtained and
the probability of each of them to belong to a certain posi-
tion is computed. Fig. 3 shows the fuzzy rules used to pro-
vide the position of pixels in a fuzzy way. The probabilities
PT (yj), PM (yj) and PB (yj), are the belief that a pixel with yj

position is to a certain location (top, middle, bottom) in the
image. Therefore, Eq. (2) gives us the probability that a
pixel j at position yj belongs to an object ØLi considering
its absolute position:
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P LðjjØLiÞ ¼ maxðLT i � P T ðyjÞ; LMi � P MðyjÞ; LBi � P BðyjÞÞ
ð2Þ

This kind of contextual information is useful at this initial
stage in order to differentiate objects with similar appear-
ance but different locations, such as white clouds and the
snow, and to avoid its confusion. Therefore, the merging
of both probabilities, PR (Eq. (3)), provides a probabilistic
pixel map for each object.

P RðjjØLiÞ ¼ P AðjjØLiÞ � P LðjjØLiÞ ð3Þ
N-S

W-E

NW-SE

SW-NE

Fig. 4. Boundary information extraction. Four partitions are considered
to measure the boundary probability. The maximum probability obtained
is the probability to be boundary between both regions.
2.2.2. Pixel belief fusion

Nevertheless, there are only a few pixels with a very high
probability to belong to a certain object, so a reduced set of
pixels can be classified at this time, with a high confidence
of taking the right decision. This is due to the fact that few
images have been used in the learning stage to construct the
initial object models, and specially because objects in out-
door images have a really high variability, which implies
the possibility of important differences between the learnt
object and the one we are trying to recognise.

Inspired by the proposal of [18] we can improve the ini-
tial objects model by using the distribution of the newly
observed data. The pixels with the highest probability to
belong to an object (PR > 0.8) constitute the CO, and are
considered as representative data to design a lesser con-
strained new model. To construct this new model, for each
object, the same features found in the previous object-spe-
cific feature selection process are taken into account, but li

!
and Ri, which characterises the model, are re-computed
(using the test data information) so the model represents
the reality of the test image. This new set of objects is called
ØN : ØN ¼ ½ØN1ðl1

!;R1Þ; . . . ;ØNkðlk
!;RkÞ�.

2.2.3. Object belief refinement

The core pixels are used as starting seeds to initialise
the growing of a concurrent set of specific active regions.
Regions start to grow from the core pixels guided by
their specific object model, as the colour and texture
image data in order to segment the whole object based
on minimising a global energy function. A similar tech-
nique was used in [21] to perform image segmentation.
We improved that work in two ways: (i) they used the
same features for each model to segment the images
(active region segmentation) while we use specific fea-
tures in order to segment each specific object (specific

active region segmentation), providing a more accurate
result; and (ii) we classify every segmented region as
one of the learned object.

With the aim of integrating region and boundary infor-
mation in an optimal segmentation/classification and to
obtain an accurate result, the global energy is defined with
two basic terms (see Eq. (5)). The region energy term mea-
sures the homogeneity in the interior of the regions by the
probability that these pixels belong to each corresponding
object using its specific features. The probability PR is used
to compute the region homogeneity. Meanwhile, the
boundary term measures the probability that boundary
pixels are really edge pixels. Nevertheless, it is well known
that the extraction of accurate boundary information on
textured images is a very tough task. We shall consider that
a pixel j constitutes a boundary between two adjacent
regions, A and B, when the properties at both sides of
the pixel are different and fit with the models of both
objects. Textural, colour and location features are comput-
ed at both sides (referred to as m and its opposite as n).
Therefore, PR (m|ØA) is the probability that features
obtained on the side m belong to object A, while PR (n|ØB)
is the probability that the side n corresponds to object B.
Hence, the probability that the considered pixel is bound-
ary between A and B is equal to PR (m|ØA) · PR(n|ØB),
which is maximum when j is exactly the edge between
objects A and B as both sides obtain the better fit for both
models. Four possible neighbourhood partitions (vertical,
horizontal and two diagonals) are considered as in the pro-
posal of [31] (see Fig. 4). Therefore, the corresponding
probability of a pixel j to be boundary, PB (j), is the maxi-
mum probability obtained on the four possible partitions
and PB (j|A,B) is defined as in Eq. (4).

P BðjjA;BÞ ¼ P RðmjØAÞ � P RðnjØBÞ ð4Þ
Some complementary definitions are required: let
q (R) = {Ri : i2 [0, N]} be a partition of the image into
N + 1 non-overlapping regions, where R0 is the region cor-
responding to the background region. Let oq (R) =
{oRi : i2 [1,N]} be the region boundaries of the partition
q (R). The energy function is defined as

EðqðRÞÞ ¼ ð1� aÞ
XN

i¼1

� log P Bðj : j 2 oRiÞ

þ a
XN

i¼0

� log P Rðj : j 2 RiÞ ð5Þ



Sky Grass Road Vegetation Land

a b c

Fig. 5. Refinement of the initial classification: (a) original image; (b) initial
classification; (c) refined result by exploiting the context of neighbouring
regions.
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where a is a model parameter weighting the two terms:
boundary probability and region homogeneity. R0 – the
background – is treated as a single region having a uniform
probability distribution P0 (P0 = 0.01 in our experiments).
It means that all pixels have a fixed probability to remain
as background. A region competition algorithm [32] was
applied to optimise the energy function. It takes the neigh-
bouring pixels to the current regions boundaries oq (R) into
account to determine the next movement. Specifically, the
optimisation process makes the most probable detected
seeds (see above Section to know how to detect them) for
each object to move and grow aggregating a neighbouring
pixel when this new classification improves the energy. This
process continues until an energy minimum is reached. At
the end, the detected known objects have been segmented
and classified.

2.3. Discovering unknown objects

When the minimisation process finishes, if still there is
a background region R0 which remains without being seg-
mented/classified, it probably implies that one (or several)
unknown objects are present in the image. In order to
extract these objects a last stage of general purpose seg-
mentation is performed. A new seed is placed in the back-
ground (unclassified objects), and the energy minimisation
starts again. The placement of a new seed is an important
choice, since in order to obtain a sample of each region
large enough to statistically model its behaviour we need
to place the seed completely inside one of unknown
objects. A seed placed on the boundary between regions
is considered as a bad seed because it would be constitut-
ed by a mixture of pixels belonging to different objects,
and thus it is not adequate in order to model the region.
Boundary information allows us to extract these positions
in the core of regions by looking for places far away from
contours. Hence, the seed is put at the position farthest
away from high gradient values. Specifically, we place
the seed at the place j in the background which has a low-
er potential defined as:

potentialðjÞ ¼ max
jrðiÞj

dði; jÞ þ 1

� �
8i 2 I ð6Þ

where |$ (i)| is the gradient magnitude of neighbouring pix-
els i, d (i, j) is the Euclidean distance between spatial posi-
tions of pixels i and j, and I is the image domain. One is
added to the distance in order to avoid the division by zero
when the influence of a pixel over itself is measured.

The seed grows guided by the optimisation and an
unknown object is segmented. Note that when segmenting
the region corresponding to an unknown object, all the
features are used to model the region (active region segmen-
tation) because we have not any information about the
background and hidden unknown objects. This process is
repeated, and a new seed placed for each unclassified object,
until all the image is segmented and classified. As a result,
known objects are recognised with a certain probability
and unknown objects are accurately segmented.

2.4. Region belief fusion

Once the image is classified into known objects and the
unknown objects are segmented, we obtain a set of disjoint
regions. However, with the aim to classify unknown
regions, we perform a last stage of fusion where the contex-
tual information provided by classified neighbours is
exploited. In other words, we give a higher probability to
unknown regions of being classified as their neighbours
(e.g. where there are bushes could be a good idea to look
for more bushes). Hence, a Region Adjacency Graph
(RAG) is built based on the spatial adjacency between
regions [33]. Our scheme then proceeds on the RAG by
defining the region belief fusion following the steps below:

(1) For all the unknown regions next to a known clas-
sified region, a similarity function (euclidean dis-
tance) using the specific features of the classified
object is computed. When the result indicates a
high degree of similarity (thr > 0.7), both regions
are merged and considered the same classified
object.

(2) For all the unknown regions next to another
unknown region repeat the process above. Here we
use all the features to compute the similarity.

(3) Repeat steps 1 and 2 until no changes.

Fig. 5 qualitatively shows that after this last step the results
are considerably improved.

In order to evaluate the proposed system, we carried
out two experiments. In the first one we evaluated the per-
formance of our system and its ability to handle with
known and unknown objects. Moreover, in the second
experiment we compared our technique with the results
presented by Martı́ et al. [13] and He et al. [22] with their
own datasets.

3. Data sets

We evaluated our classification algorithm on three dif-
ferent datasets: (i) Outex dataset [34], (ii) Martı́ et al. data-
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set [13], and (iii) the dataset used by He et al. [22]. We will
refer to these datasets as OU, MA and HE, respectively.
These images consist of natural outdoor scenes and mainly
contain typical objects in rural and suburban areas. Fig. 6
shows example images from each dataset, and the contents
are summarised here:

OU: includes 41 images of natural outdoor scenes. The
average size of each image is 256 · 192 pixels. We segment-
ed and labeled them manually into 5 classes: sky, grass,
road, vegetation and ground, while the remaining areas,
mainly belonging to man-made objects, are considered as
unknown objects.

MA: includes 87 natural scenes taken by themselves. The
size of the images is 250 · 250 or 204 · 137. Every scene
category is characterised by a high degree of diversity of
meteorological conditions and different seasons of the year.
We segmented and labeled them manually into the 5 same
classes than in dataset OU.

HE: is a 100 image subset of the Corel image data-
base, consisting of African and Arctic wildlife natural
scenes. The hand labeled images were provided by the
authors of the paper [22]. Each image is 180 · 120
pixels. They labeled them manually into 7 classes: rhi-

no/hippo, polar bear, vegetation, sky, water, snow and
ground. They did not take unknown objects in the imag-
es into account, so all the regions in these images are
known.
a

c

b

Fig. 6. Images of the datasets used to evaluate the systems: (a) images from th
dataset [22].
4. Implementation details and methodology

4.1. Implementation details

At the learning stage, once the user has selected the
object the system extracts the features of each pixel con-
tained in the selected area. For colour information, we
use the RGB components, HLS and CIE Lab* colour
space [35], which is perceptually uniform. The texture
information is obtained by set of co-occurrence matrix-
based texture features by using a distance of one pixel
and angles quantised to 45� intervals [36]. Hence, four
matrices of horizontal, first diagonal, vertical, and second
diagonal (0�, 45�, 90� and 135�) are used. The statistics
applied were: Contrast, Homogeneity, Correlation and
Entropy. Thus initially, each pixel is represented by 25
image statistics.

After carrying out the feature selection process,
each object is represented by a different number of
features. These features are the best which represent
each object from the others. We show below the fea-
tures used for each object. When working with MA
dataset:

• Sky: G, L, S, b*, Homogeneity 0�, Homogeneity 90�,
Homogeneity 145�, Correlation 45�, Correlation 90�,
Entropy 45�. Its dimensionality vector is k = 10.
e OU dataset [34]; (b) images from MA dataset [13]; (c) images from HE
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• Grass: R, G, H, S, L*, a*, Contrast 0�, Contrast 90�,
Homogeneity 45�, Correlation 45�, Entropy 45�, Entro-
py 90�, Entropy 145�. Its dimensionality vector is
k = 13.

• Road: R, B, H, L, L*, b*, Contrast 45�, Contrast 145�,
Homogeneity 45�, Homogeneity 145�, Correlation
145�, Entropy 0�. Its dimensionality vector is k = 12.

• Vegetation: G, L, a*, Contrast 90�, Homogeneity 0�,
Homogeneity 90�, Correlation 0�, Correlation 90�,
Entropy 0�, Entropy 45�, Entropy 90�. Its dimensional-
ity vector is k = 11.

• Ground: R, B, L, S, b*, Contrast 0�, Contrast 145�,
Homogeneity 90�, Correlation 45�, Entropy 45�, Entro-
py 145�. Its dimensionality vector is k = 11.

• Unknown: represented by the whole set of features. Its
dimensionality vector is k = 25.

When working with HE dataset:

• Rhino/hippo: B, S, Contrast 45�, Contrast 90�, Homoge-
neity 45�, Homogeneity 90�, Homogeneity 145�. Its
dimensionality vector is k = 7.

• Polar bear: B, L, a*, Homogeneity 45�, Homogeneity
90�, Correlation 0�, Correlation 45�. Its dimensionality
vector is k = 7.

• Vegetation: G, L, L*, a*, Contrast 45�, Contrast 90�,
Homogeneity 45�, Entropy 0�, Entropy 45�, Entropy
90�. Its dimensionality vector is k = 10.

• Sky: R, H, b*, Contrast 45�, Homogeneity 0�, Homoge-
neity 45�, Homogeneity 145�, Correlation 45�, Correla-
tion 145�. Its dimensionality vector is k = 9.

• Water: R, G, S, Contrast 0�, Contrast 95�, Correlation
0�, Entropy 0�, Entropy 90�, Entropy 145�. Its dimen-
sionality vector is k = 9.

• Snow: G, B, S, Contrast 45�, Homogeneity 0�, Homoge-
neity 90�, Correlation 90�. Its dimensionality vector is
k = 7.

• Ground: R, H, L*, b*, Contrast 45�, Homogeneity
45�, Homogeneity 90�, Correlation 0�, Entropy
45�, Entropy 90�. Its dimensionality vector is
k = 10.

Moreover to carry out with the results in this paper, we
used: PR > 0.8 – to accept a pixel as a seed; a = 0.7 – the
weight in formula Eq. (5); P0 = 0.01 – background proba-
bility; thr > 0.7 – to merge regions in region belief fusion
process. The fuzzy rules are the following:

• For top position: if yj< = YT then PT (yj) = 1 otherwise
PT (yj) follows Eq. (7).

• For middle position: if YT < yj < YB then PM (yj) = 1
otherwise if yj <= YT PM (yj) follows Eq. (9) and if
yj >= YB PM (yj) follows Eq. (10).

• For bottom position: if yj > = YB then PB (yj) = 1 other-
wise PB (yj) follows Eq. (8).

where PT and PB are:
P T ðyjÞ ¼
Y SIZE � yj

Y SIZE � Y T
ð7Þ

P BðyjÞ ¼
yj

Y B
ð8Þ

P MðyjÞ ¼
yj

Y T
ð9Þ

P MðyjÞ ¼
Y SIZE � yj

Y SIZE � Y B
ð10Þ

where YT = YSIZE/3 and YB = 2*YSIZE/3

4.2. Methodology

In order to evaluate the goodness of the implemented
systems a comparison between the results of the classifica-
tions system and hand-labeled images is performed. Specif-
ically, to know the performance of the system a confusion
matrix is computed. The confusion matrix should be read
as follow: columns indicate the object to recognise and
rows indicate the label the system associates at this object.
Hence, a perfect recognition should have 100% at all the
diagonal, and zero at the remaining cells. This matrix will
give us information on how the system works for each indi-
vidual object. The overall performance rates are measured
by the average value of the diagonal entries of the confu-
sion matrix.

Moreover, we compared our proposal with the results
obtained by a simple pixel-based classifier: every image pix-
el is classified as the object with the highest appearance
probability PA (see Eq. (1)) always this is higher tan a fixed
threshold. Otherwise, the pixel is labeled as unknown. This
baseline method is included in order to gauge the difficulty
of the classification task. Furthermore, the improvement
achieved by the inclusion of context information was
quantified.

The learning stage takes approximately 40 minutes, con-
sidering the feature selection and without taking the time
used to select the training images into account. On the
other hand, the classification task takes 1 hour and 30 min-
utes for a testing set of 93 images – which means about 1
minute per image (Visual C++ and php implementation
on a 1.7 GHz PC).
5. Performance evaluation

We merge the two first datasets OU and MA to evaluate
the performance of our proposal. We selected 35 training
images and the remaining ones (93 images) are used for
testing. This number of training images was stated in our
experiments as a good compromise between the required
effortless of the user and the quality of results (see Fig. 7).

Table 1 shows the summarised results obtained over the
test image set. The pixel-based classifier achieves poor
results with an accuracy of 72.64%. The inclusion of a high-
er region-level information by using specific active regions,
as is proposed in our technique, allows the system to take



Fig. 7. Performance vs. the required time to teach the system. We start
training the system with 5 images and we increment them until 50 (taking 5
images more at each next experiment).

Table 1
Quantitative results over the first test image set

Method Pixel-based Without ctx. Proposal
Correct rate 72.64% 85.20% 89.87%

Correct classification rates achieved by the pixel-based classifier, the
appearance-based proposal, and our whole (appearance and context)
proposal.
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the spatial consistency of objects in the image into account,
improving the percentage of correctly classified pixels to
85.20%. Finally, as is shown in the last column, the con-
joint use of appearance and context properties significantly
improves these results and obtains a 89.87% of well-classi-
fied pixels. This shows us that the inclusion of absolute
context helps to disambiguate objects with similar features.

The confusion matrix for the testing results on our pro-
posal model is shown in Table 2. Its values show the per-
centage of labels on the whole testing data. We can
observe that a maximum rate of 93.52% is obtained for
the sky object, while the minimum rate is obtained for
the grass with a 87.38%. Moreover, it is relevant to note
that most of classification mistakes of our system are relat-
ed to unknown objects, while the error between known
objects is really non-frequent. This is very encouraging
because this kind of errors could be solved in an easy
way. Most of the pixels over-classified are confused by an
unknown object (see last column in Table 2), which means
not-known objects have been wrongly recognised. We con-
sider that when the system will learn these new objects, it
will be able to recognise them and the rates of over-classi-
fication will decrease considerably. On the other hand, the
last row in Table 2 shows that the most important errors
occur when the system does not recognise an object, and
classifies it as unknown. The method is not always able
Table 2
Confusion matrix over the OU and MA datasets (s, sky; g, grass; r, road; t,
tree; l, land; u, unknown)

s g r t l u

s 93.52% 0% 0% 0% 0% 1.82%
g 0% 87.38% 0% 0% 4.17% 0.88%
r 0% 0% 91.36% 0% 4.71% 1.74%
t 0% 6.21% 0% 88.73% 0% 4.32%
l 0% 2.03% 3.39% 0% 89.97% 1.97%
u 6.48% 4.38% 5.25% 11.27% 2.15% 89.27%
to initially detect all the known objects in the image. How-
ever, since these missed objects are correctly segmented (see
Fig. 8), it should be studied the possibility to correct this
error by analysing the resulting unknown regions in a later
stage. Exploiting the scene context in deep, we could be
able to classify these objects appropriately.

Some qualitative experimental results are shown in
Fig. 8. The second row shows the results achieved by our
technique using only appearance properties (colour and
texture), while results obtained by the whole method are
shown in the third row. As previously stated, our classifier
achieves a reasonable labeling of image regions. Moreover,
the inclusion of context information allows to correct some
mistakes performed when only the appearance was consid-
ered. In the second example (second column), the appear-
ance-based method failed on classifying some parts of the
road as sky, while the top of some trees (where leaves are
confused with the sky) were wrongly recognised as road.
All these mistakes are solved by the whole method. Fur-
thermore, in the last stage of region fusion, the information
provided by neighbouring objects also allows to correctly
classify a large number of small areas of the image which
were initially classified as unknown. We consider these
results as very positive, although some issues need to be
addressed. If we observe the last example of Fig. 8, the
image classified by our proposal has a big area, corre-
sponding to the trees, that is considered as an unknown
region. The reason can be found in the massive presence
of shadows, which cover this part of the image. Since we
did not teach to the system to recognise the shadows, the
system considers them as unknown objects. Therefore, we
must qualify this classification as correct. This same situa-
tion can be found in the shadows on the road in the exam-
ple of the first column.

5.1. Comparison

We compare our approach with the approaches of Martı́
et al. [13] and He et al. [22] using their own datasets MA
and HE, respectively.

Martı́ et al. [13] proposed to classify natural objects in
outdoor scenes by using binary decision trees with multi-
variate decision functions (a tree for each trained object
class). Each node of the tree attempts to separate, in a
set of known instances (the training set), a target (e.g.
trees) from non-target instances (no-trees). They also use
the scene context modeled as a graph with the objects that
are expected to be in a scene and their spatial relation-
ships. They used 6 texture features (Blurriness, Granular-
ity, Discontinuity, Straightness, Curviness and
Abruptness) and a set of 28 different colour features (Nor-
malized RGB, HSV, etc.). A feature selection process is
applied to find a particular subset of features for charac-
terising each object class of interest. Their method is test-
ed on MA and considering four natural objects (sky,
leaves, road and ground). In average obtains a 87% of cor-
rectly classified pixels. This score was obtained using



Sky Grass Road Vegetation Land Other: Unknown
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Fig. 8. Experimental results over datasets OU and MA. (a) Original image; (b) initial classification; (c) refined result by exploiting context of neighbouring
regions.

10 A. Bosch et al. / Image and Vision Computing xxx (2006) xxx–xxx

ARTICLE IN PRESS
training and test images in the classification results evalu-
ation. It is unusual to use the training images to evaluate
the classification performance. Thus, it is very probable
that if they did not include the training set the perfor-
mance score would be lower. The performance is slightly
improved using our approach over the same dataset. A
90.03% of well classified pixels is obtained using 20 train-
ing images and the rest (67) for testing, while classifying 5
objects (sky, grass, ground, trees and road). Note that we
recognise 5 instead of 4 objects including ground as an
additional object, thus the classification problem is a bit
more difficult. Even so, results are improved.

The method of He et al. [22] is a multiscale Conditional
Random Field (mCRF), which includes contextual features
for labeling images, in which each pixel is assigned to one
label of a finite set. The features are incorporated into a
probabilistic framework which combines the outputs of
several components. Components differ in the information
they encode. Some focus on the image-label mapping, while
others focus solely on patterns within the label field. Com-
ponents also differ in their scale, as some focus on fine res-
olution patterns while others on a coarser, more global
structure. A supervised version of the contrastive diver-
gence algorithm is applied to learn these features from
labeled image data. They compared their proposal with a
3-layer multilayer perceptron (MLP) and a classical Mar-
kov Random Field (MRF), and demonstrated as the inclu-
sion of context improved considerably the results. Features
used consisted on the following: for the colour information
they used CIE Lab* colour space. The edge and texture
properties are extracted by a set of filter banks including
difference-of-Gaussian filters at 3 different scales, and
quadrature pairs of oriented even- and odd-symmetric fil-
ters at 4 orientations (0, p/4, p/2, 3p/4) and 3 scales. Thus
each pixel is represented by a set of 30 image statistics. In
this case, the training set includes 60 randomly selected
images and the remaining 40 are used for testing.

We applied our proposal over the same dataset (HE) to
perform the comparison. We used 35 training images and
65 for testing. In [22] they do not take unknown objects in
the images into account, so all the regions in these images
are known. Similarly, we labeled all the pixels in the images
without taking unknown pixels into account and we classi-
fied all the pixels of images with the most probable label.
The correct classification rates on the test set are shown in
Table 3. The last column in the table shows the rate obtained



Table 3
This is a comparison with the method of of He et al. [22] over the dataset
D2

Method MLP MRF mCRF Proposal
Correct rate 66.9% 66.2% 80.0% 86.76%
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over the same test images using our proposal. We can see
that the performance of the MLP classifier is comparable
to the MRF, while mCRF provides a significant improve-
ment. The result shows the advantage of discriminative over
generative modeling and the weaknesses of local interactions
captured by the MRF model. However, our model increases
in 6.76% the result obtained with mCRF. This could be
because we use local data information of test images.

We also show the outputs of the mCRF and our model
on some test images in Fig. 9. mCRF model generates rea-
sonable labeling in which the contextual information pro-
vided by regional and global features corrects most of the
wrong predictions from the local features. Also our model
labels reasonably well the test images, the use of absolute
context as well as data of the test image helps to disambig-
uate some labels and solves some of wrong labels obtained
with mCRF.

5.2. More complex images

In order to evaluate the robustness of our system, we
have carried out two more complex experiments: (i) evalu-
a

b

c

d

Fig. 9. Qualitative results over the Corel image dataset. (a) Original image; (b
our proposal.
ate the system with more complex natural scenes; and (ii)
evaluate the system with rotated images. The results
obtained are explained at the following:

• Complex natural scenes. We tested the system with more
complex natural images (coast scenes with sky and water
objects). We show two examples in Fig. 10. In the first
row the sky is in almost the whole image, while in the
second one the object which is in almost the whole image
is the water. We trained the system with more simple
images, where the sky is always at top and water at bot-
tom. Fig. 10b shows the results after the Discovering

unknown objects stage. In the first stages, where the
regions grow, the location (absolute position) restricts
the growing of the regions which represent the objects,
and only the part of sky or water which is in its usual
location is recognised. The other part of sky (or water)
is classified as an unknown object. However, the region
belief fusion stage, allows us to merge the unknown
region and the well recognised object (sky or water in
the examples) and finally the whole object is well recog-
nised as is shown in Fig. 10c.

• Rotated images. We carried some experiments changing
orientation of images from 10� to 180�. We can see in
Fig. 11 results for the same image when it is rotated
45�, 90� and 180� grades, respectively. We observed that
the results are very good if there is a part of the object
which is in its habitual location (Fig. 11a and b). For
Rhino/
hipo

Polar
bear

Vegetation

Sky

Snow

Water

Ground

) hand-labeled image; (c) classification with mCRF; (d) classification with



Fig. 10. Qualitative results when working with more complex natural
scenes. (a) Original image; (b) image before the region belief fusion
process; (c) final results (after the region belief fusion process). Blue colour
represents sky, yellow means water and other colours are unknown
regions.

Fig. 11. Qualitative results when working with rotated images. First row
shows the original image and second one shows the result. (a) Image
rotated 45�; (b) image rotated 90�; (c) image rotated 180�. Colour
meanings are the same as in Fig. 8.
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example, if the image is rotated but there is a part of sky
which is at top, then the system works well. This is
because the system can place a new seed at this part of
the object, and consequently recognise the part of the
object which is well located. The location information
prevent to recognise the part of the object which is not
in its habitual position so that this one will be classified
as an unknown region. However the last stage of the sys-
tem, the region belief fusion, is able to merge the
unknown region with the well-classified object and final-
ly the whole object is well recognised, even if it is not in
its habitual position. Nevertheless, when the image is
180� rotated the system fails when tries to recognise
the objects. It can just recognise the trees, because it can-
not place any other initial seed. In this case, the image is
very well segmented and just the trees can be recognised.
These two experiments show the robustness of the sys-
tem. We are able to deal with complex natural scenes and
with rotated images. The final step which uses the neigh-
bourhood information to merge region is the key of the
system in these cases.
6. Summary and discussion

The proposed method is able to learn the model of the
objects with few images. Each real object is modeled as a
set of object classes. An object class is a prototype of a real
object described in terms of colour and textural features
under specific outdoor conditions like in [13]. At the classi-
fication stage, we take advantage of the information provid-
ed for the test image. In [18] they constraint the object
model using the distribution of the newly observed data,
while in our approach we do the reverse: we extend the
object model using the newly test data distribution. More-
over in [21], they used active regions segmentation to obtain
the regions of the image. We extended this work using spe-
cific active regions taking advantage of the knowledge to
use the best features to classify each specific object. So we
are able to recognise the learned objects and segment the
unknown.

In this framework, the detection and recognition of
objects proceed simultaneously with image segmentation
in a competitive and cooperative manner. The method
makes use of bottom-up proposals combined with top-
down generative models. Tu et al. [37,38] presented an
approach with a similar philosophy but it is only applied
to classify and distinguish text and faces, while our work
is applied with a great variety of images in different and
more difficult variable conditions. Moreover we tackle
the unknown objects. In many systems, the problem of
unknown objects is engineered away or resolved in a pre-
processing step [39], while the proposed system is able to
tackle this objects in an on-line manner for a further knowl-
edge of them.

Our first experiment consisted on evaluating our method
using natural outdoor scenes, mainly containing typical
objects in rural and suburban area (datasets OU and
MA). First, we evaluated if the inclusion of test data in
the learned model and the inclusion of higher region-level
information improves the obtained results when classifying
the images. We obtain an improvement of 12% approxi-
mately. Then we evaluated how important is the use of
absolute context and local relationships between objects
as well. Using both, we obtain an score of 89.87% that is
a 4.67% more than without using context information.
The use of this kind of context helps to disambiguate some
mistakes occurred, for example the when system confuses
some parts of the sky as road.

The comparison experiment consisted on comparing the
performance of our system to other Image Understanding
and object classifications systems. We compare the model
with the systems proposed in [13,22]. In the first work,
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the classification is carried out using a decision tree includ-
ing scene and relative context. In this work, the input to the
system is the test image and its kind of scene. In the second
work, the proposed model, a mCRF, was compared with a
simple MLP and a MRF. Our proposal has been compared
with all previous methods. In order to make this compari-
son, we applied our method to the same images as them
and evaluated the results using the same ground-truth.
These results show that our system obtains a 3% in first
case and a 6.76% in the second comparison better classifi-
cation rates. This could be due to the use of test data at
the classification stage and to the use of local relationships
between objects in order to improve the classification of
final unknown objects.

Moreover we showed that the system is able to work
with more complex natural scenes and with rotated images
even thought we are using absolute contextual information.
As we showed in Section 5.2, the system is able to deal with
these difficult situations because we are using a last stage of
region belief fusion. However for 180� rotated images, the
system can recognise few objects, but the segmentation is
very good. Although this kind of situation is not usual in
most of the natural scenes databases, it could be solved
with a pre-processing step to detect the image orientation.

By the moment, we do not include the context provided
by the scene configuration. The reason is that the scene
model is referred to a certain combination of objects, for
example if we have a zoo scene, then we will expect to find
a rhino, an hippo and other animals. Thus, the knowledge
of the scene type can help and make the recognition easier.
On the other hand, the use of rules and constraints too
much strict can avoid the system recognises images and
objects that differ of these models, while we humans are
able to recognise an hippo in the middle of the city. Thus,
we consider the inclusion of this information must be care-
fully designed to guarantee the system is able to handle
with unknown situations.

7. Conclusions and further work

We have presented a probabilistic model for labeling
images into a set of learned class labels, and segmenting
the unknown objects. The model combines the data
acquired during the learning stage as well as the data of
the actual test image in order to obtain a more accurate
result. Moreover, the labels are in agreement with the
image statistics and with the absolute contextual informa-
tion as well. The object extraction and recognition is car-
ried out by the integration of an initial pixel-level
classification, which provides the CO, and a later growing
of specific active regions, which allows to take the spatial
consistency of objects into account. This growing was done
by optimising an energy function using the region competi-
tion algorithm.

We have presented the results of our probabilistic mod-
el for labeling images into a predefined set of class labels.
The results show that it is useful not only the use of the
models acquired during the learning, but also the use of
test data to improve them. Our strategy results in a con-
sensual labeling that needs to agree with the image statis-
tics and at the same time respect the absolute position in
the image. Moreover, we compared our system with two
recent systems proposed in 2001 and 2004 and results
we obtained are superior. We tested the method using
natural outdoor scenes.

In the future we would like to test this method with
man-made and indoor images. And also using more
recent features invariant to geometric, photometric (e.g.
features proposed in [40]) and scale (e.g. SIFT features
[41]) of the objects. We also will improve the approach
given the possibility to learn the unknown segmented
objects obtained after the classification. Techniques for
an unsupervised learning and recognition of them will
be explored.
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