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Abstract

We present a new approach to model and classify breast
parenchymal tissue. Given a mammogram, first, we will dis-
cover the distribution of the different tissue densities in an
unsupervised manner, and second, we will use this tissue
distribution to perform the classification. We achieve this
using a classifier based on local descriptors and probabilis-
tic Latent Semantic Analysis (pLSA), a generative model
from the statistical text literature.

We studied the influence of different descriptors like tex-
ture and SIFT features at the classification stage showing
that textons outperform SIFT in all cases. Moreover we
demonstrate that pLSA automatically extracts meaningful
latent aspects generating a compact tissue representation
based on their densities, useful for discriminating on mam-
mogram classification. We show the results of tissue clas-
sification over the MIAS and DDSM datasets. We com-
pare our method with approaches that classified these same
datasets showing a better performance of our proposal.

1 Introduction

Breast cancer is considered a major health problem in
western countries. A recent study from the National Cancer
Institute (NCI) estimates that, in the United States, about 1
in 10 women will develop breast cancer during their life-
time [1]. Moreover, in such country, breast cancer remains
the leading cause of death for women in their 40s [6].

Although manual screening of mammographies remains
the key screening tool for the detection of breast abnormal-
ities, it is widely accepted that automated Computer Aided
Diagnosis (CAD) systems are starting to play an important
role in modern medical practices. Most of the commercially
available CAD systems and research efforts in breast mam-
mography focuses only on the automatic detection of ab-
normalities. However, from a medical point of view, it is
well-known that there is a strong positive correlation be-

tween high breast parenchymal density and high breast can-
cer risk [25]. For instance, the relative risk is estimated to be
about 4 to 6 times higher for women whose mammograms
have parenchymal densities over 60% of the breast area, as
compared to women with less than 5% of parenchymal den-
sities [26]. Thus, the development of automatic methods for
classification of breast tissue is justified for an automatic
risk assessment framework in prospective CAD systems.
However, developments in this area have been limited.

Several techniques have been proposed for breast density
classification [12, 26], but only a small number of previ-
ous works have suggested that texture representation of the
breast might play a significant role. Miller and Astley [16]
investigated texture-based discrimination between fatty and
dense breast types applying granulometric techniques and
Laws texture masks. Byng et al. [7] used measures based on
fractal dimension. The work of Bovis and Singh [5] first es-
timated features from the construction of Spatial Gray Level
Dependency matrices and second, it trains multiple Neural
Nets (ANN) to classify the parenchymal density. Zwigge-
laar et al. [27] segmented mammograms into density re-
gions based on a set of co-occurrence matrices, and den-
sity classification used the size of the density regions as the
feature space. Similarly, Oliver et al. [17, 19] proposed to
extract texture features after the segmentation of the breast
in two clusters which represent dense and fatty tissue.

Reviewing the literature of texture and materials classifi-
cation we can also learn [13, 24]. These texture models first
identify a dictionary of textons and then for each category
of texture, a model is learnt to capture the signature distri-
bution of theses textons. Recently, Petroudi et al. [20] de-
fined mammographic appearance making use of a technique
proposed for texture classification. They defined parenchy-
mal tissue as statistical distributions (histograms) over tex-
ton dictionary developed from a training set. Textons are
defined as clustered filter responses which are rotational in-
variant.

Some works that classified object and scene categories
can also provide us good ideas. For example, Sivic et



al. [22] used the probabilistic Latent Semantic Analysis
(pLSA) for object recognition and in [4, 21] it is used for
scene classification. pLSA is a generative model from the
statistical text literature [11]. In text analysis this is used
to discover topics in a document using the bag-of-words
document representation. In these cases, there are images
as documents and they discover topics as object categories
(e.g. grass, houses, bikes, planes), so that an image contain-
ing instances of several objects is modelled as a mixture of
topics. The models are applied to images by using a visual
analogue of a word, formed by vector quantizing visual fea-
tures (colour, texture, etc.) like region descriptors.

Motivated by the excellent results in object and scene
classification, we propose to classify the mammograms by
using pLSA. To carry out the adaption of this method to the
medical image domain, we established the following analo-
gies: in tissue classification, the images will be the mammo-
gram, the topics will be the different densities of the tissue
and we also will talk about visual words as the analogue of
a word. pLSA is appropriate here because it provides the
correct statistical model for clustering in the case of multi-
ple tissues densities per image. We will have to study which
are the best descriptors when classifying parenchymal den-
sities as well as which is the best representation for this kind
of images. Our main contribution in mammogram tissue
classification is that this algorithm is able to learn relevant
intermediate representation of tissue density automatically
and without supervision. The previous approach of Petroudi
et al. [20] which uses histogram models of textons does not
provide a strong statistical model as our and can not differ-
entiate the different densities in a mammogram automati-
cally.

Nowadays, the American College of Radiology (ACR)
Breast Imaging Reporting and Data System (BI-RADS) [2]
is becoming a standard on the assessment of mammo-
graphic images. This standard provides four categories ac-
cording to breast parenchymal density (see also Figure 1):

• BI-RADS I: the breast is almost entirely fatty.

• BI-RADS II: there is some fibrogandular tissue.

• BI-RADS III: the breast is heterogeneously dense.

• BI-RADS IV: the breast is extremely dense.

The rest of the paper is described below. Section 2
presents a detailed overview of the proposed system. Sec-
tions 2.1 and 2.2 describe a previous segmentation step and
how we are going to represent the image using local descrip-
tors. Section 2.3 describes the latent aspect and the pSLA
process used to classify the mammograms according their
parenchymal density. Section 3 describes the dataset and
the followed methodology to test the approach. Section 4
show the results obtained and a brief comparison. The paper
ends with conclusions and outlines possible future work.

(a) (b) (c) (d)

Figure 1. Four images belonging to one of
each BI-RADS category extracted from MIAS
dataset: from (a) BI-RADS I to (d) BI-RADS IV.

2 System Overview

In this Section we will explain the three processes in-
volved on the mammographic tissue classification: (i) seg-
mentation of the breast profile, (ii) breast tissue represen-
tation using a bag-of-words, and (iii) the use of probabilis-
tic Latent Semantic Analysis (pLSA) to obtain the tissue
classification according to the BI-RADS standard. Figure 2
shows the schema of the system.

2.1 Pre-processing steps

The initial step of our approach is the segmentation of
the profile of the breast. Previous works on breast tissue
classification and abnormalities detection noticed that the
feature extraction process is affected if the region processed
is not well focused. Thereby, it is important to segment the
mammogram in order to extract the breast from other ob-
jects that could be present in a mammographic image (back-
ground, annotations, pectoral muscle in MLO images) and
to achieve optimal breast parenchyma measurements. We
used a two-phase based method:

• Breast Segmentation. The algorithm computes a
global gray histogram for the image. The gray val-
ues are represented by a histogram with 8 bins. We
compute an automatic threshold which is the minimum
value over the 8-histogram. This one is used to thresh-
old the image obtaining a collection of different re-
gions. The largest region (the union of the breast and
the pectoral muscle) is extracted using a Connected
Component Labeling algorithm. As a result we delete
the labels and the information which is not necessary
and we obtain an image with the segmented breast.

• Pectoral Muscle Extraction. This operation is impor-
tant in mediolateral oblique view (MLO), where the
pectoral muscle, slightly brighter compared to the rest
of the breast tissue, can appear in the mammogram.
We used the approach of Ferrari et al. [8] who propose
a polynomial modeling of the pectoral muscle.
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Figure 2. Schema of the learning and classification process. The first row shows the learning process
while the second one shows the classification process. The figure is divided in three subparts cor-
responding to the three main process of our approach: (a) segmentation; (b) image representation;
and (c) use of the latent space for learning and image classification.

This segmentation results in a minor loss of skin-line
pixels in the breast area, but those pixels are not relevant
for tissue estimation.

2.2 Image Representation

We will represent the images as a co-occurence ta-
ble (bag-of-words) built from automatically extracted and
quantised descriptors. Given the set of training images, lo-
cal descriptors are computed around the pixels of the tis-
sue (we do not take into account points close to the border)
and a vocabulary of visual words (visual vocabulary) is ob-
tained. In order to obtain the visual vocabulary, we used two
different measures: the first one based on the appearance
(textons) and the second one based on the edge orientation
(Scale Invariant Feature Transform - SIFT).

• Textons: As in [24], a N × N square neighbourhood
is opened around each pixel. The pixels are row re-
ordered to form a vector in an N2 dimensional feature
space. The patch size tested are N = 3, 5, 7, 11, 15
and 21. The patches are spaced by M pixels on a regu-
lar grid over the area of the tissue. The patches do not
overlap when M = N , and do overlap when M = 2
(for N = 3, 5, 7) and M = 7 (for N = 11, 15 and 21).

• SIFT: SIFT descriptors [14] are computed at:
(i) points on a regular grid with spacing M pixels, here
M = 5 and 10. At each grid point SIFT descriptors
are computed over circular support patches with radii
r = 8 and 16 pixels; (ii) Affine co-variant regions are

computed for each grey scale image, constructed by
elliptical shape adaptation about an interest point [15].
Consequently each point is represented by a 128-dim
SIFT descriptors. Note, the descriptors are rotation in-
variant.

The number of descriptors is around 35000 and depends
on how big is the area of the tissue and the parameters N
and M . The visual vocabulary (V ) is obtained by vector
quantising the descriptors computed from the training im-
ages using k-means.

Once we obtain the vocabulary, we represent the mam-
mogram. Suppose we have a collection of images (mam-
mograms) D = d1,...,dN with words from a visual vocabu-
lary W = w1,...,wV . One may summarize the data in a V
× N co-occurrence table of counts Nij = n(wi, dj), where
n(wi, dj , ) denotes how often the term wi occurred in an
image dj .

2.3 Image Classification
Once we have built the bag-of-words we will use

pLSA [11] to automatically find the topic (tissue) distrib-
ution for each mammogram. These distributions will be
further used by the K-Nearest Neighbour (K-NN) or Sup-
port Vector Machines (SVM) to perform the mammogram
classification as it is shown in Figure 2c. In pLSA, there
is a latent variable (latent aspect or topic) model for co-
occurrence data which associates an unobserved class vari-
able z ε Z = z1,...,zZ with each observation (the occurrence
of a visual word in an image). A joint probability model



P (w, d) = P (d)P (w|d) over the co-occurence table (V ×
N ) is defined by the mixture:

P (w|d) =
∑

zεZ

P (w|z)P (z|d) (1)

where P (w|z) are the topic specific distribution, and
each image is modeled as a mixture of topics P (z|d).

In training stage, the topic specific distributions P (w|z)
are learnt from the set of training images. Each training im-
age is then represented by a Z-vector P (z|dtrain), where
Z is the number of topics learnt. Determining both P (w|z)
and P (z|dtrain) simply involves fitting the pLSA model to
the entire set of training images. In particular it is not neces-
sary to supply the identity of the images (i.e. which category
they are in).

Classification of an unseen test image proceeds in two
stages. First the document specific mixing coefficients
P (z|dtest) are computed, and following these are used to
classify the test images. In more detail, document specific
mixing coefficients P (z|dtest) are computed using the fold-
in heuristic described in [10]. The result is that the test im-
age is represented by a Z-vector. The test image is then
classified using a K-NN or SVM on the Z-vectors of the
training images.

3 Datasets & Methodology
In order to test our method two public and widely known

databases have been used: MIAS -Mammographic Image
Analysis Society- database [23] and DDSM -Digital Data-
base of Screening Mammographies- database [9]. Both are
explained following:

• MIAS. This database is composed by the Medio-
Lateral Oblique views of both breasts of 161 women
(322 mammographies). The MIAS database provides
annotations for each mammogram, and one of them is
referred to the breast density. The images are labelled
as: (i) fatty (106 images) if the breast is almost entirely
fatty, (ii) glandular (104 images) if the breast contains
some fibroglandular tissue, or (iii) dense (112 images)
if the breast is extremely dense. Moreover, two ex-
perts mammographic readers, form the Hospital Uni-
versitari Josep Trueta of Girona, classified the MIAS
database according to BI-RADS categories: BI-RADS
I (128 images ), BI-RADS II (80 images), BI-RADS
III (70 images), and BI-RADS IV (44 images). Note
that although a strong correlation exists between fatty
class and BI-RADS I, glandular and dense tissue are
distributed among the rest of BI-RADS categories.

• DDSM. We use a set which consists of 500 Medio-
Lateral Oblique mammograms from the right breast:
BI-RADS I (125 images ), BI-RADS II (125 images),
BI-RADS III (125 images), and BI-RADS IV (125 im-
ages). This database provides for each mammogram

additional information, including the density of the
breast determined by an expert according to BIRADS
categories.

In order to evaluate the results, we used a leave-one-out
method, in which each sample is analysed by a classifier
which is trained using all other samples. However when
working with the MIAS dataset, we leave the two images
(left and right breast) from the same woman. This has to be
done in order no to bias the results, because both breasts of
the same woman have very similar tissue features. There-
fore for the MIAS database we use 320 training images and
2 for testing 161 times, changing the test and train images
every time. For the DDSM database we use 499 training
images and 1 for testing 500 times.

The classification task is to assign each test image to one
category. In more detail, when using the K-NN, it selects
the K nearest neighbours of the new image within the train-
ing database. Then, it assigns to the new mammogram the
label of the category which is most represented within the
K nearest neighbours. An Euclidean distance function is
used. When using the SVM a gaussian kernel is used, and
the multi-class classification is done using the one-versus-
all rule: a classifier is learned to separate each class form
the rest, and a test image is assigned the label of the clas-
sifier with the highest response. Overall performance rates
are measured by the average value of the diagonal entries of
the confusion table.

4 Experimental Results

We divided this Section in three Subsections. The first
one shows the results obtained when classifying the MIAS
dataset using its own annotation: fatty, glandular and dense.
The second one shows the results when BI-RADS anno-
tation is used over both the MIAS and DDSM databases.
Last subsection shows a comparison with other works. We
investigated the classification performance when using K-
NN and SVM classifiers over P (z|d) and when changing
the value of different parameters: N (size of the patch when
using textons), r (radii of the patch when using SIFT de-
scriptors), M (space between patches), V (number of of vi-
sual words of the vocabulary obtained using k-means), K
(number of neighbours when using K-NN) and the two de-
scriptors explained in Section 2.2.

4.1 MIAS annotation

The best results here have been obtained when V =
1600, Z = 20 and K = 6. Note that K have only sense if
K-NN classifier is used. Results increase around 2% when
using overlap between patches (M < N ). Figure 3 shows
the results when classifying using the MIAS annotation and
the two tested classifiers K-NN and SVM. Results using
different descriptors (textons, dense and sparse SIFT) are
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Figure 3. Performance according to MIAS an-
notation when changing the values of para-
meters N and r and fixing V = 1600, Z = 20
and M = 2 for K-NN and SVM, and K = 6 for
K-NN. T3 = Textons with N = 3 and so on; SD
= SIFT Dense; SS = SIFT Sparse.

DDSM and MIAS (BIRADS annotation)

40
50
60
70

80
90

100

T3 T5 T7 T11 T15 T21 SD SS

descriptors

p
er

fo
rm

.

DDSM
MIAS

Figure 4. Performance according to BI-RADS
annotation over MIAS and DDSM datasets
when changing the values of parameters N ,
r, M and fixing V = 1600, Z = 20. SVM are
used. T3 = Textons when N = 3 and so on;
SD = SIFT Dense; SS = SIFT Sparse.

shown. The best rate classification is obtained when tex-
ton vocabulary is used with N = 7 and M = 2. When
using the K-NN the performance is 80.00% and increases
up to 91.39% when using SVM. SVM always outperforms
the K-NN classifier. The percentages drastically decreases
to 54.2% (for K-NN) and to 87.98% (for SVM) when using
the vocabulary obtained from the dense SIFT descriptors
with r = 8 and M = 5. This could be due to the nature
of this kind of features: they are local histograms of edge
directions computed over different parts of the local patch.
In all kind of tissues provided from the mammograms there
are a lot of edges and changes in the gradient orientation,
so in this case, SIFT features are not a good discriminant to
classify the tissue density. Better performances have been
obtained with dense descriptors and high degree of overlap.

4.2 BI-RADS annotation

Best results are obtained when V = 1600, Z = 20
and K = 7. Figure 4 shows the results when classifying

Table 1. Confusion table when using BI-RADS
annotation. Texton vocabulary and N = 7,
M = 2, V = 1600, Z = 20 are used.

- B-I B-II B-III B-IV
B-I 96.06% 3.93% 0% 0%
B-II 5.12% 93.58% 1.28% 0%
B-III 0% 2.85% 94.28% 2.85%
B-IV 0% 0% 2.27% 97.72%

the MIAS and DDSM datasets using BI-RADS annotation,
SVM and different descriptors. This annotation is the one
that specialists use when classifying the tissue density. For
MIAS dataset, best result (95.42%) is obtained when using
textons with N = 7 and with overlap (M = 2). More accu-
rate results are obtained when using dense SIFT descriptors
(88.19%) than when using the sparse ones (58.34%). Best
results with DDSM dataset is 84.75% also with N = 7 and
M = 2. Results when using K-NN are around 18% worse.

As can be seen from the confusion matrix of Table 1, the
best classified tissue belongs to BI-RADS IV and the most
difficult to classify and the ones which present most confu-
sion are BI-RADS II and III. However, following previous
works on breast tissue classification according to BI-RADS
categories [5, 17, 20], we can reduce this four-class classi-
fication problem to the following two-class problem: (BI-
RADS I and II) vs (BI-RADS III and IV). In other words,
breasts with low density against breast with high density.
With this supposition, a classification accuracy of 99.51%
and 98.24% respectively is achieved.

Figure 5 shows examples of the spatial distribution of a
number of topics (tissue densities) and their histogram of
topic distributions (P (z|d)). Patches are painted according
to the maximum posterior P (z|w, d):

P (z|w, d) =
P (w|z)P (z|d)∑

zlεZ
P (w|zl)P (zl|d)

(2)

For each visual word in the image we choose the topic
with maximum posterior P (z|w, d) and paint the patch with
its associated colour, so each colour represents a different
topic (the topic colour is chosen randomly).

The images of Figure 5 are the segmentation of the
parenchymal densities in mammograms. They illustrate that
topics are representing consistent density tissues across im-
ages, there is a similar topic distribution (similar colour) for
images from the same BI-RADS category. See for example
that images belonging to BI-RADS I are very dark, while
images from BI-RADS IV are lighter, showing that there is
a different tissue density. If we observe the histograms we
can see that those from the images of the same BI-RADS
category, have a similar behaviour and topic distribution is
consistent across the four BI-RADS categories.
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Figure 5. Segmentation results of two mammograms of each class: BI-RADS I, BI-RADS II, BI-RADS
III and BI-RADS IV with the histogram of their topic distribution (P (z|d)). The parameters used are:
visual textons to compute the vocabulary, N = 7, M = 2, V = 1600 and Z = 20.

4.3 A Brief Comparison

We can compare the obtained results when using the own
annotations of the MIAS dataset with those obtained by Blot
and Zwiggelaar [3] and Oliver et al. [17]. The first one used
a subset of the MIAS database (about 100 images per class)
and obtained a 50% of correct classified mammograms. The
second one increased this result to 73.00% and used a sub-
set of 60 images per category. Our proposal outperforms
both methods obtaining an score of 91.39% of correct clas-
sification.

When classifying the MIAS dataset using BI-RADS an-
notation we can compare the result with [19]. They obtained
a 50% of correct classification when classifying the four cat-
egories while our performance is of 95.42%. Moreover we
improve their results when classifying with only two cate-
gories (low and high density). In [19] they obtained 80.00%
and we obtain 98.88%.

Bovis and Singh [5] and Oliver et al. [18] worked with
the DDSM dataset obtaining a 71% and 50% of correct
classified images, while working with DDSM we obtain
84.75%. Note that in [18], they only used a subset of 300
images whereas in [5] and our approach used a subset of
500. Other authors classified the tissue density using other
datasets. For example Petroudi et al. [20] obtained a 76%
of correct classified tissues and also works with BI-RADS
annotation. However we can not compare this last result
directly because their approach was developed by using a
different database. Table 2 summarises these results.

4.4 Summary & Discussion

We have demonstrated the performance of our approach
to classify tissue in mammograms. We investigated perfor-
mances when working with K-NN and SVM and showed
that SVM always outperform the K-NN classifier. We also
investigated two kinds of descriptors: textons and SIFT fea-
tures and our results showed that textons work better over
this kind of images. Even though SIFT features have been
stated as very useful for object and scene classification, they
present a worst performance in our work. This is because

Table 2. Comparison summary of the pro-
posed method with other works that clas-
sify parenchymal density. Note that the ap-
proache of Petroudi et al. [20] work with a
different dataset and we could not give a di-
rect comparison. MIAS annotation is with 3
classes (fatty, glandular and dense) while BI-
RADS annotation is 4 classes (from I to IV).
#Ref Database Annot. Author (%) Our (%)
[3] MIAS MIAS 50% 91.39%
[17] MIAS MIAS 73% 91.39%
[19] MIAS BI-RADS 50% 95.42%
[18] DDSM BI-RADS 47% 84.75%
[5] DDSM BI-RADS 71% 84.75%
[20] OXFORD BI-RADS 76% –

SIFT features work with histograms of edge directions and
all the tissues in mammograms have a lot of lines. Thus,
we can not disambiguate tissue density with this feature
(edges). We also have demonstrated that the classification
process works better with a high degree of overlap between
patches.

Best results are obtained with SVM classifier when
working with textons vocabulary and V = 1600, Z = 20,
N = 7, M = 2. Specifically, when classifying with MIAS
annotation (3 categories) we obtained a 91.39% of correct
classified images. When classifying with the same database
with BI-RADS annotation (4 categories) the score obtained
is 95.39% and for DDSM dataset the accuracy is 84.75%.
We also compared our proposal with several previous ap-
proaches that worked with the same databases, and our re-
sults outperformed all of them. The main drawback of these
techniques is they rely on an initial segmentation of the
breast. We think this may be a reason of the superiority of
our results. As it is well known, the segmentation is always
a very hard task, and specially on medical image. Hence,
a wrong segmentation can imply errors on the characterisa-
tion and later classification.



5 Conclusions

We have demonstrated the successful application of
pLSA and SVM techniques to medical image domain when
classifying breast tissue in mammograms. We have repre-
sented the images according to their tissue densities and we
have shown that the distribution for the same category are
similar. Besides, we have studied the influence of various
descriptor parameters and have shown that using texture de-
scriptors with overlap works better than SIFT features when
working with mammograms.

As further work, we want to study the influence of ab-
normalities over our results. Masses, microcalcifications,
and spicular lesions present a very different texture from
the remaining tissue, which can affect negatively our re-
sults. Hence, we want to work on the previous detection
of these abnormalities to avoid its inclusion on the model.
Moreover, we are working together with hospital Dr Josep
Trueta from Girona to increase the mammogram dataset.
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