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Abstract - Within 1857-1868 Narcis Monturiol developed the first Spanish submarine. Almost one 
hundred and fifty years later, a pioneer team of students of the University of Girona decided to design 
and develop an Autonomous Underwater Vehicle (AUV) to face the Student Autonomous 
Underwater Challenge – Europe (SAUC-E). Our robot, called ICTINEUAUV, is the result of a 
multidisciplinary project involving undergraduate, graduate and PhD students of industrial 
engineering and computer science. The prototype has evolved from the initial Computer Aided 
Design (CAD) model to become an operative Autonomous Underwater Vehicle (AUV) in the short 
period of seven months. The open frame and modular design principles, together with the 
compatibility with other robots previously developed at the lab, have been the main design 
philosophy. Hence, at the robot core, two networked computers give access to a wide set of sensors 
and actuators. The Gentoo/Linux distribution, with a 2.6 pre-emptive kernel has been chosen as the 
onboard operating system. The real-time POSIX, together with the ACE/TAO CORBA-RT ORB, 
have been extensively used to develop the control architecture as a set of distributed objects with 
soft real time capabilities. Common software engineering practises have been applied to ensure 
software reliability including Unified Modelling Language (UML) design, extensive documentation 
using DoxyGen, and the use of a Code Version Server (CVS) to handle the sharing of multiple code 
versions. Finally, in order to reduce the development time, concurrent engineering techniques based 
on Hardware In the Loop (HIL) simulation have been applied to overlap the hardware and software 
design and development. 
 
 

I. INTRODUCTION 
From 1990, the Association for Unmanned 
Vehicle System International (AUVSI) promotes 
the design and development skills about 
Autonomous Underwater Vehicles by means of 
an annual competition for the USA students. 
Inspired in this competition, the Defence 
Science and Technology Lab (DSTL), the 
Heriot Watt University and the National 
Oceanographic Centre of Southampton have 
organized the first Student Autonomous 
Underwater Challenge Europe (SAUC-E). 
SAUC-E is a competition for students 
Europe-wide to foster the research and 
development in underwater technology. In this 
first edition it is expected that ten teams will 
take the challenge, four of them from abroad 
the UK (the place where the competition will 
take place). Last January, a team of students 
collaborating with the Underwater Robotics Lab 
of the University of Girona, decided to form the 
VICOROB-UdGTEAM to face the challenge. Our 
team has designed a new AUV, which aims to 
pay homage to Narcis Monturiol, the developer 
of ICTINEU, the first Spanish submarine, from 

which our robot takes its name. Given the short 
period of time to invest in the project, our team 
has decided to overlap the hardware and the 
software development (concurrent engineering) 
taking profit of a hardware in the loop (HIL) 
simulator. This paper describes the ICTINEUAUV 
as an entry to the SAUC-E competition. At the 
time of writing this paper, the robot is totally 
set-up and a first version of the software is 
running on board. Nevertheless there still a lot 
of work to do to achieve the mission tasks. For 
this reason, most of the reported results are 
based on HIL simulation. 
The paper is organized as follows. The 
mechanical, the hardware and the software 
design are explained in sections II to IV. Section 
V explains the map-based navigation system 
and section VI the image processing algorithms 
used for target detection and tracking. Section 
VII, presents the control architecture and section 
VIII presents the HIL simulator. Finally, section 
IX and X present the mission and the results 
respectively before concluding in section XI. 
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Figure. 1 ICTINEUAUV during a pool test. 

 
II. MECHANICAL DESIGN 

While survey missions covering a wide search 
area advocate for fly-type vehicles propelled by 
thrusters and steered by rudders and fins, the 
SAUC-E mission takes place in a bounded 
small area where a high manoeuvrability is 
required. In this situation a hover-type vehicle 
propelled and steered by thrusters is the most 
desirable configuration. The classical open 
frame design, commonly adopted by 
commercial ROVs, together with a modular 
design of the components, conveniently housed 
in pressure vessels, is probably the most simple 
and reliable approach for the design. Although 
hydrodynamics of open frame vehicles is known 
to be worst than the hydrodynamics of close 
hull type vehicles, it is simpler and cheaper, 
being very easy to upgrade and to maintain. 
Moreover, for slow moving robots 
hydrodynamics of the open frame design does 
not pose any problem at all. With the aim of 
designing a very manoeuvrable vehicle, easy to 
maintain and to modify during the project, 
ICTINEUAUV has adopted the open frame 
design (fig. 1). Our robot is propelled by four 
thrusters. It can move in the heave and sway 
directions depending on the composition of 
forces generated by the vertical thrusters (see 
fig. 2). On the other hand, horizontal thrusters 
are used to move forward (surge DOF) as well 
as to change the heading (yaw DOF). Hence, 
the prototype is a full actuated vehicle in four 
DOF (surge, sway, heave and yaw, see fig. 2), 
while being passively stable in Roll and Pitch 
(its meta-centre is above the centre of gravity). 
The robot chassis is made of Delrin material. 
This is an engineering resin which, due to its 
excellent mechanical properties can compete 
with metals in many applications. Its very low 
water absorption and the small effect of 
aqueous solutions on its properties make it an 
excellent candidate for our project. 
Three pressure vessels are used for holding the 
electronics. The two bigger cylinders are made 
with aluminium while the smaller one is made 
with Delrin. All of them have a cover with all the 

connectors and use a conventional O-ring 
rubber for water sealing. One of the cylinders 
houses the computers, other the thrusters’ 
controllers and the batteries, and the last one 
encapsulates the MRU. 
The thrusters are built using MAXON DC 
motors of 250 Watts of power, using planetary 
gears and contained in stainless steel housings. 
Three blade propellers, made of brass, are 
linked to the motor through a stainless steel 
shaft mechanically sealed, providing around 
14.7/14.2 Newtons of forward/backward thrust. 
Buoyancy of the robot is provided by a cover of 
technical foam, with 10.5 litres of volume, and a 
weight of 0.6 Kg. This foam can withstand 
pressures up to eleven bars, which corresponds 
to a depth of one hundred meters.  
Table 1 gives the main characteristics of 
ICTINEUAUV. 

 

Figure. 2 Composition Forces and DOF. 

 

III. HARDWARE DESIGN 
The robot hardware (Apendix I) is composed by 
a Computers module and a Power module. 
 
A. Computers Module 
Two PCs, one for control and one for image and 
sonar processing, connected through a 100 
MBs switch form the core of the robot hardware.  
The control PC is an AMD GEODE-300MHz, 
powered with 50 W power supply module. The 
PC104 stack also incorporates an A/D and 
digital I/O card with 8 analogue input channels, 
4 analogue output channels and 24 digital I/O.  
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Table 1. ICTINEUAUV characteristics. 

 
The 4 analogue outputs are used to send the 
velocity set-points to the thrusters’ drivers while 
the 4 analogue inputs feedback the velocity of 
the propellers. Two more analogue inputs are 
used to monitor the temperature and the 
pressure (for safety purposes) within the 
pressure vessel. With respect to the digital 
signals, 4 outputs are used to enable/disable 
the thrusters’ drivers, 1 input is used to read the 
mission switch which signals the start of the 
mission, 4 more inputs are connected to the 
water leakage detectors and 1 digital output is 
used to signal when to throw the marker. Two 
serial lines provide access to the Argonaut 
Doppler Velocity Log (DVL) and the MTi Motion 
Reference Unit (MRU) sensors. 
The mini-ITX computer is a Via C3 1 GHz 
Pentium clone connected to the imaging sonar 
through a high speed serial line. A cheap 
PCTV110 from Pinnacle is used for image 
processing. Since our design uses two cameras 
(one looking forward and one looking down), 
both input channels, the composite video and 
the S-video, are used. 
 

 
Figure. 3. Computer module. 

B. Power module. 
The power module contains the four power 
drivers for the thrusters as well as a pack of 2 
cheap and sealed lead-acid batteries. A DC-DC 
converter is included to provide a stabilized 
voltage to the rest of components. There is also 
a simple relay circuit which commutes between 
the internal and the external power. External 
power, supplied through an optional umbilical, 
is very useful for running long term experiments 
before the competition. It is worth noting that 
the batteries have been dimensioned for the 
short time experiments to be done during the 
competition days. Moreover, when the robot 
works with external power it can recharge the 
internal batteries. 
 

 

Figure 4. Detail of the power drivers included in the power 
module. 
 
C. Umbilical Cable 
As mentioned above, the robot also 
incorporates an umbilical cable providing power 
and Ethernet signals with the aim of aiding the 
system development in the lab.  
 

IV. SOFTWARE DESIGN 
The software architecture (Apendix II) has the 
task of guaranteeing the AUV functionality. It is 
built with a set of objects distributed among the 
two onboard PCs and the external PC. The last 
one is only used during the experiments in the 
lab, being connected to the robot through the 
umbilical cable for monitoring purposes. The 
architecture [Hernàndez 2005] is composed by 
a base system and a set of objects customized 
for the desired robot (see fig. 5). There are 
classes providing soft real-time capabilities, this 
is guaranteeing the period of execution of the 
periodic tasks like the controllers or the sensors. 
Whenever a thread is not able to guarantee the 
assigned period (overrun), a signal is raised 
allowing accounting for the total number of 
overruns. Consulting this number it is possible 
to know if the time constrains of the different 
tasks are satisfied or not, allowing the 
programmer to introduce the needed 
modifications to solve the problem. Another 
important part of the base systems are the 
loggers. The logger system is used to log data 
from sensors, actuators or any other object 
component. Loggers do not execute in real time. 
They are background processes which receive 

ICTINEUAUV 
Dimension
s 

74 x 47 x 53 cm 

Dry Weight ≅ 48 Kg 

Umbilical Ethernet, power supply 

DOFs 4 (Surge, Sway, Heave, Yaw) 

Hardware PC-104 / Via C3 @ 1Gz 

Software GNU/Linux + RTAI; CORBA-RT 
ACE-TAO 

Sensors Imaging Sonar; DVL; MRU MTi 
from XSens Technologies; 2 
underwater cameras, depth 
sensor, set of hydrophones, echo 
sounder, water detectors and 
temperature sensors 
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the data from real time objects. Their role 
consists on packing the data and saving them 
into files. It is worth noting that although loggers 
do not run in real time, the data has a 
time-stamp corresponding to the gather time. 
Moreover all the computers in the network are 
synchronized by means of the NTP (Network 
Time Protocol) and hence all the data coming 
from different sensors can be time related. 
The software architecture is divided in three 
modules (fig. 5): (1) Robot interface module, (2) 
Perception module and (3) Control module. In 
the following subsections these modules are 
briefly introduced. 
 
A. Robot interface module 
This is the unique module that contains 
software objects that dialog with the hardware. 
There are basically to types of objects: (1) 
sensor objects responsible for reading data 
from sensors and (2) actuator objects 
responsible for sending commands to the 
actuators.  
Sensor objects for ICTINEUAUV include the DVL, 
the imaging sonar, the MRU, both cameras, the 
depth sensor, and the echo sounder. There are 
also objects for the safety sensors like the water 
leakage detectors and internal temperature and 
pressure sensors that allow for the monitoring 
of the conditions within the pressure vessels. 
Actuator objects for the ICTINEUAUV include the 
thrusters, and the marker thrower. 
 
B. Perception module. 
This module contains two basic components: 
(1) the Navigator and (2) the Obstacle Detector. 
The Navigator object has the goal of estimating 
the position of the robot. To accomplish this 
task, there exists an interface called 
NavigationSensor from which all the localization 
sensors (DVL, MRU, depth sensor) inherit. This 
interface provides to all these sensors a set of 
methods to return the position, velocity and 
acceleration in the six DOF together with an 

estimation of the quality of these measurements. 
The Navigator can be dynamically connected to 
any NavigationSensor and, using the quality 
factor fuses the data to obtain a more accurate 
position, velocity and acceleration. The Control 
module can use the navigation data provided by 
the Navigator keeping the behaviours 
independent of the physical sensors being used 
for the localization. 
The Obstacle detector uses the same 
philosophy to provide the obstacles position in 
the world fixed frame. The Obstacle detector is 
also used to detect the distance between the 
vehicle and the bottom of the pool. Detecting 
horizontal obstacles is possible using the 
imaging sonar, and the pool bottom obstacle 
can be detected with the DVL sensor.  
 
C. Control module. 
The control module receives sensor inputs from 
the perception module and sends command 
outputs to the Actuators residing in the Robot 
Interface Module.  
Since task and behaviours are words that are 
interpreted in different ways for different authors 
in the literature, hereafter we describe how they 
are interpreted within our project. A behaviour is 
function that maps the sensor input space 
(stimuli) into a velocity setpoint (behaviour 
response) for the robot low level controller. The 
behaviour response is chosen in a way that 
drives the robot towards its corresponding goal. 
In this way, the goal corresponding to the 
keepDepth behaviour is considered to be 
achieved when the robot is within an interval 
around the desired depth. A task is a set of 
behaviours that are enabled together to achieve 
a more complex goal. For instead, KeepDetph 
and Motion2D can work together to allow for 
planar navigation. 
The control module follows the principles of the 
hybrid control architecture organized in three 
layers: (1) Mission Level, (2) Task Level and (3) 
Vehicle Level. The vehicle level is composed by 

Thruster5

Obstacle 
detector

Water
sensors DVL

Imaging
sonar Thruster1 ...
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Figure. 5 Software Architecture 
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a MIMO PID velocity controller for each DOF. 
The Task level is a conventional behavioural 
layer including several behaviours running in 
parallel and a coordinator module which fuses 
all the behaviour responses into a unique 
coordinated response to be used as velocity set 
point for the low level controller. Finally, the 
upper layer (mission level) is responsible for the 
sequencing of the mission tasks, selecting for 
each mission phase the set of behaviours that 
must be enabled as well as their parameters. 
 

V. NAVIGATION 
The localization is expected to be carried out by 
merging the information of several sensors with 
an a priori map of the environment. First, an 
imaging sonar is used to obtain a complete 
acoustic image where the walls of the water 
tank are detected and hence, it is possible to 
solve for the robot initial position. Then, data 
from the imaging sonar and the map, together 
with measurements from the DVL, are merged 
within an EKF to obtain a position estimate. In 
the following subsections the general structure 
of the localization algorithm are described. 
 
A. Initialization 
In order to perform localization using an a priori 
map it is necessary to determine the initial 
position of the vehicle within the mapped 
environment. To do this, a complete acoustic 
image of the surroundings is obtained and 
compared with the map to estimate the vehicle 
position. Mechanically scanning sonars perform 
scans in a 2D plane by rotating a sonar beam 
through a series of small angle steps. For each 
emitted beam, distance vs. echo-amplitude data 
is returned forming an acoustic image of the 
surroundings (fig 6). The scanning rate of these 
devices is really slow in comparison with 
multibeam sonars. For this reason, the vehicle 
movement along a complete scan usually 
induces important distortions in the acoustic 
image (fig 6 b). Extracting features from this 
kind of images produces inaccuracies and yield 
to poor results. To cope with the slow scanning 
rate of the low cost imaging sonars, we propose 
a 2 step line extraction procedure. First, the 
trajectory of the vehicle is estimated at the 
same time that the acoustic beams are grabbed. 
Then, when the position of each beam is known, 
the distortion induced by motion is 
compensated (fig 6 c). Since objects present 
(walls) in the environment appear as high 
echo-amplitude returns, a thresholding is 
applied to discard low intensity returns which 
contain no significant information. Then, with the 
remaining measurements, the Hough transform 
[Duda and Hart 1972] is used to extract a set of 
line features . As the 
lines that compose the a priori map 

 are perfectly known, an 
analytic association process can be carried out 

so each observed feature  can be related to 
its corresponding feature  in the map. 
Finally, an Information Filter (IF) is used to 
merge this information into an estimate of the 
initial vehicle position and its uncertainty with 
respect to the a priori map. 
 

 
Figure 6. (a) Schematic representation of the environment 
where the sonar data were gathered (see fig. 13). The 
highlighted zones represent the expected sonar returns. 
Images generated from acoustic data, (b) distorted and (c) 
undistorted image through DVL integration. 
 
B. Vehicle pose estimation using a DVL 
The SonTek Argonaut DVL unit which includes 
a compass, 2 inclinometers and a depth sensor 
is used to estimate the robot pose (navigation 
problem). Imaging sonar beams are read at 30 
Hz while DVL readings arrive asynchronously at 
a frequency within 1.5 Hz interval. An EKF is 
used to estimate the 6DOF robot pose 
whenever a sonar beam is read. DVL readings 
are used asynchronously to update the filter. To 
reduce noise inherent to the DVL 
measurements, a simple 6DOF constant 
velocity kinematics model is used instead of a 
more conventional dead reckoning method.  
The information of the system at step k is stored 
in the state vector  with estimated mean  
and covariance : 
 

 (1) 
 
with: 

 (2) 
 
where, as defined in [Fossen 2002],  is the 
position and attitude vector referenced to a 
base frame B, and  is the linear and angular 
velocity vector referenced to the robot 
coordinate frame R. If the coordinate frame B is 
oriented to the north, the compass 
measurements can be straight forward 
integrated.  
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The vehicle movement prediction is performed 
using a kinematic model such as:  
 

 
(3)

 

(4)

 
 
Although in this model the velocity is considered 
to be constant, in order to allow for slight 
movements, the velocity is modelled as the 
integral of a stationary white noise  with a 
diagonal covariance matrix  in the order of 
magnitude of the maximum acceleration 
increment that the robot can experiment over a 
sample period. 
 

   (5) 

   (6) 
 
Hence, the acceleration noise is additive in the 
velocity (eq. 5) and propagates nonlinearly to 
the position. Finally, the model prediction and 
update is carried out as detailed below: 
 
1) Prediction: The estimate of the state is 
obtained as: 

   (7) 
 
and its covariance matrix as: 
 

   (8) 
 
where  and  are the Jacobian matrices 
of partial derivatives of the non-linear model 
function f with respect to the state  and the 
noise , respectively. 
 
2) Update using DVL measurements: The 
model prediction is updated by the standard 
Kalman filter equations each time a new DVL 
measurement arrives: 
 

 (9) 
 
Where subindex b stands for bottom tracking 
velocity, w for through water velocity, i for 
inclinometers and c represents the compass. 
The measurement model is: 
 

   (10) 

  (11) 

 
where  (measurement noise) is a 
zero-mean white noise: 
 

   (12) 
 
Since the DVL sensor provides a status 
measurement for the bottom tracking and water 
velocity, depending on the quality of the 
measurements, different versions of the H 
matrix are used to fuse one (removing row 2), 
the other (removing row 1), or both readings 
(using the full matrix). 

 
C. Correction with the a priori map and an 
imaging sonar. 
Herein, the information obtained from the 
imaging sonar together with the a priori map 

 is used to perform a correction of the 
vehicle state estimate. Whenever a new single 
beam (not a complete acoustic image) is 
obtained from the imaging sonar, the highest 
return is chosen. This measurement is the most 
likely to pertain to any object present in the 
scene and as a consequence, to a feature in the 
a priori map. We will use this information to 
perform an update of the EKF presented above 
and correct the state estimate. The high 
intensity return  is a point represented in 
polar coordinates with respect to the vehicle 
frame R: 
 

  (13) 
 
Where  would be the value obtained if 
noise  was not present. The noise  is a 
zero-mean white Gaussian noise: 
 

   (14) 
 
We need to determine the correspondence 
between the measurement and the objects in 
the map. First, the cartesian coordinates of the 
measurement  need to be obtained: 
 

   (15) 

 where   (16) 

 
 represents the uncertainty of the point in 

cartesian coordinates and  is the Jacobian 
matrix of the f function with respect to the 
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measurement . The next step is to define 
each line  from the map  
by its orientation and its distance to the origin 
with respect to the vehicle coordinate frame R: 
 

(17) 

   (18) 

 
 is the Jacobian of the  function. As the 

map is assumed perfectly known, the 
uncertainty only depends on the vehicle state 

. With both the sonar return and the map in 
the same reference frame, an implicit 
measurement equation stating that the point 
belongs to the line can be defined: 
 

 (19) 

 (20) 

 
Where  and  are the Jacobians of the 
implicit measurement function  with respect 
to the sonar return and a line of the map. To 
produce the update, an association hypothesis 
between the measurement and one of the lines 
from the map is needed. For this purpose, an 
individual compatibility test is performed using 
the presented measurement equation: 
 

 (21) 
 
Distance  is the Mahalanobis distance. The 
correspondence is accepted if the distance is 
less than , with α defined as the confidence 
level and . The Nearest Neighbour 
(NN) selection criterion determines that among 
the features that satisfy eq. 21, the one with the 
smallest Mahalanobis distance is chosen and 
the association hypothesis is accepted. 
Having the data association solved, an update 
of the vehicle state estimate can be performed 
using the EKF equations for an implicit 
measurement function: 
 

 (22) 

   (23) 

   (24) 
 
For experimental results of the presented 
localization algorithm please refer to section X B.  
 

VI. TARGET TRACKING 
Two of the tasks to be faced during the mission 
involve the use of image processing algorithms. 

Both are particular cases of the target tracking 
problem: (1) navigate towards a midwater buoy 
and impact it and (2) navigate towards a cross 
laying on the pool bottom and throw a marker. 
Both algorithms are almost the same. In case 
the object to track is a colour object, the image 
is converted into the Hue-Saturation-Intensity 
(HSI) space. Then, robust regions of hue and 
saturation are selected as the segmentation 
criteria. Intensity is not used for the 
segmentation since it is known to be very 
sensible to changes in the illumination. In case 
the object is black, then a simple binarization is 
performed. After the segmentation process, we 
get a binarized image with two possible values 
for the pixel (1-object and 0-background). Then, 
the algorithm defines two exploration 
increments: 

• (Δx1, Δy1) used to explore a small 
window around the object. 

• (Δx2, Δy2) used to explore the rest of the 
image. 

which allow to easily change the resolution of 
the image processing algorithm.  Initially, we 
start the search from the left upper corner of the 
image, detecting clusters of candidate pixels. Of 
course, due to the noise, more than one cluster 
can be detected. Hence a constrain in the area 
(number of pixels of the object) is imposed 
hopefully filtering the noisy clusters. Once a 
unique cluster is available, its centre of mass 
and its area is returned as result. In order to 
foster the velocity of the algorithm, a window is 
defined around the object. This window is used 
in the next iteration to search for the object, 
effectively reducing the search area. In case the 
object is not found within the window during n 
consecutive frames, the algorithm re-starts 
looking for the object in the whole image. 

 
VII. CONTROL ARCHITECTURE 

The function of a control architecture is to move 
the robot autonomously to fulfil a set of goals in 
a particular order and with some constraints. 
The result of the whole process at every 
moment is the movement of the robot in each 
degree of freedom. Figure 7 shows the schema 
of the three levels that form the proposed 
control architecture.  
 
A. Vehicle level: Velocity controller 
Since the final task is the movement of the robot, 
the control architecture has, at its lower level, a 
classical velocity controller. This controller 
receives the velocity set points from the task 
level controller and the measured or estimated 
velocities from the navigator. The object in 
charge of doing this task is the PID velocity 
controller. This object reads the vehicle velocity 
from the Navigator object (see section 4.B) and 
receives the velocities set points from the 
Coordinator Object (see section 4.C).  
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Figure.7 ICTINEUAUV control architecture 

 
B. Task level: Behaviours + Coordinator  
A common methodology to implement control 
architectures is to build a library containing all 
basic functions that the robot can make. By 
joining these basic functions it is possible to 
carry out complex tasks. These basic functions 
have been named: vehicle primitives, tasks, 
command primitives … One of the most popular 
names to express this concept is behaviour, 
which was introduced in 1986 by Brooks 
[Brooks 1986] and has been extensively used. 
The task level controller presented in this paper 
is based on very simple behaviours. Since more 
than one behaviour can be activated, a 
coordinator is always needed in all no 
pre-emptive architectures. The coordinator is 
the object in charge of combining the outputs of 
all active behaviours to generate a single output.  
Each behaviour is an autonomous process with 
a particular goal. The input of a behaviour is 
taken from the perception module of the 
software architecture. The output contains:   

• The velocity for every DoF 
normalized between -1 and 1. 

• The Activation level. A value 
normalized between 0 and 1.  

• A priority that together with the 
activation level are used by the 
coordinator to combine the outputs of 
all behaviours.  

• A blocking value expressing if the 
behaviour is blocking the execution 
thread of the mission controller.  

To initialize a behaviour, besides particular 
values for the parameters, it is needed to setup 
the following values:  

• The enable: A boolean variable that 
indicates if the behaviour is activated 
or not and, therefore, if its output will 

be considered by the Coordinator.  
• The priority that will have the output 

of this behaviour.  
• The Time Out which indicates when 

the behaviour will block the execution 
thread. If TimeOut<0, the behaviour 
blocks the execution thread until its 
goal is fulfilled. If TimeOut=0, the 
behaviour doesn't block the execution 
thread. If TimeOut>0, the behaviour 
blocks the execution thread until 
TimeOut seconds or until its goal is 
fulfilled.  

The object Coordinator is in charge of taking all 
the enabled behaviour outputs to combine 
them into a single one, which will be sent to the 
velocity controller. To combine all the outputs, 
the coordinator follows the schema showed in 
Figure 8. Using this coordinator, if the 
activation value of all active behaviours is 1 
(max. value), the coordinator output 
corresponds to the behaviour output with more 
priority (pre-emptive architecture). Otherwise, 
if the activation values are less than 1, the final 
output will be the combination of all the active 
behaviours (collaborative architecture). Since 
each DoF is treated separately it is possible, 
by using activations levels with value 0, to 
program behaviours that do not affect all DoFs. 
The coordinator output, after combining all 
active behaviours, is a vector as large as the 
number of DoFs of the robot, where each value 
corresponds to a normalized velocity. 
 

 
Figure. 8. Coordination algorithm. 

 
B.Mission level: Mission Control System 
The task controller decides how to guide the 
robot movements in each situation. However, 
to carry out medium/high complex missions it 
is very difficult to design a unique set of 
behaviours that can accomplish it. In these 
missions, it is necessary to have an 
autonomous system able to enable/disable 
and reconfigure behaviours. Our mission 
controller uses a Petri Net to accomplish the 
mission plan. A Petri Net has place nodes, 
transition nodes, and directed arcs that 
connect places with transitions. It is 
represented as a graph defined by a quadruple, 
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see equation 25: 
 

PN=(P,T,I,O)   (25) 
 
where P is a finite set of places, T is a finite set 
of transitions, I(p,t) is a mapping corresponding 
to the set of directed arcs from places to 
transitions, and O(t,p) is a mapping 
corresponding to the set of directed arcs from 
transitions to places.   We use a kind of Petri 
Net called marked graphs which is a pure 
ordinary Petri net system where every place 
has only one input transition and one output 
transition, see equation 26: 
 

∀p∈P: |•p|=|p•|=1   (26) 
 

where |•p| is the number of inputs of place p 
and |p•|  is the number of outputs of place p.  
In our Petri net, every place corresponds to one 
behaviour with a particular configuration. When 
a place has a token, this behaviour is enabled. 
When all places that go towards a transition are 
enabled, and their behaviours do not block the 
execution thread, the transition is ready to be 
fired. When a transition is fired, a token is 
removed from each of the input places of the 
transition and a token is generated in each 
output places of the same transition, see 
equation 27:  
 

∀p∈P: M′(p)=M(p)+O(t,p)−I(p,t)    (27) 
 
where M is a n-dimensional integer vector 
which assigns a non-negative integer number of 
tokens to each place of the net.  A Petri net 
can be represented as a matrix, see equation 4, 
called the incidence matrix (C). In addition, if 
active transitions and the actual state are 
known, it is possible to calculate the new state, 
see equation 28: 
 

Cij=O(tj,pi)-I(pi,tj)  (28) 
 
where  1 < i < (size of P)  and  1 < j < (size of 
T).   
 

Mi+1=Mi+CT   (29) 
 
Therefore, the control mission algorithm starts 
on the initial state Mi, checks fired transitions, 
applies equation 29, and repeat this process 
until the final state Mf is reached. 

 
VIII. NEPTUNE 

NEPTUNE [Palomeras 2002, Hernàndez 2003, 
Ridao 2004] is a real-time graphical simulator 
with capabilities for hardware in the loop. It 
makes use of a virtual world based on two 
components: (1) a VRML file containing the 
topography of the scene and (2) a set of objects 
also defined in VRML. Internally, the 

topography of the scene is converted into a 
bathymetry grid and the objects are considered 
spheres of a particular radius of action. This 
model, together with a conic beam sonar model 
allows a very simple and fast geometric method 
for obstacle and/or collision detection.  
Within NEPTUNE a simulated robot is defined 
through three basic files. The first is a VRML file 
containing the robot geometry. The second is a 
file which contains the robot and thruster 
hydrodynamics coefficients. For simulation, the 
hydrodynamic model described in [Fossen 
2002] is used. Thrusters are simulated using 
the affine model [Fossen 2002]. Finally, the 
third file contains the file names of the previous 
two files plus a definition of the sensors 
included in the robot (sonar beams, video 
cameras, depth sensors, compass, DVL, DGPS, 
etc...). NEPTUNE is fully configurable and 
hence it is very easy to adapt to support the 
SAUC-E mission development. In order to allow 
a real time performance, the application is built 
as a distributed application including several 
processes: (1) the NEPTUNE main program 
(fig.9), (2) a robot dynamics process for the 
simulated robot, (3) a name server. All the 
components are implemented as CORBA-RT 
objects allowing for an easy interoperability 
among the involved software objects. The robot 
software architecture described in section 4.A 
can be easily interface with NEPTUNE by 
means of a virtual robot interface module. 

 

Figure 9. View of the Neptune HIL simulator. 

 
IX. THE MISSION 

As explained above, one of the big constrains of 
our team is the turn around time of the 
design-development cycle taking into account 
that we only have 7 months for the project. This 
constrain lead us to the use of concurrent 
engineering techniques in order to overlap the 
hardware and the software development. For 
this reason, from the very beginning of project, 
a simplified version of the robot software was 
developed and tested using hardware in the 
loop simulation.  
The real mission as well as the simulated one 
occurs in a swimming pool environment with a 
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size of 20 meters by 10 meters, and a depth of 
6 meters. Since the goal of this simulation is to 
verify the control architecture and the robot 
software, the SAUC-E mission and the required 
behaviours have been simplified. The simulated 
mission consists in (see Figure 10): 

1. Moving from a launch/release point and 
submerging.  

2. Passing through a 3x4 meters validation 
gate. 

3. Locating a target situated on the bottom 
of the pool.  

4. Locating a mid-water target and contact 
it with the AUV. 

5. Surfacing at designated recovery zone. 
In the following sections it is assumed that we 
know the validation gate and recovery zone 
positions and the depth of the two targets (not 
the position).  

 

  
Figure 10.Sauce mission setup 

 
A. Behaviour library 
To accomplish the mission, four behaviours 
have been implemented: 
1. KeepDepth(depth, priority, timeOut): 

Keep a constant depth.  
2. MoveTo2D(X, Y, priority, timeOut): Move 

the vehicle to a specific 2D point.  
3. LawnmowerMove(Xi, Yi, Xf, Yf, angle, 

priority, timeOut): Move the vehicle with a 
zigzagging movement. 

4. FindTarget(Xt, Yt, contactDistance, 
priority, timeOut): Move the vehicle to the 
position of the target. It only becomes active 
when the vehicle is at a very short distance 
from the target. 

 
B. Petri Net 
To implement the mission controller it is 
required to define several aspects: 

• The Petri Net with the sequence of 
behaviours. 

• The parameters of every 
place/behaviour. 

• The initial and final states in the Petri 
Net. 

The Petri net can be represented as a graphic 
or as a matrix. Figure 11 shows both 
representations for the simplified SAUC-E 
mission. 
 

 

 T1 T2 T3 T4 T5 T6 T7
P1 -1 0 0 0 0 0 0 
P2 1 -1 0 0 0 0 0 
P3 1 -1 0 0 0 0 0 
P4 0 1 -1 0 0 0 0 
P5 0 0 1 -1 0 0 0 
P6 0 0 1 -1 0 0 0 
P7 0 0 1 -1 0 0 0 
P8 0 0 0 1 -1 0 0 
P9 0 0 0 0 1 0 -1 
P10 0 0 0 0 1 -1 0 

Figure 11. Petri Net used in the SAUC-E mission 
 
As commented before, every place represents 
a behaviour. From the Petri Net graph we can 
observe that the number of active behaviours 
will go from one to three. When there is only 
one behaviour, this behaviour is the keepDepth 
and it will try to reach a specific depth to find a 
target, pass throw the validation gate or reach 
the surface. When there are two active 
behaviours, these behaviours are the 
KeepDepth and the MoveTo2D. They will try to 
reach a 2D point keeping a desired depth. The 
KeepDepth behaviour only generates one 
output on the heave DoF and the MoveTo2D 
behaviour generates outputs on surge DoF and 
Yaw DoF. Therefore, the coordinator will take 
the two outputs and combine them without 
modifying the velocity set points. Finally, when 
there are three active behaviours, these 
behaviours are the KeepDepth, the 
LawnmowerMove and the FindTarget. They 
cause the robot to move at a specific depth 
around the swimming pool looking for a target. 
Both the LawnmowerMove and the FindTarget 
generate outputs on surge and Yaw DoFs. The 
FindTarget priority is highest than the 
LawnmowerMove priority, but its activation level 
is greater than zero when the robot is near the 
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target. For this reason, the coordinator will take 
the FindTarget + KeepDepth outputs when the 
vehicle is near the desired target and the 
LawnmowerMove + KeepDepth outputs when 
the vehicle is far.  
Behaviour parameters will change depending 
on each task of the mission. Table 2 shows the 
correspondence between places and 
behaviours, and the values of these 
parameters. 
 

Place Behaviour + Parameters 
P1 keepDepth(2.2, 2, 30) 
P2 keepDepth(2.2, 2, 0) 
P3 moveTo2D(5, 3, 2, 30) 
P4 keepDepth(4, 2, 30) 
P5 keepDepth(4, 2, 0) 
P6 findTarget(8, 1.5, 1.5, 1, 300) 
P7 LanmowerMove(4.5, 1, 19, 9, 1.46, 

2, 0) 
P8 keepDepth(1.5, 2, 30) 
P9 keepDepth(1.5, 2, 0) 
P10 findTarget(12, 8, 1.5, 1, 300) 
P11 LanmowerMove(4.5, 1, 19, 9, 1.46, 

2, 0) 
P12 moveTo2D(16.5, 6.5, 2, 200) 
P13 keepDepth(0, 2, 30) 

Table 2. Behaviours and parameters description 
 
Finally, initial and final state vectors show the 
enabled and the disabled places at the 
beginning and at the end of the execution 
respectively. These vectors contain 13 Boolean 
values, one for each place: 
 

Mi = [1,0,0,0,0,0,0,0,0,0,0,0,0] 
Mf = [0,0,0,0,0,0,0,0,0,0,0,0,1] 

 
X. RESULTS 

In this section, preliminary results about HIL 
simulation of the SAUC-E mission and an offline 
execution of the localization algorithm are 
presented. 
 
A. HIL Simulation 
In order to simulate the SAUC-E mission, the 
four behaviours and the mission controller have 
been implemented and integrated in the software 
architecture. In this preliminary work, the mission 
has been simulated using Neptune instead of the 
real robot. Since the hydrodynamic model of the 
ICTINEUAUV is not known, for the simulation, the 
hydrodynamic parameters of GARBIAUV were 
used [Ridao 2001]. A virtual world corresponding 
to the SAUCE swimming pool was setup and 
loaded within NEPTUNE. The simulation was 
executed and it took 5 minutes and 45 seconds 
to accomplish the mission. Figure 12 shows the 
obtained trajectory. The simulation showed a 
good performance and robustness of the mission 
and task controllers, as well as their simplicity. 

 

Figure 12. Trajectory obtained during the HIL simulation of 
the SAUC-E mission. 
 

 
Figure 13. Water tank of the Underwater Robotics Research 
Center at the University of Girona 
 
B. Results of the Map-based Navigation 
We carried out an experiment in the water tank 
of the Underwater Robotics Research Center at 
the University of Girona (See fig. 13). 
The vehicle was equipped with a Miniking 
Imaging sonar from Tritech, a sensor designed 
for use in underwater applications like obstacle 
avoidance and target tracking. It can perform 
scans in a 2D plane by rotating a fan-shaped 
sonar beam of 3º of horizontal beamwidth and 
40º of vertical beamwidth. During the 
experiment, the sensor was set up to work 
within a range of 10 meters, capturing a sonar 
return every 0.1 meters (100 measurements per 
beam). Its scanning rate was set to the 
maximum (around 6 seconds per a 360º scan). 
In order to estimate the vehicle movement an 
Argonaut DVL from Sontek, which measures 
ocean currents, vehicle speed over ground and 
altimetry, was used. Moreover, the unit is also 
equipped with a compass/tilt sensor which 
permits to recollect attitude data, a pressure 
sensor to estimate the depth and a temperature 
sensor for sound speed calculations. 
The robot carried out a guided trajectory of 
around 42 meters, consisting on several loops; 
161 complete sonar scans were taken. 
The results are shown in fig. 14. For 
comparison purposes the trajectory estimated 
using dead reckoning of the DVL 
measurements (blue dash-dotted line) is 
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represented together with the one estimated 
using the imaging sonar and the localization 
algorithm (black line). It is also represented the 
map used to perform the localization. As it can 
be seen, the dead reckoning trajectory has an 
important drift, which is controlled using the 
proposed localization algorithm. 
 

 
Figure 14. Navigation results using the proposed strategy. 
 

XI. CONCLUSIONS 
This paper has presented the current state of 
development of the ICTINEUAUV robot, designed 
by the VICOROB-UdGTEAM to face the SAUC-E 
challenge. The main principles of design (open 
frame architecture, modularity and backward 
compatibility) have been reported. The robot 
software is built as a distributed object oriented 
application based on CORBA-RT. The control 
system is organized into three levels following 
the principles of the hybrid control architectures. 
It includes a low level velocity controller (vehicle 
level), a behavioural layer (task  level) and a 
Petri Net based mission controller (mission 
level). The paper has also described a 
localization method based on the use of a DVL, 
an imaging sonar to sense the walls of the pool 
and an a-priori map, which allows to accurately 
estimate the robot position with a bounded drift. 
With the help of the Neptune HIL simulator the 
principles of the proposed control approach 
have been tested with a simplified version of the 
SAUC-E mission. 
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APPENDIX I SCHEMATIC OF THE 
HARDWARE DESIGN 
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APPENDIX I UML DESIGN 

 


