
1

ICTINEUAUV Takes the Challenge

D. Ribas, N. Palomeras., X. Ribas, G. García de Marina, E. Hernàndez, F.Chung, N. Hurtós,

J. Massich, A. Almohaya and J. Vila.

Institute of Informatics and Applications. University of Girona,
Campus de Montilivi

Girona, CP:17071, Spain
dribas@eia.udg.es

Abstract - Within 1857-1868 Narcis Monturiol developed the first Spanish submarine. Almost one
hundred and fifty years later, a pioneer team of students of the University of Girona decided to design
and develop an Autonomous Underwater Vehicle (AUV) to face the Student Autonomous
Underwater Challenge – Europe (SAUC-E). Our robot, called ICTINEUAUV, is the result of a
multidisciplinary project involving undergraduate, graduate and PhD students of industrial
engineering and computer science. The prototype has evolved from the initial Computer Aided
Design (CAD) model to become an operative Autonomous Underwater Vehicle (AUV) in the short
period of seven months. The open frame and modular design principles, together with the
compatibility with other robots previously developed at the lab, have been the main design
philosophy. Hence, at the robot core, two networked computers give access to a wide set of sensors
and actuators. The Gentoo/Linux distribution, with a 2.6 pre-emptive kernel has been chosen as the
onboard operating system. The real-time POSIX, together with the ACE/TAO CORBA-RT ORB,
have been extensively used to develop the control architecture as a set of distributed objects with
soft real time capabilities. Common software engineering practises have been applied to ensure
software reliability including Unified Modelling Language (UML) design, extensive documentation
using DoxyGen, and the use of a Code Version Server (CVS) to handle the sharing of multiple code
versions. Finally, in order to reduce the development time, concurrent engineering techniques based
on Hardware In the Loop (HIL) simulation have been applied to overlap the hardware and software
design and development.

I. INTRODUCTION
From 1990, the Association for Unmanned
Vehicle System International (AUVSI) promotes
the design and development skills about
Autonomous Underwater Vehicles by means of
an annual competition for the USA students.
Inspired in this competition, the Defence
Science and Technology Lab (DSTL), the
Heriot Watt University and the National
Oceanographic Centre of Southampton have
organized the first Student Autonomous
Underwater Challenge Europe (SAUC-E).
SAUC-E is a competition for students
Europe-wide to foster the research and
development in underwater technology. In this
first edition it is expected that ten teams will
take the challenge, four of them from abroad
the UK (the place where the competition will
take place). Last January, a team of students
collaborating with the Underwater Robotics Lab
of the University of Girona, decided to form the
VICOROB-UdGTEAM to face the challenge. Our
team has designed a new AUV, which aims to
pay homage to Narcis Monturiol, the developer
of ICTINEU, the first Spanish submarine, from

which our robot takes its name. Given the short
period of time to invest in the project, our team
has decided to overlap the hardware and the
software development (concurrent engineering)
taking profit of a hardware in the loop (HIL)
simulator. This paper describes the ICTINEUAUV
as an entry to the SAUC-E competition. At the
time of writing this paper, the robot is totally
set-up and a first version of the software is
running on board. Nevertheless there still a lot
of work to do to achieve the mission tasks. For
this reason, most of the reported results are
based on HIL simulation.
The paper is organized as follows. The
mechanical, the hardware and the software
design are explained in sections II to IV. Section
V explains the map-based navigation system
and section VI the image processing algorithms
used for target detection and tracking. Section
VII, presents the control architecture and section
VIII presents the HIL simulator. Finally, section
IX and X present the mission and the results
respectively before concluding in section XI.

2

Figure. 1 ICTINEUAUV during a pool test.

II. MECHANICAL DESIGN

While survey missions covering a wide search
area advocate for fly-type vehicles propelled by
thrusters and steered by rudders and fins, the
SAUC-E mission takes place in a bounded
small area where a high manoeuvrability is
required. In this situation a hover-type vehicle
propelled and steered by thrusters is the most
desirable configuration. The classical open
frame design, commonly adopted by
commercial ROVs, together with a modular
design of the components, conveniently housed
in pressure vessels, is probably the most simple
and reliable approach for the design. Although
hydrodynamics of open frame vehicles is known
to be worst than the hydrodynamics of close
hull type vehicles, it is simpler and cheaper,
being very easy to upgrade and to maintain.
Moreover, for slow moving robots
hydrodynamics of the open frame design does
not pose any problem at all. With the aim of
designing a very manoeuvrable vehicle, easy to
maintain and to modify during the project,
ICTINEUAUV has adopted the open frame
design (fig. 1). Our robot is propelled by four
thrusters. It can move in the heave and sway
directions depending on the composition of
forces generated by the vertical thrusters (see
fig. 2). On the other hand, horizontal thrusters
are used to move forward (surge DOF) as well
as to change the heading (yaw DOF). Hence,
the prototype is a full actuated vehicle in four
DOF (surge, sway, heave and yaw, see fig. 2),
while being passively stable in Roll and Pitch
(its meta-centre is above the centre of gravity).
The robot chassis is made of Delrin material.
This is an engineering resin which, due to its
excellent mechanical properties can compete
with metals in many applications. Its very low
water absorption and the small effect of
aqueous solutions on its properties make it an
excellent candidate for our project.
Three pressure vessels are used for holding the
electronics. The two bigger cylinders are made
with aluminium while the smaller one is made
with Delrin. All of them have a cover with all the

connectors and use a conventional O-ring
rubber for water sealing. One of the cylinders
houses the computers, other the thrusters’
controllers and the batteries, and the last one
encapsulates the MRU.
The thrusters are built using MAXON DC
motors of 250 Watts of power, using planetary
gears and contained in stainless steel housings.
Three blade propellers, made of brass, are
linked to the motor through a stainless steel
shaft mechanically sealed, providing around
14.7/14.2 Newtons of forward/backward thrust.
Buoyancy of the robot is provided by a cover of
technical foam, with 10.5 litres of volume, and a
weight of 0.6 Kg. This foam can withstand
pressures up to eleven bars, which corresponds
to a depth of one hundred meters.
Table 1 gives the main characteristics of
ICTINEUAUV.

Figure. 2 Composition Forces and DOF.

III. HARDWARE DESIGN
The robot hardware (Apendix I) is composed by
a Computers module and a Power module.

A. Computers Module
Two PCs, one for control and one for image and
sonar processing, connected through a 100
MBs switch form the core of the robot hardware.
The control PC is an AMD GEODE-300MHz,
powered with 50 W power supply module. The
PC104 stack also incorporates an A/D and
digital I/O card with 8 analogue input channels,
4 analogue output channels and 24 digital I/O.

3

Table 1. ICTINEUAUV characteristics.

The 4 analogue outputs are used to send the
velocity set-points to the thrusters’ drivers while
the 4 analogue inputs feedback the velocity of
the propellers. Two more analogue inputs are
used to monitor the temperature and the
pressure (for safety purposes) within the
pressure vessel. With respect to the digital
signals, 4 outputs are used to enable/disable
the thrusters’ drivers, 1 input is used to read the
mission switch which signals the start of the
mission, 4 more inputs are connected to the
water leakage detectors and 1 digital output is
used to signal when to throw the marker. Two
serial lines provide access to the Argonaut
Doppler Velocity Log (DVL) and the MTi Motion
Reference Unit (MRU) sensors.
The mini-ITX computer is a Via C3 1 GHz
Pentium clone connected to the imaging sonar
through a high speed serial line. A cheap
PCTV110 from Pinnacle is used for image
processing. Since our design uses two cameras
(one looking forward and one looking down),
both input channels, the composite video and
the S-video, are used.

Figure. 3. Computer module.

B. Power module.
The power module contains the four power
drivers for the thrusters as well as a pack of 2
cheap and sealed lead-acid batteries. A DC-DC
converter is included to provide a stabilized
voltage to the rest of components. There is also
a simple relay circuit which commutes between
the internal and the external power. External
power, supplied through an optional umbilical,
is very useful for running long term experiments
before the competition. It is worth noting that
the batteries have been dimensioned for the
short time experiments to be done during the
competition days. Moreover, when the robot
works with external power it can recharge the
internal batteries.

Figure 4. Detail of the power drivers included in the power
module.

C. Umbilical Cable
As mentioned above, the robot also
incorporates an umbilical cable providing power
and Ethernet signals with the aim of aiding the
system development in the lab.

IV. SOFTWARE DESIGN
The software architecture (Apendix II) has the
task of guaranteeing the AUV functionality. It is
built with a set of objects distributed among the
two onboard PCs and the external PC. The last
one is only used during the experiments in the
lab, being connected to the robot through the
umbilical cable for monitoring purposes. The
architecture [Hernàndez 2005] is composed by
a base system and a set of objects customized
for the desired robot (see fig. 5). There are
classes providing soft real-time capabilities, this
is guaranteeing the period of execution of the
periodic tasks like the controllers or the sensors.
Whenever a thread is not able to guarantee the
assigned period (overrun), a signal is raised
allowing accounting for the total number of
overruns. Consulting this number it is possible
to know if the time constrains of the different
tasks are satisfied or not, allowing the
programmer to introduce the needed
modifications to solve the problem. Another
important part of the base systems are the
loggers. The logger system is used to log data
from sensors, actuators or any other object
component. Loggers do not execute in real time.
They are background processes which receive

ICTINEUAUV
Dimension
s

74 x 47 x 53 cm

Dry Weight ≅ 48 Kg

Umbilical Ethernet, power supply

DOFs 4 (Surge, Sway, Heave, Yaw)

Hardware PC-104 / Via C3 @ 1Gz

Software GNU/Linux + RTAI; CORBA-RT
ACE-TAO

Sensors Imaging Sonar; DVL; MRU MTi
from XSens Technologies; 2
underwater cameras, depth
sensor, set of hydrophones, echo
sounder, water detectors and
temperature sensors

4

the data from real time objects. Their role
consists on packing the data and saving them
into files. It is worth noting that although loggers
do not run in real time, the data has a
time-stamp corresponding to the gather time.
Moreover all the computers in the network are
synchronized by means of the NTP (Network
Time Protocol) and hence all the data coming
from different sensors can be time related.
The software architecture is divided in three
modules (fig. 5): (1) Robot interface module, (2)
Perception module and (3) Control module. In
the following subsections these modules are
briefly introduced.

A. Robot interface module
This is the unique module that contains
software objects that dialog with the hardware.
There are basically to types of objects: (1)
sensor objects responsible for reading data
from sensors and (2) actuator objects
responsible for sending commands to the
actuators.
Sensor objects for ICTINEUAUV include the DVL,
the imaging sonar, the MRU, both cameras, the
depth sensor, and the echo sounder. There are
also objects for the safety sensors like the water
leakage detectors and internal temperature and
pressure sensors that allow for the monitoring
of the conditions within the pressure vessels.
Actuator objects for the ICTINEUAUV include the
thrusters, and the marker thrower.

B. Perception module.
This module contains two basic components:
(1) the Navigator and (2) the Obstacle Detector.
The Navigator object has the goal of estimating
the position of the robot. To accomplish this
task, there exists an interface called
NavigationSensor from which all the localization
sensors (DVL, MRU, depth sensor) inherit. This
interface provides to all these sensors a set of
methods to return the position, velocity and
acceleration in the six DOF together with an

estimation of the quality of these measurements.
The Navigator can be dynamically connected to
any NavigationSensor and, using the quality
factor fuses the data to obtain a more accurate
position, velocity and acceleration. The Control
module can use the navigation data provided by
the Navigator keeping the behaviours
independent of the physical sensors being used
for the localization.
The Obstacle detector uses the same
philosophy to provide the obstacles position in
the world fixed frame. The Obstacle detector is
also used to detect the distance between the
vehicle and the bottom of the pool. Detecting
horizontal obstacles is possible using the
imaging sonar, and the pool bottom obstacle
can be detected with the DVL sensor.

C. Control module.
The control module receives sensor inputs from
the perception module and sends command
outputs to the Actuators residing in the Robot
Interface Module.
Since task and behaviours are words that are
interpreted in different ways for different authors
in the literature, hereafter we describe how they
are interpreted within our project. A behaviour is
function that maps the sensor input space
(stimuli) into a velocity setpoint (behaviour
response) for the robot low level controller. The
behaviour response is chosen in a way that
drives the robot towards its corresponding goal.
In this way, the goal corresponding to the
keepDepth behaviour is considered to be
achieved when the robot is within an interval
around the desired depth. A task is a set of
behaviours that are enabled together to achieve
a more complex goal. For instead, KeepDetph
and Motion2D can work together to allow for
planar navigation.
The control module follows the principles of the
hybrid control architecture organized in three
layers: (1) Mission Level, (2) Task Level and (3)
Vehicle Level. The vehicle level is composed by

Thruster5

Obstacle
detector

Water
sensors DVL

Imaging
sonar Thruster1 ...

44

Internal
Tº and P

Navigator

Thruster N

Mission Level

Task Level Vehicle Level

Camera

Robot interface module

Control modulePerception module

Figure. 5 Software Architecture

5

a MIMO PID velocity controller for each DOF.
The Task level is a conventional behavioural
layer including several behaviours running in
parallel and a coordinator module which fuses
all the behaviour responses into a unique
coordinated response to be used as velocity set
point for the low level controller. Finally, the
upper layer (mission level) is responsible for the
sequencing of the mission tasks, selecting for
each mission phase the set of behaviours that
must be enabled as well as their parameters.

V. NAVIGATION
The localization is expected to be carried out by
merging the information of several sensors with
an a priori map of the environment. First, an
imaging sonar is used to obtain a complete
acoustic image where the walls of the water
tank are detected and hence, it is possible to
solve for the robot initial position. Then, data
from the imaging sonar and the map, together
with measurements from the DVL, are merged
within an EKF to obtain a position estimate. In
the following subsections the general structure
of the localization algorithm are described.

A. Initialization
In order to perform localization using an a priori
map it is necessary to determine the initial
position of the vehicle within the mapped
environment. To do this, a complete acoustic
image of the surroundings is obtained and
compared with the map to estimate the vehicle
position. Mechanically scanning sonars perform
scans in a 2D plane by rotating a sonar beam
through a series of small angle steps. For each
emitted beam, distance vs. echo-amplitude data
is returned forming an acoustic image of the
surroundings (fig 6). The scanning rate of these
devices is really slow in comparison with
multibeam sonars. For this reason, the vehicle
movement along a complete scan usually
induces important distortions in the acoustic
image (fig 6 b). Extracting features from this
kind of images produces inaccuracies and yield
to poor results. To cope with the slow scanning
rate of the low cost imaging sonars, we propose
a 2 step line extraction procedure. First, the
trajectory of the vehicle is estimated at the
same time that the acoustic beams are grabbed.
Then, when the position of each beam is known,
the distortion induced by motion is
compensated (fig 6 c). Since objects present
(walls) in the environment appear as high
echo-amplitude returns, a thresholding is
applied to discard low intensity returns which
contain no significant information. Then, with the
remaining measurements, the Hough transform
[Duda and Hart 1972] is used to extract a set of
line features . As the
lines that compose the a priori map

 are perfectly known, an
analytic association process can be carried out

so each observed feature can be related to
its corresponding feature in the map.
Finally, an Information Filter (IF) is used to
merge this information into an estimate of the
initial vehicle position and its uncertainty with
respect to the a priori map.

Figure 6. (a) Schematic representation of the environment
where the sonar data were gathered (see fig. 13). The
highlighted zones represent the expected sonar returns.
Images generated from acoustic data, (b) distorted and (c)
undistorted image through DVL integration.

B. Vehicle pose estimation using a DVL
The SonTek Argonaut DVL unit which includes
a compass, 2 inclinometers and a depth sensor
is used to estimate the robot pose (navigation
problem). Imaging sonar beams are read at 30
Hz while DVL readings arrive asynchronously at
a frequency within 1.5 Hz interval. An EKF is
used to estimate the 6DOF robot pose
whenever a sonar beam is read. DVL readings
are used asynchronously to update the filter. To
reduce noise inherent to the DVL
measurements, a simple 6DOF constant
velocity kinematics model is used instead of a
more conventional dead reckoning method.
The information of the system at step k is stored
in the state vector with estimated mean
and covariance :

 (1)

with:

 (2)

where, as defined in [Fossen 2002], is the
position and attitude vector referenced to a
base frame B, and is the linear and angular
velocity vector referenced to the robot
coordinate frame R. If the coordinate frame B is
oriented to the north, the compass
measurements can be straight forward
integrated.

6

The vehicle movement prediction is performed
using a kinematic model such as:

(3)

(4)

Although in this model the velocity is considered
to be constant, in order to allow for slight
movements, the velocity is modelled as the
integral of a stationary white noise with a
diagonal covariance matrix in the order of
magnitude of the maximum acceleration
increment that the robot can experiment over a
sample period.

 (5)

 (6)

Hence, the acceleration noise is additive in the
velocity (eq. 5) and propagates nonlinearly to
the position. Finally, the model prediction and
update is carried out as detailed below:

1) Prediction: The estimate of the state is
obtained as:

 (7)

and its covariance matrix as:

 (8)

where and are the Jacobian matrices
of partial derivatives of the non-linear model
function f with respect to the state and the
noise , respectively.

2) Update using DVL measurements: The
model prediction is updated by the standard
Kalman filter equations each time a new DVL
measurement arrives:

 (9)

Where subindex b stands for bottom tracking
velocity, w for through water velocity, i for
inclinometers and c represents the compass.
The measurement model is:

 (10)

 (11)

where (measurement noise) is a
zero-mean white noise:

 (12)

Since the DVL sensor provides a status
measurement for the bottom tracking and water
velocity, depending on the quality of the
measurements, different versions of the H
matrix are used to fuse one (removing row 2),
the other (removing row 1), or both readings
(using the full matrix).

C. Correction with the a priori map and an
imaging sonar.
Herein, the information obtained from the
imaging sonar together with the a priori map

 is used to perform a correction of the
vehicle state estimate. Whenever a new single
beam (not a complete acoustic image) is
obtained from the imaging sonar, the highest
return is chosen. This measurement is the most
likely to pertain to any object present in the
scene and as a consequence, to a feature in the
a priori map. We will use this information to
perform an update of the EKF presented above
and correct the state estimate. The high
intensity return is a point represented in
polar coordinates with respect to the vehicle
frame R:

 (13)

Where would be the value obtained if
noise was not present. The noise is a
zero-mean white Gaussian noise:

 (14)

We need to determine the correspondence
between the measurement and the objects in
the map. First, the cartesian coordinates of the
measurement need to be obtained:

 (15)

 where (16)

 represents the uncertainty of the point in

cartesian coordinates and is the Jacobian
matrix of the f function with respect to the

7

measurement . The next step is to define
each line from the map
by its orientation and its distance to the origin
with respect to the vehicle coordinate frame R:

(17)

 (18)

 is the Jacobian of the function. As the

map is assumed perfectly known, the
uncertainty only depends on the vehicle state

. With both the sonar return and the map in
the same reference frame, an implicit
measurement equation stating that the point
belongs to the line can be defined:

 (19)

 (20)

Where and are the Jacobians of the
implicit measurement function with respect
to the sonar return and a line of the map. To
produce the update, an association hypothesis
between the measurement and one of the lines
from the map is needed. For this purpose, an
individual compatibility test is performed using
the presented measurement equation:

 (21)

Distance is the Mahalanobis distance. The
correspondence is accepted if the distance is
less than , with α defined as the confidence
level and . The Nearest Neighbour
(NN) selection criterion determines that among
the features that satisfy eq. 21, the one with the
smallest Mahalanobis distance is chosen and
the association hypothesis is accepted.
Having the data association solved, an update
of the vehicle state estimate can be performed
using the EKF equations for an implicit
measurement function:

 (22)

 (23)

 (24)

For experimental results of the presented
localization algorithm please refer to section X B.

VI. TARGET TRACKING
Two of the tasks to be faced during the mission
involve the use of image processing algorithms.

Both are particular cases of the target tracking
problem: (1) navigate towards a midwater buoy
and impact it and (2) navigate towards a cross
laying on the pool bottom and throw a marker.
Both algorithms are almost the same. In case
the object to track is a colour object, the image
is converted into the Hue-Saturation-Intensity
(HSI) space. Then, robust regions of hue and
saturation are selected as the segmentation
criteria. Intensity is not used for the
segmentation since it is known to be very
sensible to changes in the illumination. In case
the object is black, then a simple binarization is
performed. After the segmentation process, we
get a binarized image with two possible values
for the pixel (1-object and 0-background). Then,
the algorithm defines two exploration
increments:

• (Δx1, Δy1) used to explore a small
window around the object.

• (Δx2, Δy2) used to explore the rest of the
image.

which allow to easily change the resolution of
the image processing algorithm. Initially, we
start the search from the left upper corner of the
image, detecting clusters of candidate pixels. Of
course, due to the noise, more than one cluster
can be detected. Hence a constrain in the area
(number of pixels of the object) is imposed
hopefully filtering the noisy clusters. Once a
unique cluster is available, its centre of mass
and its area is returned as result. In order to
foster the velocity of the algorithm, a window is
defined around the object. This window is used
in the next iteration to search for the object,
effectively reducing the search area. In case the
object is not found within the window during n
consecutive frames, the algorithm re-starts
looking for the object in the whole image.

VII. CONTROL ARCHITECTURE

The function of a control architecture is to move
the robot autonomously to fulfil a set of goals in
a particular order and with some constraints.
The result of the whole process at every
moment is the movement of the robot in each
degree of freedom. Figure 7 shows the schema
of the three levels that form the proposed
control architecture.

A. Vehicle level: Velocity controller
Since the final task is the movement of the robot,
the control architecture has, at its lower level, a
classical velocity controller. This controller
receives the velocity set points from the task
level controller and the measured or estimated
velocities from the navigator. The object in
charge of doing this task is the PID velocity
controller. This object reads the vehicle velocity
from the Navigator object (see section 4.B) and
receives the velocities set points from the
Coordinator Object (see section 4.C).

8

Figure.7 ICTINEUAUV control architecture

B. Task level: Behaviours + Coordinator
A common methodology to implement control
architectures is to build a library containing all
basic functions that the robot can make. By
joining these basic functions it is possible to
carry out complex tasks. These basic functions
have been named: vehicle primitives, tasks,
command primitives … One of the most popular
names to express this concept is behaviour,
which was introduced in 1986 by Brooks
[Brooks 1986] and has been extensively used.
The task level controller presented in this paper
is based on very simple behaviours. Since more
than one behaviour can be activated, a
coordinator is always needed in all no
pre-emptive architectures. The coordinator is
the object in charge of combining the outputs of
all active behaviours to generate a single output.
Each behaviour is an autonomous process with
a particular goal. The input of a behaviour is
taken from the perception module of the
software architecture. The output contains:

• The velocity for every DoF
normalized between -1 and 1.

• The Activation level. A value
normalized between 0 and 1.

• A priority that together with the
activation level are used by the
coordinator to combine the outputs of
all behaviours.

• A blocking value expressing if the
behaviour is blocking the execution
thread of the mission controller.

To initialize a behaviour, besides particular
values for the parameters, it is needed to setup
the following values:

• The enable: A boolean variable that
indicates if the behaviour is activated
or not and, therefore, if its output will

be considered by the Coordinator.
• The priority that will have the output

of this behaviour.
• The Time Out which indicates when

the behaviour will block the execution
thread. If TimeOut<0, the behaviour
blocks the execution thread until its
goal is fulfilled. If TimeOut=0, the
behaviour doesn't block the execution
thread. If TimeOut>0, the behaviour
blocks the execution thread until
TimeOut seconds or until its goal is
fulfilled.

The object Coordinator is in charge of taking all
the enabled behaviour outputs to combine
them into a single one, which will be sent to the
velocity controller. To combine all the outputs,
the coordinator follows the schema showed in
Figure 8. Using this coordinator, if the
activation value of all active behaviours is 1
(max. value), the coordinator output
corresponds to the behaviour output with more
priority (pre-emptive architecture). Otherwise,
if the activation values are less than 1, the final
output will be the combination of all the active
behaviours (collaborative architecture). Since
each DoF is treated separately it is possible,
by using activations levels with value 0, to
program behaviours that do not affect all DoFs.
The coordinator output, after combining all
active behaviours, is a vector as large as the
number of DoFs of the robot, where each value
corresponds to a normalized velocity.

Figure. 8. Coordination algorithm.

B.Mission level: Mission Control System
The task controller decides how to guide the
robot movements in each situation. However,
to carry out medium/high complex missions it
is very difficult to design a unique set of
behaviours that can accomplish it. In these
missions, it is necessary to have an
autonomous system able to enable/disable
and reconfigure behaviours. Our mission
controller uses a Petri Net to accomplish the
mission plan. A Petri Net has place nodes,
transition nodes, and directed arcs that
connect places with transitions. It is
represented as a graph defined by a quadruple,

9

see equation 25:

PN=(P,T,I,O) (25)

where P is a finite set of places, T is a finite set
of transitions, I(p,t) is a mapping corresponding
to the set of directed arcs from places to
transitions, and O(t,p) is a mapping
corresponding to the set of directed arcs from
transitions to places. We use a kind of Petri
Net called marked graphs which is a pure
ordinary Petri net system where every place
has only one input transition and one output
transition, see equation 26:

∀p∈P: |•p|=|p•|=1 (26)

where |•p| is the number of inputs of place p
and |p•| is the number of outputs of place p.
In our Petri net, every place corresponds to one
behaviour with a particular configuration. When
a place has a token, this behaviour is enabled.
When all places that go towards a transition are
enabled, and their behaviours do not block the
execution thread, the transition is ready to be
fired. When a transition is fired, a token is
removed from each of the input places of the
transition and a token is generated in each
output places of the same transition, see
equation 27:

∀p∈P: M′(p)=M(p)+O(t,p)−I(p,t) (27)

where M is a n-dimensional integer vector
which assigns a non-negative integer number of
tokens to each place of the net. A Petri net
can be represented as a matrix, see equation 4,
called the incidence matrix (C). In addition, if
active transitions and the actual state are
known, it is possible to calculate the new state,
see equation 28:

Cij=O(tj,pi)-I(pi,tj) (28)

where 1 < i < (size of P) and 1 < j < (size of
T).

Mi+1=Mi+CT (29)

Therefore, the control mission algorithm starts
on the initial state Mi, checks fired transitions,
applies equation 29, and repeat this process
until the final state Mf is reached.

VIII. NEPTUNE

NEPTUNE [Palomeras 2002, Hernàndez 2003,
Ridao 2004] is a real-time graphical simulator
with capabilities for hardware in the loop. It
makes use of a virtual world based on two
components: (1) a VRML file containing the
topography of the scene and (2) a set of objects
also defined in VRML. Internally, the

topography of the scene is converted into a
bathymetry grid and the objects are considered
spheres of a particular radius of action. This
model, together with a conic beam sonar model
allows a very simple and fast geometric method
for obstacle and/or collision detection.
Within NEPTUNE a simulated robot is defined
through three basic files. The first is a VRML file
containing the robot geometry. The second is a
file which contains the robot and thruster
hydrodynamics coefficients. For simulation, the
hydrodynamic model described in [Fossen
2002] is used. Thrusters are simulated using
the affine model [Fossen 2002]. Finally, the
third file contains the file names of the previous
two files plus a definition of the sensors
included in the robot (sonar beams, video
cameras, depth sensors, compass, DVL, DGPS,
etc...). NEPTUNE is fully configurable and
hence it is very easy to adapt to support the
SAUC-E mission development. In order to allow
a real time performance, the application is built
as a distributed application including several
processes: (1) the NEPTUNE main program
(fig.9), (2) a robot dynamics process for the
simulated robot, (3) a name server. All the
components are implemented as CORBA-RT
objects allowing for an easy interoperability
among the involved software objects. The robot
software architecture described in section 4.A
can be easily interface with NEPTUNE by
means of a virtual robot interface module.

Figure 9. View of the Neptune HIL simulator.

IX. THE MISSION

As explained above, one of the big constrains of
our team is the turn around time of the
design-development cycle taking into account
that we only have 7 months for the project. This
constrain lead us to the use of concurrent
engineering techniques in order to overlap the
hardware and the software development. For
this reason, from the very beginning of project,
a simplified version of the robot software was
developed and tested using hardware in the
loop simulation.
The real mission as well as the simulated one
occurs in a swimming pool environment with a

10

size of 20 meters by 10 meters, and a depth of
6 meters. Since the goal of this simulation is to
verify the control architecture and the robot
software, the SAUC-E mission and the required
behaviours have been simplified. The simulated
mission consists in (see Figure 10):

1. Moving from a launch/release point and
submerging.

2. Passing through a 3x4 meters validation
gate.

3. Locating a target situated on the bottom
of the pool.

4. Locating a mid-water target and contact
it with the AUV.

5. Surfacing at designated recovery zone.
In the following sections it is assumed that we
know the validation gate and recovery zone
positions and the depth of the two targets (not
the position).

Figure 10.Sauce mission setup

A. Behaviour library
To accomplish the mission, four behaviours
have been implemented:
1. KeepDepth(depth, priority, timeOut):

Keep a constant depth.
2. MoveTo2D(X, Y, priority, timeOut): Move

the vehicle to a specific 2D point.
3. LawnmowerMove(Xi, Yi, Xf, Yf, angle,

priority, timeOut): Move the vehicle with a
zigzagging movement.

4. FindTarget(Xt, Yt, contactDistance,
priority, timeOut): Move the vehicle to the
position of the target. It only becomes active
when the vehicle is at a very short distance
from the target.

B. Petri Net
To implement the mission controller it is
required to define several aspects:

• The Petri Net with the sequence of
behaviours.

• The parameters of every
place/behaviour.

• The initial and final states in the Petri
Net.

The Petri net can be represented as a graphic
or as a matrix. Figure 11 shows both
representations for the simplified SAUC-E
mission.

 T1 T2 T3 T4 T5 T6 T7
P1 -1 0 0 0 0 0 0
P2 1 -1 0 0 0 0 0
P3 1 -1 0 0 0 0 0
P4 0 1 -1 0 0 0 0
P5 0 0 1 -1 0 0 0
P6 0 0 1 -1 0 0 0
P7 0 0 1 -1 0 0 0
P8 0 0 0 1 -1 0 0
P9 0 0 0 0 1 0 -1
P10 0 0 0 0 1 -1 0

Figure 11. Petri Net used in the SAUC-E mission

As commented before, every place represents
a behaviour. From the Petri Net graph we can
observe that the number of active behaviours
will go from one to three. When there is only
one behaviour, this behaviour is the keepDepth
and it will try to reach a specific depth to find a
target, pass throw the validation gate or reach
the surface. When there are two active
behaviours, these behaviours are the
KeepDepth and the MoveTo2D. They will try to
reach a 2D point keeping a desired depth. The
KeepDepth behaviour only generates one
output on the heave DoF and the MoveTo2D
behaviour generates outputs on surge DoF and
Yaw DoF. Therefore, the coordinator will take
the two outputs and combine them without
modifying the velocity set points. Finally, when
there are three active behaviours, these
behaviours are the KeepDepth, the
LawnmowerMove and the FindTarget. They
cause the robot to move at a specific depth
around the swimming pool looking for a target.
Both the LawnmowerMove and the FindTarget
generate outputs on surge and Yaw DoFs. The
FindTarget priority is highest than the
LawnmowerMove priority, but its activation level
is greater than zero when the robot is near the

11

target. For this reason, the coordinator will take
the FindTarget + KeepDepth outputs when the
vehicle is near the desired target and the
LawnmowerMove + KeepDepth outputs when
the vehicle is far.
Behaviour parameters will change depending
on each task of the mission. Table 2 shows the
correspondence between places and
behaviours, and the values of these
parameters.

Place Behaviour + Parameters
P1 keepDepth(2.2, 2, 30)
P2 keepDepth(2.2, 2, 0)
P3 moveTo2D(5, 3, 2, 30)
P4 keepDepth(4, 2, 30)
P5 keepDepth(4, 2, 0)
P6 findTarget(8, 1.5, 1.5, 1, 300)
P7 LanmowerMove(4.5, 1, 19, 9, 1.46,

2, 0)
P8 keepDepth(1.5, 2, 30)
P9 keepDepth(1.5, 2, 0)
P10 findTarget(12, 8, 1.5, 1, 300)
P11 LanmowerMove(4.5, 1, 19, 9, 1.46,

2, 0)
P12 moveTo2D(16.5, 6.5, 2, 200)
P13 keepDepth(0, 2, 30)

Table 2. Behaviours and parameters description

Finally, initial and final state vectors show the
enabled and the disabled places at the
beginning and at the end of the execution
respectively. These vectors contain 13 Boolean
values, one for each place:

Mi = [1,0,0,0,0,0,0,0,0,0,0,0,0]
Mf = [0,0,0,0,0,0,0,0,0,0,0,0,1]

X. RESULTS

In this section, preliminary results about HIL
simulation of the SAUC-E mission and an offline
execution of the localization algorithm are
presented.

A. HIL Simulation
In order to simulate the SAUC-E mission, the
four behaviours and the mission controller have
been implemented and integrated in the software
architecture. In this preliminary work, the mission
has been simulated using Neptune instead of the
real robot. Since the hydrodynamic model of the
ICTINEUAUV is not known, for the simulation, the
hydrodynamic parameters of GARBIAUV were
used [Ridao 2001]. A virtual world corresponding
to the SAUCE swimming pool was setup and
loaded within NEPTUNE. The simulation was
executed and it took 5 minutes and 45 seconds
to accomplish the mission. Figure 12 shows the
obtained trajectory. The simulation showed a
good performance and robustness of the mission
and task controllers, as well as their simplicity.

Figure 12. Trajectory obtained during the HIL simulation of
the SAUC-E mission.

Figure 13. Water tank of the Underwater Robotics Research
Center at the University of Girona

B. Results of the Map-based Navigation
We carried out an experiment in the water tank
of the Underwater Robotics Research Center at
the University of Girona (See fig. 13).
The vehicle was equipped with a Miniking
Imaging sonar from Tritech, a sensor designed
for use in underwater applications like obstacle
avoidance and target tracking. It can perform
scans in a 2D plane by rotating a fan-shaped
sonar beam of 3º of horizontal beamwidth and
40º of vertical beamwidth. During the
experiment, the sensor was set up to work
within a range of 10 meters, capturing a sonar
return every 0.1 meters (100 measurements per
beam). Its scanning rate was set to the
maximum (around 6 seconds per a 360º scan).
In order to estimate the vehicle movement an
Argonaut DVL from Sontek, which measures
ocean currents, vehicle speed over ground and
altimetry, was used. Moreover, the unit is also
equipped with a compass/tilt sensor which
permits to recollect attitude data, a pressure
sensor to estimate the depth and a temperature
sensor for sound speed calculations.
The robot carried out a guided trajectory of
around 42 meters, consisting on several loops;
161 complete sonar scans were taken.
The results are shown in fig. 14. For
comparison purposes the trajectory estimated
using dead reckoning of the DVL
measurements (blue dash-dotted line) is

12

represented together with the one estimated
using the imaging sonar and the localization
algorithm (black line). It is also represented the
map used to perform the localization. As it can
be seen, the dead reckoning trajectory has an
important drift, which is controlled using the
proposed localization algorithm.

Figure 14. Navigation results using the proposed strategy.

XI. CONCLUSIONS
This paper has presented the current state of
development of the ICTINEUAUV robot, designed
by the VICOROB-UdGTEAM to face the SAUC-E
challenge. The main principles of design (open
frame architecture, modularity and backward
compatibility) have been reported. The robot
software is built as a distributed object oriented
application based on CORBA-RT. The control
system is organized into three levels following
the principles of the hybrid control architectures.
It includes a low level velocity controller (vehicle
level), a behavioural layer (task level) and a
Petri Net based mission controller (mission
level). The paper has also described a
localization method based on the use of a DVL,
an imaging sonar to sense the walls of the pool
and an a-priori map, which allows to accurately
estimate the robot position with a bounded drift.
With the help of the Neptune HIL simulator the
principles of the proposed control approach
have been tested with a simplified version of the
SAUC-E mission.

REFERENCES
[Brooks 1986] Brooks, R. “A Robust Layered

Control System for a Mobile Robot”. IEEE
Journal of Robotics and Automation, vol.
RA-2, No. 1, pp. 14-23.

[Duda and Hart 1972] R. Duda and P. Hart,
“Use of the Hough transformation to detect
lines and curves in pictures,”
Communications of the ACM, 1972.

[Fossen 2002] T. I. Fossen. Marine Control
Systems, Marine Cybernetics, 2002

[Hernàndez. 2003] Henàndez E. “Enhacements
for a 3D Virtual Simulator in Real-time for
Underwater Robots”. Graduation Project in
Computer Science. University of Girona.

[Hernàndez 2005] Hernàndez E. “Design and
Implementation of a distributed objecte
oriented software architecture with support
for real-time execution”. Application to an
Underwater Robot. Master Project in
Computer Science. University of Girona.

[Palomeras 2002] N. Palomeras. “Real-Time 3D
Virtual Simulator for Multiple Underwater
Robots”. Graduation Project in Computer
Science. University of Girona.

[Palomer et al 2006] Palomeras N., Ridao P.,
Carreras M., Hernandez E..”Design of a
Mission Controller for an Autonomous
Underwater Robot”. VII Workshop on
physical agents 2006. Las Palmas de Gran
Canaria (Spain).

[Ribas et al 2006] Ribas D., Neira J., Ridao P.,
Tardos, J. “AUV Localization in structured
Underwater Environments Using an a priori
Map”. Accepted for publication in the IFAC
Conference on Manoeuvring and Control of
Marine Crafts MCMC. Lisbon (Portugal).

[Ridao 2001] Pere Ridao, Joan Batlle, Marc
Carreras, “Model identification of a
low-speed UUV with on-board sensors”.
IFAC conference CAMS’2001, Control
Applications in Marine Systems. Glasgow
(Scotland-UK).

[Ridao 2004] Ridao, P.; Batlle, E.; Ribas, D.;
Carreras, M.. “Neptune: a hil simulator for
multiple UUVs”. OCEANS '04. MTS/IEEE
TECHNO-OCEAN '04. Volume 1, 9-12 Nov.
2004 Page(s):524 - 531 Vol.1

ACKNOWLEDGEMENTS

Authors want to acknowledge the sponsors who
made possible our participation in the SAUC-E
competition. Particularly, we want to give
thanks to the Catalan Artificial Intelligence
Association, the Polytechnic School of the
University of Girona, the GRN Telematics
Services Company, the E. Ribas “industrial
d’automatismes” company, the Spanish
Research Network AUTOMAR, the Technical
Industrial Engineers Association, the
Girosacme Olot Company, the local
government of the “Diputació de Girona”, the
board of companies of the Polytechnic School
of the University of Girona, the Social Council of
the University of Girona and the students
vice-presidency of the University of Girona for
the monetary contribution to our project. We
also want to thanks the XSens Motion
Technologies company for their contribution
with the MTi MRU, the EuroTech group for
donating PC104 cards and Oxiter company for
cutting the frame of the robot.

13

APPENDIX I SCHEMATIC OF THE
HARDWARE DESIGN

14

APPENDIX I UML DESIGN

