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Abstract

The thesis investigates the problem of how information contained in multiple, overlap-

ping images of the same scene may be combined to produce images of superior quality.

This area, generically titled frame fusion, offers the possibility of reducing noise, extend-

ing the field of view, removal of moving objects, removing blur, increasing spatial resolu-

tion and improving dynamic range. As such, this research has many applications in fields

as diverse as forensic image restoration, computer generated special effects, video image

compression, and digital video editing.

An essential enabling step prior to performing frame fusion is image registration, by

which an accurate estimate of the point-to-point mapping between views is computed. A

robust and efficient algorithm is described to automatically register multiple images using

only information contained within the images themselves. The accuracy of this method,

and the statistical assumptions upon which it relies, are investigated empirically.

Two forms of frame-fusion are investigated. The first is image mosaicing, which is the

alignment of multiple images into a single composition representing part of a 3D scene.

Various methods of presenting the composite image are demonstrated, and in particular,

a novel algorithm is developed for automatically choosing an optimal viewing transfor-

mation for certain cases. In addition, a new and efficient method is demonstrated for the

matching of point features across multiple views.

The second frame-fusion method is super-resolution, which aims to restore poor qual-

ity video sequences by removing the degradations inherent in the imaging process. The

framework presented here uses a generative model of the imaging process, which is dis-

cussed in detail and an efficient implementation presented. An algorithm is developed

which seeks a maximum likelihood estimate under this model, and the factors affecting its

performance are investigated analytically and empirically.

The use of “generic” prior image models in a Bayesian framework is described and

shown to produce dramatically improved super-resolution results. Finally, super-resolution

algorithms are developed which make use of image models which are tuned to specific

classes of image. These algorithms are shown to produce results of comparable or better

quality than those using generic priors, while having a lower computational complexity.

The technique is applied to images of text and faces.

Throughout this work, the performance of the algorithms is evaluated using real image

sequences. The applications demonstrated include the separation of latent marks from

cluttered, non-periodic backgrounds in forensic images; the automatic creation of full 360◦

panoramic mosaics; and the super-resolution restoration of various scenes, including text

and faces in low-quality video.
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Chapter 1

Introduction

This thesis investigates sets of images consisting of many overlapping views of a scene, and

how the information contained within them may be combined to produce single images

of superior quality. The generic name for such techniques is frame fusion. Using frame

fusion, it is possible to extend the field of view beyond that of any single image, to reduce

noise, to restore high-frequency content, and even to increase spatial resolution and dy-

namic range. The aim in this thesis is to develop efficient, robust and automated frame

fusion algorithms which may be applied to real image sequences.

An essential step required to enable frame fusion is image registration : computing the

point-to-point mapping between images in their overlapping region. This sub-problem

is considered in detail, and a robust and efficient solution is proposed and its accuracy

evaluated. Two forms of frame fusion are then considered : image mosaicing and super-

resolution. Image mosaicing is the alignment of multiple images into a large composition

which represents part of a 3D scene. Super-resolution is a more sophisticated technique

which aims to restore poor quality video sequences by modelling and removing the degra-

dations inherent in the imaging process, such as noise, blur and spatial-sampling.

A key element in this thesis is the assumption of a completely uncalibrated camera. No

prior knowledge of the camera parameters, its motion, optics or photometric characteris-

tics is assumed. The power of the methods is illustrated with many real image sequence

examples.

1.1 Background

The camera is a device which measures scene intensities and, just like any other measuring

instrument, has a transfer function which introduces information loss into the measure-

ment process. Bandwidth reduction, quantization, frequency aliasing and noise are com-



Figure 1.1: (Left) A single frame from a video sequence of a static scene taken under very

poor lighting conditions. (Right) After histogram equalization. The license plate is still

unreadable due to the noisy nature of the image.

mon degradations found in imaging systems. Consequently, the images are often unable

to completely capture the fine detail in a scene.

Image restoration techniques use a model of the imaging process which is “De-convolved”

from the measured images in an attempt to recover the undegraded scene intensities. Tra-

ditional methods have only applied to single images and are therefore fundamentally lim-

ited by the inherent loss of information in the imaging process. The restoration problem is

ill-posed (under-constrained) and the techniques must rely heavily on prior assumptions

about the scene intensities.

By combining information from multiple images of the same scene, the number of con-

straints on the reconstructed image can be greatly increased, thus improving the condition

of the problem and reducing the extent to which a strong prior model of the image is re-

quired.

Possibly the simplest example of frame fusion is temporal averaging, which is an ex-

tremely effective means of reducing image noise in video sequences of static scenes. Fig-

ure 1.1 shows a frame from a video sequence of a stationary car captured under very poor

lighting conditions with a fixed camera. Histogram equalization of a single frame fails to

reveal the license plate due to the extremely noisy nature of the images. However, as an in-

creasing number of frames are averaged together, the noise is reduced and the plate even-

tually becomes clearly readable, as shown in figure 1.2.

The range of problems to which frame fusion is applicable is greatly increased when the

single view-point constraint is removed. If multiple cameras/views are to be used, there is

3



1 frame 5 frames 10 frames

20 frames 40 frames 125 frames

Figure 1.2: Close-up of the license plate of figure 1.1 (histogram equalized). Each image is

the result of averaging together an increasingly large number of frames. Eventually the text

becomes readable.

then the requirement that every image be accurately mapped into some global reference

frame, or equivalently, that the same scene point may be accurately located in every image

in which it appears. The process of computing these mappings is called image registra-

tion. Having registered a set of images with a common frame of reference, there are two

principal forms of frame fusion which may then be applied.

Image mosaicing The images themselves may be geometrically warped and combined

in a manner which both reduces noise and greatly increases the effective field of view. This

is known as image mosaicing, and it may be used to compose tens or hundreds of images

into wide-angle, panoramic views, such as that shown in figure 1.3, which is composed

from 25 images.

Super-resolution If the image registration is of high enough accuracy, the many over-

lapping images may be used to increase the spatial sampling density of the scene, thus

allowing recovery of image frequencies above the Nyquist limit of any single image. This

super-resolution idea is one of the main topics of this thesis. Figure 1.4 shows a super-

resolution reconstruction which combines information from 50 images into a single, still

image at 3× the original resolution.

1.2 Modelling assumptions

The information loss in camera images is due to a combination of different image degrada-

tions, each of which is characterized by a particular transfer function. The highest spatial

4



Figure 1.3: (Top) 8 frames from a sequence of 25 captured by a hand-held video camera.

(Bottom) All 25 frames are combined by image mosaicing. The field of view is greatly in-

creased.

Figure 1.4: (Left) A region-of-interest in an image captured by a hand-held Mini-DV cam-

era. (Right) A super-resolution estimate of the underlying scene combining information

from 50 such images. The reconstruction is at 3× the original resolution.

frequency which can be captured by the camera is limited by the resolution of its imaging

transducer - usually a CCD array. This leads to spatial quantization of the image, which

is illustrated in figure 1.5(b). The CCD array is subject to various sources of noise, includ-

ing thermal noise, shot noise, and electronic noise in the amplifier circuitry. This is par-

ticularly evident in low-lighting conditions when the camera gain is very high (see figure

1.5(c)). When the image is digitized it also suffers intensity quantization, usually to 8 bits

of precision.

It is common to consider the camera to be the familiar pin-hole camera, in which case

everything is always in focus. In reality, of course, this is not the case and the image is

therefore subject to optical blur which occurs prior to the spatial quantization. The effect

5



a b c

d e

Figure 1.5: The effects of various imaging degradations. (a) An undegraded image. (b)

The result of subsampling the image. (c) Noise is introduced to the intensity values. (d)

The original image is subject to optical blur. (e) Motion in the scene causes anisotropic

blurring.

of optical blur is illustrated in figure 1.5(d). Finally, if the scene is moving, the energy en-

tering the camera from a point in the scene will be integrated over several CCD cells during

the shutter time of the camera. This causes motion blur, an example of which is shown in

figure 1.5(e).

For the purposes of image registration, this thesis is concerned only with images that

are related by an 8 degree-of-freedom (dof) plane projective transformation (or homogra-

phy), for which we can automatically compute the dense image-to-image correspondence.

This motion model is suitable for images of a planar scene, and also for images taken by a

stationary camera rotating about its optic centre.

1.3 Applications

Image mosaicing has already made an impact on the “prosumer” digital photography mar-

ket, with the emergence of several products which allow a handful of photos or even a video

stream from a hand-held camera to be stitched together into a wide-field mosaic, such as

Peleg & Herman’s VideoBrush system [113]. Mosaicing also forms the basic technology

6



underlying node-based virtual reality systems such as QuickTime VR [1, 35] and Smooth-

Move [5]. The technique is also finding applications in video compression, digital steady-

cam, and in the enhancement of digital video editing and matte placement software.

Super-resolution from uncalibrated video is still a relatively young field, and algorithms

that are robust enough to be applied to real image data are only now beginning to emerge.

The most obvious area of application is in forensic image processing. In the recent trial

of the beating of Reginald Denny in the 1992 Los Angeles riots, one of the assailants was

uniquely identified by a rose-shaped tattoo, enhanced in a single image using Cognitech’s

Video Investigator software [2]. The success of such cases had lead to the rapidly increas-

ing acceptance of digitally restored images in courtroom evidence. One fairly successful

non-forensic application is the Salient Stills software [4] which attempts to generate photo

quality still images from low-quality, interlaced video streams. More recently emerging ap-

plications include resolution enhancement of mosaic images, and the generation of high-

quality texture and environment maps for use in computer generated special effects.

1.4 Principal contributions

The remaining chapters and their principal contributions are as follows.

Chapter 2: Literature Survey

• A detailed survey is made of the literature pertaining to accurate image registration,

image mosaicing and spatial-domain methods for uncalibrated super-resolution.

Chapter 3: Registration : Geometric and Photometric

• Robust methods are described for the accurate geometric and photometric registra-

tion of images, and their performance is demonstrated using real images. The accu-

racy of the geometric registration algorithm is investigated empirically.

• The registration methods are applied to forensic images in an application which al-

lows latent marks to be separated from confusing, non-periodic backgrounds. The

success of the method is demonstrated by several examples.

7



Chapter 4: Image mosaicing

• A novel algorithm is described for the efficient matching of image features across

multiple views which are related by projective transformations.

• An automatic method is demonstrated for choosing an optimal viewing transforma-

tion, which aims to minimize projective distortion in the rendered mosaics.

Chapter 5: Super-resolution : Maximum Likelihood and related approaches

• A detailed discussion is given of the implementation and efficiency issues regarding

the generative imaging model used in super-resolution reconstruction. An effective

and efficient implementation is described.

• The behaviour of the maximum-likelihood super-resolution estimator, its sensitivity

to observation noise and modelling error, is explored both empirically and analyti-

cally. The method is compared in detail to Irani and Peleg’s classic super-resolution

algorithm [86].

Chapter 6: Super-resolution using generic image priors

• The use of generic image priors in a Bayesian approach to super-resolution is dis-

cussed. The performance of several such models is investigated empirically. A novel

algorithm is described which uses cross-validation to determine the optimal weight-

ing to be given to the prior in these estimators.

Chapter 7: Super-resolution using sub-space models

• A novel approach to super-resolution is described which uses sub-space image mod-

els, both in ML and MAP estimation. In some cases, the range-space of these models

may be learnt from training data, and thus tuned to a particular class of image. The

compactness of the model has a regularizing effect on the reconstruction problem,

without imposing undesirable smoothness on the solution. The approach is applied

to the enhancement of text and human faces, and is shown to be comparable to or

superior to methods using generic priors.
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Chapter 8: Conclusions and extensions

• Several possible avenues of future research are discussed in detail.

An unfortunate feature of much of the research into uncalibrated super-resolution is

the failure of some authors to present any results of their algorithms applied to real image

sequences, opting instead to use purely synthetic data. In contrast, all of the algorithms

presented in this thesis are demonstrated by application to real image sequences.
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Chapter 2

Literature survey

This chapter presents a summary of the literature relevant to the frame fusion techniques

investigated in this thesis. It is broken down into three sections : image registration, image

mosaicing and super-resolution.

2.1 Image registration

Essential to the work on mosaicing and super-resolution estimation is the need to find an

accurate point-to-point correspondence between images in the input sequence. This is

known as registering the images. The correspondence problem can be stated as follows:

given two different views of the same scene, for each image point in one view find the im-

age point in the second view which has the same pre-image, i.e. corresponds to the same

actual point in the scene. For general scenes this mapping is complex and must be explic-

itly defined at every image point. However, under certain conditions the mapping can be

expressed as a simple geometric relationship between the images.

Methods for obtaining registration fall into two broad categories : direct methods that

compute a transformation which optimizes some measure of photometric consistency

over the whole image; and feature based methods that use a sparse set of corresponding

image features (e.g. points and lines) to estimate the image-to-image mapping.

2.1.1 Registration by a geometric transformation

Of particular interest is the imaging of plane surfaces under general camera motion. In

this case, the images are related by an 8 degree of freedom (dof) planar projective transfor-

mation, also called a homography. Methods for computing this and other transformations

given a pair of images are now reviewed.



Which transformation? The most general case of the transformation is the 8 dof pla-

nar homography. For special camera motions the mapping between images of planes is

simpler than a general homography. These simpler mappings have fewer dof, and conse-

quently can often be more reliably and rapidly estimated.

If the camera motion consists of a translation parallel to the image plane and rotation

about the principal axis then images are related by a 4 dof similarity transformation. This

motion is often the case in satellite imaging and document scanning [34, 133]. Under tele-

photo viewing conditions, where perspective effects such as the convergence of imaged

parallel lines are negligible, images are related by a 6 dof affine transformation [34, 84].

Both similarity and affinity mappings are perfectly correct and valid transformations

under certain imaging conditions, they are subgroups of a planar homography. By con-

trast, some authors have worked with more general imaging conditions in which only the

full homography can correctly capture the image transformation, but for reasons of nu-

merical stability and/or simplicity of optimization have chosen to approximate the ho-

mography by a Taylor expansion to second-order, resulting in the biquadratic transforma-

tion [95, 99, 100, 173]. This has 12 dof, but is unable to correctly model perspective effects.

The expansion is given in the following equations.

x′ = qx′x2x2 + qx′xyxy + qx′y2y2 + qx′xx + qx′yy + qx′

y′ = qy′x2x2 + qy′xyxy + qy′y2y2 + qy′xx + qy′yy + qy′

In some cases this expansion has allowed the authors to avoid expensive non-linear op-

timization algorithms which are generally necessary in computation of the exact homog-

raphy, but claims of numerical instability in these methods appear to be unfounded (see

chapter 3).

Which computation method? As explained in chapter 3 to compute a homography be-

tween two images only requires four or more point correspondences. For certain types

of images these point correspondences can be obtained automatically by matching image

features such as interest points (such as generated by a Harris corner detector) [13], and

employing efficient non-linear optimization techniques to compute the required transfor-

mation. These feature based method have proved time and again to be extremely accurate,

robust and efficient for the computation of many geometric image relations. Examples
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are [78, 155, 156, 158–160]. The challenge in implementing these algorithms is in the accu-

rate and reliable detection of image features, and in the robust and efficient matching of

corresponding features in two or more views. Feature based methods are used throughout

this thesis, and are discussed in more detail in chapter 3.

For reasons which are largely to do with available software and hardware in many labs,

rather than performance, algorithms for computing homographies have generally been

based on Gaussian or Laplacian pyramid, multi-scale approaches, often using simple gra-

dient descent schemes to perform optimization.

The idea is that matching “large scale” features is easier (less search is required). The

transformation can then be followed through a scale space. Suppose the homography be-

tween two images I1 and I2 is sought. Typically a Gaussian pyramid is constructed for

both I1 and I2 so that each level consists of of progressively subsampled images. Match-

ing begins at a coarse level of the pyramid: One of the images, I1 say, is warped and the

difference between the warped and I2 at that level measured. The transformation is found

that minimizes this difference (a simple search, as there are not too many pixels, and the

cost function should be smooth). This transformation is then applied to the next level of

the pyramid, and refined at that level. The process repeats until the full image resolution is

reached.

Irani et al. [84] use a multi-scale method to compute affine and quadratic transforma-

tions between images. Their “scale-space” is a Laplacian pyramid in which they minimize

the sum of squared errors between registered images using a non-linear minimizer to es-

timate the parameters of the transformations. Mann and Picard [100] also use a multi-

scale approach to estimate a quadratic approximation by minimizing an error based on

projective flow. The multi-scale approach allows these algorithm to work for large image

disparities.

Szeliski [146, 148] computes the full 8 dof homography between images using a multi-

scale, iterative method. He uses a Gaussian pyramid and the Levenberg-Marquardt [117]

algorithm to perform the estimation (see also appendix A). He also suggests using matched

image features to obtain an initial registration.

A modification of these methods which claims to produce very accurate registration is

that of Bober et al. [18]. Their technique involves identifying areas of the images with rich

texture and minimizing a correlation score between these areas in order to improve the es-
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timate of the homography. By concentrating on “information rich” areas of the image their

method represents an improvement in speed and noise sensitivity over other correlation

based algorithms.

2.1.2 Ensuring global consistency

The registration methods described so far are designed to compute the homography be-

tween pairs of overlapping images. In situations featuring many views of a scene, such as

is the case in this thesis, it is often required to compute the homography relating any given

pair of images (i, j). One way to achieve this would be to attempt registration between

every possible pair of images in the sequence. But in practice, particularly for large num-

bers of images, this is impractical. A more common method is to compute homographies

only between temporally consecutive images in a sequence, and then use the concate-

nation (multiplication) property of homographies to obtain the transformation between

non-temporally consecutive views. However, this method is prone to “dead-reckoning”

error which accumulates when concatenating transformations over long sequences.

Several authors have addressed this problem, attempting to compute a globally consis-

tent set of homographies, such that the transformation between distant images (i, j) ob-

tained by concatenation is equal to that which would be computed by direct registration

of i and j.

Davis [46] suggests a method whereby a redundant set of homographies is first com-

puted by registering all consecutive and some non-consecutive views. He then minimizes

an algebraic residual based on the actual parameters of the homographies, attempting to

ensure that the same homography Hij computed by different concatenation paths is glob-

ally consistent. Although simple and easy to implement, the algebraic residual used does

not correspond to any meaningful geometric error.

Hartley [78] extends the feature based method for two-view homography computation

to the case of simultaneous estimation of homographies over N-views, referring to [141] to

explain how block matrix methods may be employed in order to render the required non-

linear optimization tractable (known as block bundle-adjustment). This method is guaran-

teed to produce globally consistent homographies. It is shown to be efficient and accurate,

but the problem of how to match corresponding feature points across many views is not

addressed.
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Attempts at global consistency have also been made using direct methods. Sawyhey et al. [127]

propose a scheme whereby, having obtained initial pairwise consecutive transformations,

additional registration is performed between image pairs which are deemed to be “spa-

tially” adjacent, i.e. they image the same part of the scene. Homographies between any

pairs (i, j) are obtained by concatenating along the shortest-path through the “view-graph”

so formed. Although this method can improve consistency to an extent, the homographies

are still computed using a pair-wise algorithm, hence global consistency is not achieved.

They also propose a method whereby consecutive images are registered one at a time with

a mosaic representation of the scene(see chapter 4), updating the mosaic with each new

image. Again, this method does not produce globally consistent homographies.

More recently, Zelnik-Manor & Irani [173, 174] propose a scheme which does aim to

simultaneously optimize N homographies, though their method is limited to small pertur-

bations of the camera, since it uses the local biquadratic approximation to the full projec-

tive motion model.

2.1.3 Other parametric surfaces

The essence of this section is that images can be registered by a global mapping with a

small number of parameters for planar scenes. There are other situations where the map-

ping is global but has more parameters. An example is an imaged quadric surface where

the mapping has nine parameters and can be determined from nine correspondences [45].

This would allow simple mosaicing for images of curved surfaces such as spheres, cylin-

ders, ellipsoids. A similar technique can be applied in general to surfaces which can be

computed from image correspondences. This requires that the surface is known, or it lies

in a specific class (for example, quadric, cubic, surface of revolution etc).

2.2 Image mosaicing

Image mosaicing is the alignment of multiple images into larger compositions which rep-

resent portions of a 3D scene. It generally applies to images related by planar homogra-

phies [35, 100, 148]. The conditions under which this mapping is applicable are described

in detail in chapter 3, the most common being views of a plane from arbitrary camera posi-

tions, or views of a general scene taken by a camera free only to pan,tilt and zoom. Building
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a planar mosaic requires the images to be warped, using the computed homographies, into

a common coordinate frame, and combined to form a single image. In this way it is possi-

ble to build panoramic views of scenes too large to fit into a single image, or alternatively

to store the single mosaic image and use it to render views with arbitrary gaze directions

and camera zoom.

Excellent reviews of image mosaicing and its many applications are given in [83, 84, 95].

Some notable examples are due to Kang & Szeliski [91, 92] who use mosaics composed of

a hemisphere of images to represent the view in every direction at a particular point in the

world. By capturing mosaics at many points, and matching image features across mosaics,

they are used to perform wide-baseline 3D scene reconstruction. Coorg & Teller [37, 38,

149] use hemispherical mosaics in a similar application. The QuickTime VR software [35]

is another example of the use of spherical mosaics to represent the view in every direction

from some point in space. The representation is used to render the view in an arbitrary

direction, with arbitrary zoom, thus creating a simple virtual reality application.

Other uses of mosaics include the creation of “clean-plates”, high-quality images of a

scene or texture from which independently moving objects have been removed. Such im-

ages are used for texture and environment mapping in the computer-generated special

effects industry. A simple way to achieve this result is by temporal median filtering [83].

Davis [46] proposes a more sophisticated method of rendering mosaics that are free of ar-

tifacts caused by independently moving objects.

Some authors have attempted to extend mosaicing to more general scenes and camera

motions with varying degrees of success. Some of these methods are broadly based on

simulating the linear push-broom cameras used in satellite imaging. Rousso [121, 122] and

Peleg [109, 112, 115] consider mosaics composed of strips extracted from the input images.

The strips are chosen such that the direction of optic flow is orthogonal to the axis of the

strip. Using this method, and with suitable blending, it is possible to make approximate

mosaics for situations including camera translation, both along the optic axis and parallel

to the image plane. Recently, Peleg has extended this technique to the creation of stereo-

pairs from a single rotating camera. This modification requires that the camera be rotated

about a point some distance from the optic centre. Mosaics formed composed using strips

extracted from the left- and right-hand extrema of each image are used to form the stereo

pair of mosaics [110, 111].
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Recent interests in image mosaicing have included the creation of images with increased

dynamic range, achieved by combining images taken under multiple different exposures.

Two examples of this are due to Aggarwal et al. [7] and Schechner et al. [130]. Both of these

methods cleverly achieve the effect of multiple exposures by placing a spatially varying

filter in front of the lens. Thus, as the camera rotates, each scene point is imaged with a

varying level of attenuation.

Other methods for non-planar scenes Many other mosaicing related methods have been

proposed for the efficient representation of scenes which deviate marginally from the zero-

parallax model. One such method is Adelson’s “Layers” technique [6] which involves seg-

menting the image sequence into multiple independent planar motions, each described

by a planar mosaic and transparency map. Adelson uses binary transparency maps, whilst

Irani and Peleg [87] extended the approach to real-valued transparencies to cope with

transparent motions. The “Planes plus parallax” technique [95] attempts to overcome the

limitations of planar mosaicing by describing the image motion between successive frames

as a homography and a parallax field which is defined for every point in the image and ac-

counts for the residual motion of points lying off the plane. This is effectively a general

dense correspondence problem. If the camera centres are co-linear, it is possible to align

the parallax fields and reproject the images into a common reference frame as if they were

taken by a camera rotating about its optic centre . Co-linear cameras share the same pencil

of epipolar planes and can hence be made to share the same epipolar lines by means of an

appropriate homography (a synthetic rotation about the camera centre.) The parallax field

in this case simply encodes the disparity of points along their epipolar lines. A very similar

technique has been documented in the computer graphics community under the name of

“view interpolation” (see [36, 135].)

2.3 Super-resolution

Historically, there have been several different approaches to the super-resolution restora-

tion of images. Early attempts were based on the generalized sampling theorem [168].

The drawback with these methods is that they do not allow for blur or noise in the ob-

served images. Another popular approach is to perform restoration in the frequency do-

main [153, 164]. These methods can deal with spatially invariant blur and noisy observa-
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tions, but the motion model is limited to pure translation. More recent approaches have

used Projection onto Convex Sets (POCS) to solve iteratively the super-resolution inverse

problem using a full generative image model and arbitrary motion model [57, 60, 61, 106–

108]. POCS is a very simple way to impose constraints such as non-negativity and bounded

errors. However, POCS based approaches to super-resolution suffer from extremely slow

convergence, and because they optimize a purely constraint-based objective, they do not

converge to a unique solution.

The methods investigated in this thesis tackle the super-resolution inverse problem in

the spatial domain using a statistical framework. Bayesian methods are employed to reg-

ularize the problem, and constraints are imposed in a computationally efficient manner.

This allows maximum flexibility in the generative image model and motion model whilst

allowing very efficient optimization strategies. The unique solutions obtained are optimal

in a plausible statistical sense.

2.3.1 Simple super-resolution schemes

Enhancement by frame-fusion is possible when we have several images of the same surface

and a dense correspondence (from either geometric or general registration) between the

images. It attempts to reverse all of the degradations at once, recovering a deblurred, high

spatial-resolution surface texture.

The simplest methods attempt to resample all the observed image data into a single

coordinate frame. The resampled data is merged by averaging or median filtering to obtain

a low-noise, high-density image. A standard, single-image deblurring step completes the

process.

Early work was done by Ur and Gross [168], based on generalized sampling theory. They

assume that the input images undergo relative shifts which are known precisely a priori.

The low-resolution images are interpolated and merged onto a finer grid, before deblur-

ring by convolution with a kernel derived from the inverse of the blur operator. A similar

technique has been proposed by Rudin et al. [123]. They use a hierarchical block-matching

algorithm to obtain a dense optic flow field. One view is chosen as a reference frame and

its resolution is increased to the desired level using a simple interpolation kernel. The

other images are warped and merged into the reference frame according to the optic flow

field. Finally, a standard single-image deblurring algorithm is applied to obtain the super-
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resolution result. We examine this algorithm in more detail in section 5.

2.3.2 Methods using a generative model

More recent methods use a generative model of the camera transfer function which deter-

mines how a real surface is transformed, filtered and sampled to form an image; and also

an accurate set of registrations between the input images. They proceed by finding a high-

resolution image which, when transformed according to the registration parameters and

degraded according to the camera transfer function, produces a set of simulated images

which are as similar as possible to the actual observed low-resolution images.

Under the assumption of Gaussian distributed image noise, these methods produce

the maximum likelihood estimate (MLE) of the super-resolved surface intensities. It is also

common to impose a prior model of the surface intensities (such as a spatial-smoothness

constraint), in which case the intensity estimates obtained are the maximum a posterior

estimates (MAP).

Algorithms proposed vary in their registration methods, their use of prior texture mod-

els, and the numerical methods used to converge to the required estimate. Irani and Pe-

leg [86, 87] consider images obtained from a flatbed scanner which have undergone ro-

tation and translation (a Euclidean transformation). Their registration method is based

on a coarse-to-fine, texture correlation strategy, as described in chapter 3. They consider

optical blur, and obtain the kernel of the point spread function (PSF) by imaging a small

dot. Their cost function to be minimized is the sum of squared differences in intensity val-

ues between the simulated low-resolution images and the actual ones (see equation (2.1)

in which ĝn is the nth simulated image and gn the associated actual low-resolution im-

age), and the super-resolved texture (typically double the resolution of the input images)

is found by a simple iterative update scheme similar to steepest descent. The properties

of this algorithm are examined in detail in chapter 5. Mann and Picard [99, 100] extended

Irani and Peleg’s algorithm to fully projective image registration, obtained using a coarse-

to-fine texture correlation strategy.

cost =
∑

n

∑

(x,y)

(ĝn(x, y) − gn(x, y))2 (2.1)

Elad & Feuer [54–56, 58] also make use of a generative model within a POCS based ap-

proach to super-resolution. They assume that accurate registration is known a priori, and
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fail to present any results based on real images. Tom & Katsagellos [152] propose a fre-

quency domain method based on a generative model, in which the registration (limited

to translation) and super-resolution image are estimated simultaneously. Again, no real

image results are presented.

Delleart et al. [49] propose an on-line method for the continuous super-resolution up-

date of a patch of texture as it is tracked. The affine tracking algorithm uses the current

estimate of the patch as a template, and the super-resolution update is performed using a

very simplified Kalman-style update scheme.

Shekarforoush & Challappa [137, 138] also propose several sequential update schemes

for super-resolution estimation using a generative model. Additionally, they propose a

novel method for estimating the blur function based on analysis of the cross-power spec-

trum of the images. Their method is applied to real image sequences, with unconvincing

results.

2.3.3 Super-resolution using statistical prior image models

Bascle et al. [11] extended the back-projection approach to motion blurred images. The

registration method involves tracking a region using a combined texture-correlation and

contour based approach related to snake tracking [12], assuming an affine motion model.

Their cost function includes a 2nd order smoothness constraint on the resolved texture

making this a MAP estimation method (see equation (2.2) in which f is the high-resolution

estimate). This ensures that the estimate is not dominated by periodic noise as is common

when reconstructing motion blurred images. The texture estimate which minimizes the

cost function is found by conjugate gradient descent [71].

cost =
N
∑

n=0

∑

(x,y)

(ĝn(x, y) − gn(x, y))2 + λ
∑

(x,y)

(∇2f(x, y)) (2.2)

Cheeseman et al. [34] consider satellite imagery in which the input images are assumed

to be related by affine transformations. Registration again proceeds by a texture based

method, finding the transformation which minimizes the squared intensity error between

registered images by gradient descent. They take a MAP approach, imposing a first order

smoothness constraint in the reconstructed high-resolution image. In this case the PSF

can be obtained from the bench calibration of the satellite optics.
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Schultz & Stevenson [132] propose a MAP estimation method which differs from pre-

vious ones in two significant respects. Firstly, it does not use a geometric registration

method, but a general full, dense correspondence method. Each pixel has a disparity vec-

tor associated with it which encodes its motion between the two images, and hence the

method implicitly assumes that the scene is locally fronto-parallel at the pixel level. Sec-

ondly, the prior image model is based on a Huber-Markov Random Field (HMRF) which

represents piecewise-smooth data. The smoothness constraint imposed by the methods

discussed in previous paragraphs is based on a Gauss-Markov image model which imposes

an x2 penalty on the image gradient. The HMRF model behaves this way for small gra-

dients, but imposes a less severe penalty at large gradient discontinuities. It is therefore

much better at preserving edges in the super-resolved image. Again, a suitable estimate is

found by a gradient descent method.

Very recent work has focused on inferring super-resolution images from a single ob-

served low-resolution image. Single-image methods are inherently limited by the amount

of data available in an image and by the noise present in the image. However, Cando-

cia [26], Freeman & Pasztor [63–66], and Baker & Kanade [10] have proposed Bayesian MAP

estimators which utilize sophisticated prior models learnt from training images. These

methods attempt to infer high-frequency detail from a single low-resolution image.
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Chapter 3

Registration : Geometric and
Photometric

3.1 Introduction

This chapter describes the geometric and photometric registration techniques which en-

able the mosaicing and super-resolution methods presented in later chapters.

In the context of this thesis, geometric registration refers to the process of obtaining

a dense correspondence (or registration) between multiple views of a planar surface, or

equivalently, between multiple views taken by a camera rotating about its optic centre. In

both cases, the geometric transformation between any two such views is captured com-

pletely by an 8 degree-of-freedom (dof) planar projective transformation or homography.

Section 3.3 introduces the relevant geometry. In section 3.4, a robust estimation procedure

for computing the registration parameters from corresponding points in multiple views is

described, and in section 3.5, the accuracy of this method is investigated empirically.

Photometric registration refers to the procedure by which global photometric transfor-

mations between images are estimated and compensated for. Examples of such transfor-

mations are global illumination changes across the scene, and intensity variations due to

camera automatic gain control or automatic white balancing. Section 3.7 presents a simple

parametric model of these effects, along with a robust method for computing the param-

eters given a set of geometrically registered views. The method is shown to be effective

when applied to real image sequences.

Finally, section 3.8, describes a real-life forensic science application which uses these

registration algorithms to allow latent marks, such as fingerprints, to be separated from

non-periodic background clutter, such as a bank-note. The application was developed as

part of an industrial collaboration project and is now in use in the UK.



3.2 Imaging Geometry

In this section, we briefly review the geometry of the planar homography, which is the

mapping the arises in the perspective imaging of planes. This is the simplest case in which

we can call on geometry to allow us to compute an accurate point-to-point mapping be-

tween two images. Geometric registration is also possible for multiple views of other para-

metric surfaces such as quadrics, where the mapping has nine parameters, but treatment

of these surfaces and of general non-parametric surfaces is beyond the scope of this the-

sis. A detailed treatment is presented by Cross et al. [41–44], Shashua & Toelg [136], and

Can et al. [25].

There are two important situations where the image to image mapping is exactly cap-

tured by a planar homography: images of a plane viewed under arbitrary camera motion;

and images of an arbitrary 3D scene viewed by a camera rotating about its optic centre

and/or zooming. The two situations are illustrated in figures 3.1 and 3.2 respectively.

A third imaging situation in which a homography may be appropriate is due to a freely

moving camera viewing a very distant scene, such as is the case in high-aerial or satellite

photography. Because the distance of the scene from the camera is very much greater than

the motion of the camera between views, the parallax effects caused by the three dimen-

sional nature of the scene are negligibly small.

In all cases it is assumed that images are obtained by a perspective pin-hole camera ,

one in which all rays between objects and their images intersect at the camera centre.

Notation Points are represented by homogeneous coordinates, so that a point (x, y) is

represented as (x, y, 1). Conversely, the point (x1, x2, x3) in homogeneous coordinates cor-

responds to the inhomogeneous point (x1/x3, x2/x3).

Definition: planar homography Under a planar homography (also called a plane pro-

jective transformation, collineation or projectivity) points are mapped as:
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x′ = Hx. (3.2)
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Figure 3.1: Images of planes. A planar homography is induced between the two images of a

plane taken from different viewpoints (related by a rotation R and translation t). The scene

point X is projected to points x and x′ in the two images. The image points are related by

x′ = Hx.
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Figure 3.2: Rotation about the camera centre. As the camera is rotated the points of inter-

section of the rays with the image plane are related by a planar homography. Image points

x and x′ correspond to the same scene point X. The image points are related by x′ = Hx.
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where the = indicates equality upto a scale factor, and consequently the transformation

matrix has 8 degrees of freedom1.

It is important to note that real cameras may deviate significantly from this pin-hole

model. This gives rise to radial distortion at the periphery of the image, meaning that the

mapping between views is not correctly modelled by a homography. The effect is chiefly

observed when using cheap, wide-angle lenses. The sequences used in this thesis were

captured using fairly high-quality equipment and are well modelled by the pin-hole cam-

era. In any case, it is possible to correct this distortion, either a priori by imposing “straight-

ness” of hand-selected line segments, or by including a simple parametric model of the

lens distortion in the geometric registration procedure. The former method is used in the

context of single view metrology by Criminisi et al. [39, 40]. The latter method is used in

the context of image mosaicing by Sawhney & Kumar [127] and by Dellaert et al. [48]. A

detailed analysis of the lens distortion problem is performed by Devernay & Faugeras [51],

and also by Stein [144].

3.3 Estimating homographies

Various methods for computing a planar homography between image pairs have been pro-

posed, but they generally fall into two broad categories :

• Direct correlation methods compute the homography by maximizing photometric

consistency over the whole image.

• Feature based methods compute the homography from a sparsely distributed set of

point-to-point correspondences.

Almost exclusively, the results presented in this thesis were generated using feature-

based registration methods. Feature based techniques have many significant advantages

over their direct correlation counterparts in terms of computation speed, and the scope

that they offer for the application of robust statistical methods for outlier rejection. These

differences are discussed in more detail in section 3.6.

1The matrix has eight degrees of freedom because only the ratio of homogeneous coordinates is significant.
There are eight ratios among the nine elements of H. Multiplying the matrix by an arbitrary non-zero number
has no effect on this ratio.
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In this section we review the feature-based approach, and describe both linear and

non-linear methods for estimating the homography relating two images.

3.3.1 Linear estimators

The planar homography has 8 degrees of freedom. Each point correspondence generates

2 linear equations for the elements of H and hence 4 correspondences is enough to solve

for the homography directly. If more than 4 points are available, a least-squares solution

can be found by linear methods. We now briefly review the linear method for estimating

the homography H, from a set of N point correspondences x ↔ x′. Full details are given in

Hartley and Zisserman [77].

From the definition of H, we have
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where = is equality up to scale. Each inhomogeneous, 2D point correspondence generates

two linear equations in the elements of H

x′ (h31x + h32y + h33) − h11x − h12y − h13 = 0

y′ (h31x + h32y + h33) − h21x − h22y − h23 = 0

Hence, n points generate 2n linear equations, which may be arranged in a “design matrix”

:

Ah = 0 (3.3)

The solution for h is the one-dimensional kernel of A, which may obtained from the SVD.

For n > 4 points, this equation will not have an exact solution. In this case, a solution may

be obtained which minimizes the algebraic residuals, r = Ah, in a least-squares sense, by

taking the singular vector corresponding to the smallest singular value.

3.3.2 Non-linear refinement

We have to assume that the measured positions of the image features used for the com-

putation will be subject to noise. In this case it is important to ensure that using many

correspondences will improve the estimate of the homography. The linear method pro-

vides a closed-form solution which is easy to compute. However, the algebraic residuals

that are minimized do not correspond to a sensible geometric distance.
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In order to obtain a unique estimate of H from noisy data we use the method of maxi-

mum likelihood. This provides an estimate of H which is optimal according to a plausible

statistical model of the noise corrupting our observations. In this case, our observations

are point-to-point correspondences, and each point x has a localization error which is dis-

tributed about the true point position x. Hence, intuitively, we would expect that a better

estimate of H will be obtained if we minimize residuals which correspond to geometric dis-

tances in the images.

A common cost function is the sum of squared forward and reverse transfer distances,

C =
∑

i

(d2(x′
i, Hxi) + d2(xi, H

−1x′
i)) (3.4)

where (xi ↔ x′
i) are the image correspondences, and d2(x,x′) is the squared, (inhomo-

geneous) Euclidean distance between homogeneous points x and x′. The error metric is

illustrated in figure 3.3. This error can be minimized with respect to the 8 parameters of H

using an iterative, non-linear least-squares optimizer. Efficient algorithms for performing

this optimization are based on the Gauss-Newton method [50, 69, 70], the preferred vari-

ant being the Levenberg-Marquardt algorithm [117]. At every iteration, a finite difference

approximation may be used to compute the Jacobian of the residuals with respect to each

of the 8 parameters. This error metric has the advantage of being simple to compute and

provides good estimates of the homography. However, it does not provide the maximum

likelihood estimate of H.

3.3.3 The maximum likelihood estimator of H

To derive the error metric which must be minimized to give the MLE homography we

model the localization error on the feature points as an isotropic, normal distribution with

zero mean and standard deviation σ. These assumptions are verified in section 3.5. Given

a true, noise-free point x, the probability distribution of the corresponding feature point

location is

Pr(xi|x) =
1

σ
√

2π
exp

(

−
(x − x)2 + (y − y)2

2σ2

)

(3.5)

Hence, given the true, noise-free correspondences {x ↔ x′}, and making the very reason-

able assumption that the feature localization error is uncorrelated across different images,
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, the probability density of the observed, noisy correspondences {x ↔ x′} is

Pr({x,x′}) =
∏

i

Pr(xi|xi) Pr(x′
i|x′

i) (3.6)

The negative log-likelihood of the set of all correspondences is therefore

L = −
∑

i

(log Pr(xi|xi) + log Pr(x′
i|x′

i)) (3.7)

=
∑

i

((xi − xi)
2 + (yi − y

i
)2 + (x′

i − x′
i)

2 + (y′i − y′
i
)2) (3.8)

Of course, the true pre-image points are unknown, so we replace {x,x′} in the above equa-

tion with {x̂, x̂′}, the estimated positions of the pre-image points, hence

L = −
∑

i

((xi − x̂i)
2 + (yi − ŷi)

2 + (x′
i − x̂′

i)
2 + (y′i − ŷ′i)

2) (3.9)

Finally, we impose the constraint that x̂ maps to x̂′ under a homography, and hence sub-

stitute

x̂′ =
h11x̂ + h12ŷ + h13

h31x̂ + h32ŷ + h33
, ŷ′ =

h21x̂ + h22ŷ + h23

h31x̂ + h32ŷ + h33

This error metric is illustrated in figure 3.3. The required homography and pre-image point

estimates {x̂} minimize this function. A direct method of obtaining these estimates is to

parameterize both the 8 parameters of the homography, and the 2N parameters of the N

points {x̂}. However, this optimization requires special consideration if it is to be done

efficiently. We return to this idea in the context of homography computation over multiple

views in section 4.4. Fortunately, in the 2-view case, it is possible to derive a very good

approximation to this log-likelihood function, based on Sampson’s approximation of the

distance to a conic [124], which does not require explicit parameterization of the pre-image

points. The details of this approximation are described by Torr et al. [157, 161]. Again, the

Levenberg-Marquardt algorithm is used to optimize the approximate log-likelihood with

respect to the 8 homography parameters, yielding a very accurate estimate of Hmle.

3.4 A practical 2-view method

The automatic, feature-based method used throughout this work to compute accurate ho-

mographies is summarized in table 3.1. As a practical example, we consider the image pair

shown in figure 3.4.
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Figure 3.3: (Top) Homography computation using the forward-backward transfer distance

metric of equation (3.4). The metric is simple to use, but does not give the maximum like-

lihood (ML) estimate of H. (Bottom) The ML estimator of equation (3.9) minimizes the

reprojection error between the pre-image point correspondence (x̂, x̂′) and the observed

interest points (x,x′).

Feature extraction The point features used are extracted using the Harris feature detec-

tor [75] which automatically extracts hundreds of stable image features (known as interest

points or “corners”) with positions accurate to around 0.25 pixels. However, as can be seen

from figure 3.4, the term “corner” is misleading, as these point features do not only occur

at real corners (line intersections). Thus the term interest point is preferred. There will

typically be hundreds or thousands of interest points detected in an image, depending on

the image complexity.

Putative correspondences For every interest point x in the first image (figure 3.5a), a

match is sought amongst a subset S of the interest points in the second image. The subset

S is defined by considering only the interest points {x′} contained within a search window

centred on the location of x (figure 3.5b). Every interest point x′ ∈ S is ranked by comput-

ing the normalized cross-correlation score between 5×5 pixel neighbourhoods centred on

x and x′ (figures 3.5 c & d). Pairs whose correlation score falls below a conservative thresh-

old are disregarded, and among the remaining pairs (if any) a winner-takes-all strategy is

employed whereby the top-ranking point is taken to be the putative match for x. Figure 3.6
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Objective Compute the 2D homography between two images.

Algorithm

1. Features: Compute interest point features in each image to sub pixel

accuracy (e.g. Harris corners [75]).

2. Putative correspondences: Compute a set of interest point matches

based on proximity and similarity of their intensity neighbourhood.

3. RANSAC robust estimation: Repeat for N samples

(a) Select a random sample of 4 correspondences and compute the

homography H.

(b) Calculate a geometric image distance error for each putative cor-

respondence.

(c) Compute the number of inliers consistent with H by the number of

correspondences for which the distance error is less than a thresh-

old.

Choose the H with the largest number of inliers.

4. Optimal estimation: re-estimate H from all correspondences classi-

fied as inliers, by maximizing the likelihood function (3.9) using a

suitable numerical optimizer, such as the Levenberg-Marquardt algo-

rithm [117].

5. Guided matching: Further interest point correspondences are now de-

termined using the estimated H to define a search region about the

transferred point position.

The last two steps can be iterated until the number of correspondences is

stable.

Table 3.1: The main steps in the algorithm to automatically estimate a homography between

two images using RANSAC and features. Further details are given in [77].

shows the resulting 268 matches super-imposed upon the first image. There are clearly

many mismatches at this stage.

RANSAC The RANdom SAmple Concensus algorithm, proposed by Fischler and Bolles [62],

is an extremely simple and powerful method for estimating model parameters given a data

set heavily contaminated with outliers to the correct model. It has proved extremely ef-

fective in sifting 2-view relations, such as homographies and fundamental matrices, from

point-to-point image correspondences, as amply demonstrated by Torr [154]. The method
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considers many random subsets of the data, each containing the minimum number of

samples required to compute the model parameters exactly, and selecting the parameter

set which has the largest number of inliers, i.e. data points which are correctly mapped

to within some threshold. In the case of fitting a homography, minimal sets of 4 point

correspondences are extracted, H is computed using a linear method, and the inliers are

defined as those matches (x,x′) for which d(H,x,x′) - the Sampson distance between ho-

mogeneous points x and x′ under H - is less than a distance threshold T (typically 1.25

pixels). This is repeated many times depending on the expected ratio of inliers to outliers.

The final homography estimate is that with the highest inlier count. Figure 3.7 shows the

inliers and outliers resulting from RANSACing our 268 putative correspondences.

Optimal estimation The homography estimate returned by the RANSAC algorithm is

used to initialize the non-linear maximum likelihood estimator described in section 3.3.3.

The set of point correspondences deemed to be inliers is used to compute a refined esti-

mate of H.

Guided matching The refined homography estimate returned by the optimal estimation

stage is used to guide a search for more interest point correspondences. The search pro-

cedure is similar to that used to obtain the putative correspondences : given an interest

point x in the first image, a match is sought in search window centred on the expected po-

sition x′ = Hx in the second image. Because the search is now guided, the size of the search

window can be greatly reduced, typically 3 × 3 pixels, and the correlation threshold below

which matches are discarded may be increased. The new set of inliers are again used to

refine the optimal estimate of H. The optimal estimation and guided matching stages are

repeated until the number of inliers stabilizes. The final set of inlying correspondences is

shown in figure 3.8.

There are two important things to note about the algorithm. First, interest points are

not matched purely using geometry – i.e. only using a point’s position. Instead, the in-

tensity neighbourhood of the interest point is also used to rank possible matches via the

normalized cross correlation between the point’s neighbourhood and the neighbourhood

of each possible match. Second, the use of robust statistics is essential to the success of
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Figure 3.4: (Top) Images of Keble College, Oxford. The motion between views is a rotation

about the camera centre so the images are related by a homography. The images are 640 ×
480 pixels. (Bottom) Detected Harris interest points superimposed on the images. There

are approximately 500 features on each image.

the algorithm: in the example above, more than 40% of the putative matches between the

interest points (obtained by the best cross correlation score and proximity) are incorrect.

It is the RANSAC algorithm that identifies the correct correspondences.
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a b

c d

Figure 3.5: Obtaining putative corner matches by matching within a disparity window. (a)

An interest point in the left image, and (b) the corresponding search window in the right

image (shown in green). (c) and (d) Possible matches are ranked by computing the nor-

malized cross-correlation between 5 × 5 pixel windows centred on the two interest points

(shown in red).

Figure 3.6: A winner-takes-all scheme is applied to the ranked disparity feature matches.

The 268 putative matches are shown super-imposed on the left image by the line-linking

matched points. Note the clear mismatches.
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Figure 3.7: (Left) RANSAC outliers : 117 of the putative matches. (Right) RANSAC inliers :

151 correspondences consistent with the estimated H.

Figure 3.8: The final set of 262 correspondences after guided matching and MLE. The esti-

mated H is accurate to sub-pixel resolution.
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3.5 Assessing the accuracy of registration

Super-resolution requires point-to-point mappings which are accurate to the sub-pixel

level. In this section, we perform an empirical investigation to assess the accuracy of the

feature-based method described in sections 3.4. A similar, though more detailed investi-

gation was carried out by Schmid and Mohr [131], but with the emphasis on evaluating the

performance of various feature detectors.

Clearly, the accuracy of feature location and registration can depend heavily on the im-

age content and on the severity of the transformation. For example, images with strongly

oriented textures are likely to yield feature points which are poorly localized in a particu-

lar direction, thus violating our assumption of isotropic error distribution. Furthermore,

Harris corner localization is not invariant under scale change, again destroying isotropy.

The purpose of this investigation therefore is to get an idea of the accuracy of our method

applied to typical images undergoing moderately severe transformations.

3.5.1 Assessment criteria

The correct way to assess the quality of an estimated homography Ĥ is to compare it to

the ground-truth transformation H. Given such a ground-truth, we require a method of

comparison which provides a meaningful and intuitive measure of the accuracy of the es-

timated homography. Simple, direct comparisons of the estimated parameters are of little

value in this respect. What really interests us is “How accurately does this homography

transform points between the two images?” In other words, we should base our quality

criterion on the transfer error between the same point mapped under both H and Ĥ :

δx1 = H(x1) − Ĥ(x1) (3.10a)

δx2 = H−1(x2) − Ĥ
−1

(x2) (3.10b)

where the notation H(x) indicates the mapping of an inhomogeneous 2D point x under a

homography. The idea is illustrated in figure 3.9. Note that we define the transfer error in

both the forward and backward directions to maintain symmetry.

Given a ground-truth homography H mapping from image 1 to image 2, and an esti-

mate Ĥ, equations (3.10a) and (3.10b) are used to compute a field of displacement vectors

corresponding to the forward and backward transfer errors in each image. These fields are
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Figure 3.9: The forward and backward transfer errors are defined by mapping the same

point x under the estimated and ground-truth homographies, Ĥ and H.

averaged in order to obtain the RMS transfer error of the estimated homography over a

region of interest Ω :

erms =

√

1

2Ω

∫

Ω
(δx1)2 + (δx2)2 dΩ (3.11)

3.5.2 Obtaining a ground-truth homography

In practice, obtaining a ground-truth homography between a pair of real images is rather

challenging. The method adopted here is to use a 17–inch LCD flat-panel screen to allow

seamless switching between a calibration image and a set of test images. The calibration

image is designed to allow very high accuracy homographies to be computed when it is

viewed from different positions. For this purpose we use an 8× 8 Tsai grid [165] with a 3 : 1

mark–space ratio. Three different test images are then used : two Escher drawings and a

Lego scene. The calibration image and three test images are shown in figure 3.10.

The panel is viewed from 4 different viewpoints, and for each viewpoint, 4 images are

captured : the calibration image and three different test-images. A monochrome Coho

CCD camera is used for the image capture. The LCD panel has the advantage of being

both extremely flat, and of allowing the image to be switched remotely, avoiding any risk

of moving the experimental rig. Figure 3.11 shows the captured images.

High-accuracy homographies are computed between the four views of the calibration

image by first fitting a template consisting of 16 horizontal and 16 vertical lines to each
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(a) (b)

(c) (d)

Figure 3.10: The Tsai grid calibration image (a), and the three test images : (b) Escher’s

“Mosaic”, (c) Escher’s “Relativity”, (d) “Lego Rave”

image. The algorithm for doing this is shown in table 3.2. Having obtained accurate homo-

graphies between the template and each view of the calibration image, it is then a simple

matter to obtain the homography between any pair of views. Each line in the template is

fitted to around 300 Canny edgel, those which are deemed to be its inliers. The total num-

ber of residuals in this fitting process is therefore around 32 × 300 = 9600, depending of

course on the particular view. The fitting error, which is indicated by the RMS orthogonal

distance of the edgels to the fitted lines, is 0.02 pixels. It is reasonable to assume that the

templates are fitted with sufficient accuracy to allow near ground-truth homographies to

be computed. The fitted templates are shown in figure 3.12.

Registration between the test images is performed using the feature-based, 2-view max-

imum likelihood estimator described in section 3.4. Around 500 Harris interest points are

extracted in each image, from which somewhere between 200 and 450 point correspon-
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Figure 3.11: The captured images generated by viewing the LCD panel screen from 4 dif-

ferent view-points and remotely switching between the calibration image and the 3 test

images. The images are related by full 8-dof projective transformations.

Figure 3.12: Line templates are fitted to Canny sub-pixel edges extracted from each view of

the calibration image.
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Objective Fit a line template to a view of the calibration image.

Algorithm

1. Process the image with Canny’s sub-pixel edge detector [27]. This re-

sults in a point-sampled representation of the edges.

2. Transform the 16 × 16 line template under a putative homography H,

which maps the template into the calibration image.

3. Measure the orthogonal distance of each edgel to each line in the tem-

plate, and assign each sample to the closest line. Samples for which the

distance is > 0.5 pixels are considered to be outliers.

4. Using the Levenberg-Marquardt algorithm, optimize the parameters of

H so as to minimize the point-to-line residuals.

5. Repeat 2 until convergence.

The initial estimate of H is determined by manually selecting the four corners

of the calibration grid.

Table 3.2: The algorithm used to fit a line template to each view of the calibration image.

Figure 3.13: Approximately 300 feature correspondences between two images in the “Mo-

saic” set which are used to compute the maximum-likelihood homography.

dences are obtained, the exact number depending upon the particular test images in ques-

tion. Figure 3.13 shows an example.

At this point, the reader may be wondering why we have gone to all this trouble with the

LCD panel, switching between calibration and test images. Why not simply extract Harris

features from the Tsai grid images, use them to compute the ML homographies, and then

assess registration accuracy against the ground-truth? The reason is simply that the Tsai

images are very artificial, having only 4 types of feature point (at the corners of each black

square). We might expect the localization error of the corresponding Harris features to
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Figure 3.14: Forward and backward pixel-transfer error fields for the homography between

images 1 and 2 in the “Mosaic” set, computed over a 500 × 500 pixel region in the centre of

each image. Note that the vectors are magnified 100 times. The RMS error in this example

is 0.10 pixels.

vary rather systematically, possibly biasing the estimated homographies. The test images

are intended to be fairly generic, whilst being quite rich in Harris features. They are a far

more realistic approximation of the type of scenes that we might ask our feature-based

algorithm to register in real-life.

RMS point-transfer accuracy The RMS point-transfer error is evaluated over a 500× 500

pixel region in the centre of each 720 × 576 pixel image. Figure 3.14 shows the transfer

error vectors, evaluated using equations (3.10a) and (3.10b), for two different image pairs.

Note that the vectors are magnified 100 times. As expected, the direction and magnitude

of the error varies slowly across the image, since small perturbations of the homography

parameters away from the ground-truth result in structured changes in pixel transfer.

For every pair of images in each test sequence, the RMS transfer error is computed

using equation (3.11). The results are tabulated in table 3.3. The results indicate that our

registration method is accurate to around 0.1 pixels.

Feature localization accuracy We now attempt to verify our broad assumptions about

Harris feature localization : that they are distributed around the true, underlying point

according to an isotropic, normal distribution with σ < 0.25 pixels.
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Image pair Mosaic Relativity Lego Rave

H0→1 0.060 (0.188) 0.068 (0.189) 0.075 (0.193)

H0→2 0.117 (0.211) 0.057 (0.176) 0.118 (0.207)

H0→3 0.102 (0.242) 0.092 (0.293) 0.110 (0.196)

H1→2 0.100 (0.222) 0.124 (0.378) 0.108 (0.258)

H1→3 0.104 (0.274) 0.143 (0.399) 0.141 (0.255)

H2→3 0.170 (0.400) 0.126 (0.265) 0.168 (0.215)

Table 3.3: The RMS and maximum (in brackets) pixel transfer errors compared to the

ground-truth. The results indicate that our registration method is accurate to around 0.1
pixels. The maximum error is nowhere greater than 0.4 pixels.

A convenient statistic to use for this purpose is the distance between a (inhomoge-

neous) feature point x2 and its transferred corresponding point x′
1 = H(x1),

d = x2 − H(x1)

Under the assumptions of isotropy and normality, each feature point has a 2 × 2 diagonal

covariance matrix,

Λx1 = Λx2 = σ2I

The covariance of point x′
1 can be obtained using the Jacobian J =

dx′
1

dx1
,

Λx1′ = σ2J>J

Note that, since we are dealing with homographies, the Jacobian J varies over the image.

The covariance of the statistic d is then

Λd = σ2(I + J>J)

Finally, we can transform this distribution back to an isotropic one by means of a spatially

varying affine transformation

d′ =
(
√

I + J>J
)−1

d

So for any set of feature correspondences, the method is to measure the vector d for ev-

ery pair of corresponding features, and to map d to d′ in the isotropic frame under the local

affine transformation. If our assumptions are correct, we should end up with an isotropic,

normal distribution with σx = σy < 0.25. To avoid any accusations involving the central

limit theorem, we only apply this analysis to single image pairs, rather than combining the

correspondences from all images into one large data set.
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Figure 3.15 shows the distribution of the individual x and y components of the d′ com-

puted using corresponding feature-points in images 1 and 2 from the “Mosaic” and “Lego”

test sets. Given our assumptions, we expect the two components to be independently and

normally distributed with equal variances. The fitted normal distributions are overlaid on

each histogram, from which the normality assumption seems reasonable. In fact, the nor-

mality may be verified using a χ2 goodness-of-fit test [143, 161].
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Figure 3.15: The distribution of the d′ computed using corresponding feature-points in

two different image pairs. The assumption that the individual x and y components are

normally distributed with equal variances is supported by the fitted normal distributions

which are overlaid in red.

Table 3.4 shows the standard deviations and covariances of the x and y components of

the d′ computed using the point correspondences between several pairs of images. There

are three important points to note. First, σx and σy agree fairly closely for each pair of im-

ages. Second, the σ are all very small, less than 0.25 pixels. Third, the covariances are all

tiny, indicating very little correlation between the d′
x and d′y. Together, these three observa-

tions validate our assumptions of isotropy, normality and σ < 0.25 pixels.
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Image pair σx σy σxy

Mosaic 0 → 1 0.137 0.136 4.7 × 10−5

1 → 2 0.166 0.174 1.1 × 10−3

2 → 3 0.177 0.197 3.2 × 10−3

Relativity 0 → 1 0.138 0.143 2.4 × 10−3

1 → 2 0.157 0.163 4.8 × 10−4

1 → 2 0.152 0.185 1.3 × 10−3

Lego 0 → 1 0.153 0.126 1.3 × 10−3

1 → 2 0.183 0.178 2.9 × 10−4

1 → 2 0.176 0.205 6.5 × 10−3

Table 3.4: Standard deviations (measured in pixels) and covariances of the x and y com-

ponents of d′ computed using the feature-point correspondences between several pairs

of test images. As explained in the text, these results validate our assumptions about the

localization of Harris feature points.

Discussion The measured RMS transfer error of ∼ 0.1 pixels between the ground-truth

homographies and those computed using Harris features seems at first to be rather large.

After all, the homographies were estimated by fitting just 8 parameters to several hundred

point correspondences, and we have just demonstrated that the localization noise on those

points really is normally distributed with σ ≈ 0.25 pixels. So surely, the parameters of the

homography should be estimated with a very high degree of accuracy? Well of course, they

are; but that does not directly imply a tiny RMS transfer error. The probable blame lies

with the scale and perspective parameters of the homography. Tiny perturbations to these

parameters can cause large movements in the transferred points.

To relieve any remaining doubts, we can conduct an experiment using synthetic data.

Sets of synthetic point correspondences are generated by transforming 300 randomly dis-

tributed points under known homographies. Isotropic, zero-mean Gaussian noise with

σx = σy = 0.25 pixels is added to the point positions. The noisy correspondences are then

used to compute ML homography estimates. Comparison of the estimated homographies

with the ground-truth reveals exactly the same result as was observed in the real image

experiment : an RMS transfer error of ∼ 0.1 pixels.

Conclusion As stated at the start of this section, the purpose of this exercise was to get

a feel for the accuracy of our registration method, and to get some idea as to whether the

assumptions made are valid when applied to the kind of images that we expect to be deal-
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ing with. These goals have been achieved. But the reader is warned to regard the results

with caution in the broader scope, since no mention has been made of image noise or blur,

which if severe, can have a dramatic effect on feature localisation.

3.6 Feature based vs. direct methods

The principle behind direct intensity correlation methods has already been explained in

chapter 2 and will not be repeated here. To summarize, they seek a homography which

maximizes a similarity measure between the images when one of them is warped accord-

ing to the homography and compared with the other. In this section, the feature based

approach and direct methods are contrasted.

Invariance An important motivation for using features is their invariance to a wide range

of photometric and geometric transformations of the image. The localisation of intensity

discontinuities and auto-correlation maxima, the building blocks of many edge and point

feature detectors, is unaffected by large illumination changes. Furthermore, the positions

of these features map directly under projective transformations. This invariance is demon-

strated empirically in the case of Harris features by Schmid and Mohr [131].

In direct methods there are a variety of ways by which to obtain photometric invariance.

One may assume some model for the photometric mapping between the two images, for

example that the intensities of corresponding pixels are related by a constant offset or an

affine transformation. This requires extra parameters to be included in the registration to

“soak-up” the photometric mapping. Alternatively, one might choose an image similar-

ity metric which is invariant under the chosen photometric model, for example normal-

ized cross correlation, which is invariant to affine transformations of intensities. A third

possibility is to pre-filter the images to remove the lowest frequency components prior to

registration.

Direct methods are arguably at a disadvantage here. Any differences between the two

images that are not accounted for by either the geometric transformation and photometric

model must be absorbed by the noise model and similarity metric. If the photometric

model is inadequate, corresponding pixels in the two images may exhibit large differences

even when the geometric registration is exact. These artficially large residuals can dominate

the similarity score and bias the final estimate of the geometric transformation.
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Robustness to outliers Occlusions and specularities threaten the accuracy of any regis-

tration algorithm. In such cases, parts of the images will map correctly under a homogra-

phy, whilst other parts (which have been obscured by other objects, shadows, etc.) will not.

Consequently, different feature matches will be consistent with different motion models.

In feature based methods, robustness to these outliers can be achieved simply and at

low computational cost through the use of algorithms such as RANSAC (Random Sampling

and Consensus) [154], which as demonstrated in section 3.4, easily sift the dominant mo-

tion from correspondence sets heavily polluted with mismatches.

The use of random sampling methods in feature based registration is feasible because

of the low computational cost of scoring putative solutions. In direct methods this cost is

much higher, requiring a full image warp and similarity score for each putative solution,

making sampling methods much less attractive. However, alternative means of achieving

robustness in direct methods have been proposed. One approach is to use a similarity

metric under which the influence of large residuals is reduced, such as the M-estimator

approach of Black and Anandan [16]. An alternative and closely related scheme is a multi-

scale, iteratively re-weighted least-squares [82, 89] approach. However, both of these ap-

proaches are computationally expensive : optimizations involving non-convex M-estimators

are generally difficult and are not guaranteed to converge to a global optimum. Sampling

methods have an arguable advantage in this respect.

Applicability to general scenes One significant drawback to feature based approaches is

that the type and scale of features which are used for registration should ideally be chosen

depending upon the type of scene in question. Point features, which are most commonly

used, are suitable for the vast majority of everyday images, but for more specialist appli-

cations they do not provide the required information. Some examples might be images

of smooth objects, scenes with low contrast, little edge information, or “pseudo-static”

scenes, such as a lake or waving grass. In each case, there may still be an appropriate

choice of feature type and scale which would result in a good feature bases estimator, but

this choice requires significant scene understanding or user input. Furthermore, higher

level features, such as curve segments, present extra difficulties when it comes to finding

corresponding features across multiple images.

Partly due to their typical multi-scale, coarse-to-fine implementation, and partly be-
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cause they do not distinguish between discontinuous and smoothly varying regions of the

image, it can be argued that direct methods are more generally applicable to a wide range

of scenes.

Computational efficiency The computational cost of the feature based method breaks

down into feature detection (linear in the number of pixels), feature matching (at worst

O(N2) in the number of features, but typically far less), and robust optimization ( < 10

parameters, < 1000 residuals ). The cost of a typical direct method is at every iteration, a

couple of image gradient operations, an image warp per estimated parameter and a simi-

larity score operation (all linear in the number of pixels).

The dominant cost in feature based methods is that of determining putative feature

correspondences. For small motions, the size of the search region can be small, and cor-

respondence rapid. In wide-baseline applications, the number of putative matches that

must be considered for each feature grows rapidly, as does the complexity of geometri-

cally invariant metrics which must be used to score their similarity. The use of higher level

image features, such as lines or curves, also greatly increases the complexity of the corre-

spondence problem. However, once correspondence has been obtained, albeit polluted by

outliers, the remaining optimization steps are extremely rapid.

The costs involved in direct methods may seem “bulky”, but the use of coarse-to-fine

strategies means that, particularly in small motion cases, a good optimization scheme con-

verges in only a few iterations. Consequently, carefully implemented direct methods have

proved just as successful in real-time tracking applications as their feature based alterna-

tives.

3.7 Photometric registration

This section describes a simple model of the global photometric differences which are

often observed between two images of the same scene. A robust method for estimating

the model parameters from geometrically registered input images is described. The esti-

mated parameters may be used to remove the photometric difference between the images

by altering the colour balance of one of them. By analogy with the geometric registration

method previously described, we call this process photometric registration. The effective-

ness of the scheme is demonstrated using three pairs of real images, each with a different
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Image 1 Image 2

Figure 3.16: A pair of images with significant photometric differences due to a change in

camera white-balance.

source of photometric difference.

3.7.1 Sources of photometric difference

The image sequences used later in this thesis require a photometric model which can cope

with two principal sources of global photometric difference, which can be summarized as

follows :

• Automatic camera adjustments such as automatic gain control, white balance or

exposure (as in figure 3.16.)

• Illumination change due to variation in the ambient light level or daylight level, or

due to relative motion between the scene and the light source (as in figure 3.17.)

A slightly more unusual situation in which we apply photometric registration is illus-

trated in figure 3.18, which shows images of two physically different scenes. At the struc-

tural level, the images are the almost identical (modulo a geometric transformation), but

there are severe photometric differences between them.

3.7.2 The photometric model

The model treats each of the red, green and blue colour channels independently. Within

each channel, the variation between the two images is modelled as a linear transformation,

having 2 parameters : a multiplicative term α, and an additive term β. Expressing the image
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Image 1 Image 2

Figure 3.17: A pair of images with significant photometric differences due to a change in

illumination conditions.

Image 1 Image 2

Figure 3.18: A pair of images of two physically different bank-notes. The image portrayed is

the same, but one has been treated with a dye, causing significant photometric difference.
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pixels as 3-element vectors, the transformation can be written as





r2

g2

b2



 =





αr 0 0
0 αg 0
0 0 αb









r1

g1

b1



+





βr

βg

βb



 (3.12)

requiring 6 parameters in total. This simple model proves to be rich enough for the pur-

poses described here. There is no apparent benefit in using a full affine transformation of

the RGB colour-space.

3.7.3 Estimating the parameters

The procedure for estimating the 6 photometric parameters requires the two images to

first be accurately registered, using the method described in section 3.4, and warped into

alignment. The remaining differences between corresponding pixels in the aligned images

can then hopefully be “absorbed” by the photometric model. Treating each channel sepa-

rately, the estimation procedure for α and β is clearly a simple line-fit to the intensities of

corresponding pixels (i1, i2), easily achieved by orthogonal regression.

However, at many pixels, the difference in intensities, i1−i2, cannot be explained by the

linear photometric model. These model-outliers arise from various sources : saturation at

the low or high end of the pixel intensity range, specularities or occlusions, shadows. Just

as in the geometric estimation algorithm, it is vital that the line-fitting algorithm be robust

to these model-outliers.

The algorithm used for this purpose is Torr and Zisserman’s MSAC (M-estimator SAm-

ple Consensus) algorithm [160], a variation of the previously described RANSAC algorithm.

Evidence suggests that this algorithm gives better results than the RANSAC algorithm in

problems where the proportion of outliers is high, as is the case here. The algorithms differ

only in the way in which the quality of a proposed solution is evaluated. Instead of count-

ing the number of inliers, as RANSAC does, MSAC determines the likelihood of the data

given the proposed model parameters according to a simple, robust M-estimator [79, 80].

For each data point (i1, i2)n, the distance dn to the proposed line (α, β) is computed, and

the overall cost associated with the solution is given by

C =
∑

∀n

ρ(d2
n) (3.13)

49



where

ρ(d2) = d2 , if d2 < T 2

= T 2 otherwise.
(3.14)

The threshold T is set to 1.96σ so that Gaussian inliers are only incorrectly classified as

outliers 5% of the time, and we assume σ is around 5 “grey-levels”.

After evaluating many putative solutions, the MSAC algorithm returns the parameters

(α, β) with the lowest score. In the final step, the parameters are refined by performing

orthogonal regression on the MSAC inliers.

3.7.4 Results

We now apply the photometric registration algorithm to the three examples shown in fig-

ures 3.16,3.17 and 3.18. In each case, having estimated the 6 photometric parameters, the

first image in each pair is “corrected” by applying the appropriate linear transformation to

each colour channel.

Indoor pair This example, shown in figure 3.16, is taken from sequence of images cap-

tured by a rotating camera. The photometric difference between the frames shown is

caused by the camera’s automatic white-balance and gain control. Figure 3.19 shows the

geometrically registered images (only the mutually overlapping portion is shown), and be-

low, scatter plots of corresponding pixel intensities (i1, i2) in each colour channel. The

robust MSAC line-fit is overlaid on each graph, inliers are marked in red, outliers in blue.

Figure 3.20 shows the original and corrected versions of image 1 on either side of image 2.

Also shown are intensity-profiles along a slice taken through the images. The bottom three

graphs show the original (red) and corrected (green) profiles from image 1 overlaid on the

profiles from image 2. The corrected profiles match the desired profiles very closely.

Museum pair In this example, figure 3.17, the difference is due to a break in cloud cover,

meaning that the building is bathed in sun light in image 2. Consequently, there are many

outliers at pixels which are in shadow in image 2. Figure 3.21 shows the registered im-

ages and the MSAC fitted lines. Figure 3.22 shows the original and corrected images and

intensity-profile graphs. The corrected image has taken on the orange glow exhibited in
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the sun-lit image. In this case, the red channel required the most severe correction. Again,

the profiles of the corrected image match closely those of image 2.

Bank-note pair This example, shown in figure 3.18, shows two different specimens of

the same denomination of currency, captured using a flat-bed scanner. Image 1 has been

treated with a purple dye which stains oily residues, such as fingerprints. Unfortunately,

low-quality bank-note papers, such as US dollars, also absorb some of the dye, taking on a

pink colour. Figure 3.23 shows the registered images and the MSAC fitted lines. Figure 3.24

shows the original and corrected images and intensity-profile graphs. The corrected image

has lost the pink hue, and a purple latent fingerprint mark is just visible on the President’s

face. In this case, the red and green channels required the most severe correction. The

profiles of the corrected image match closely those of image 2.
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Figure 3.19: (Top) The geometrically registered versions of the images shown in figure3.16.

(Bottom) MSAC line fit to intensities (i1, i2) at corresponding pixel locations in the two

images. Inliers/outliers are shown in red/blue.
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Image 1 Image 2 Image 1 (corrected)

50 100 150 200 250 300
0

50

100

150

200

250
Image 1 profiles

position on profile

in
te

ns
ity

50 100 150 200 250 300
0

50

100

150

200

250
Image 2 profiles

position on profile

in
te

ns
ity

50 100 150 200 250 300
0

50

100

150

200

250
Image 1 (corrected) profiles

position on profile

in
te

ns
ity

50 100 150 200 250 300
0

50

100

150

200

250
Red profiles

position on profile

in
te

ns
ity

Image 1
Image 2
Image 1 corrected

50 100 150 200 250 300
0

50

100

150

200

250
Green profiles

position on profile

in
te

ns
ity

Image 1
Image 2
Image 1 corrected

50 100 150 200 250 300
0

50

100

150

200

250
Blue profiles

position on profile

in
te

ns
ity

Image 1
Image 2
Image 1 corrected

Figure 3.20: (Top) The original and corrected versions of image 1, either side of image

2. The corrected version has lost its undesirable yellow hue, closely resembling image 2.

(Middle) Intensity-profile plots along a slice (shown above in yellow) through each of the

images. The profiles in the corrected image resemble far more closely those of image 2

than those in the original image. (Bottom) Intensity-profiles from the original image (red)

and corrected image (green) overlaid on the profiles from image 2 (black). The corrected

profiles are a very good fit.
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Figure 3.21: (Top) The geometrically registered versions of the images shown in figure3.17.

(Bottom) MSAC line fit to intensities (i1, i2) at corresponding pixel locations in the two

images. Inliers/outliers are shown in red/blue.
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Image 1 Image 2 Image 1 (corrected)
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Figure 3.22: (Top) The original and corrected versions of image 1, either side of image 2.

The corrected version has the orange glow of the sun-lit image 2. (Middle) Intensity-profile

plots along a slice (shown above in yellow) through each of the images. The profiles in the

corrected image resemble far more closely those of image 2 than those in the original im-

age. (Bottom) Intensity-profiles from the original image (red) and corrected image (green)

overlaid on the profiles from image 2 (black). The corrected profiles are a very good fit.
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Figure 3.23: (Top) The geometrically registered versions of the images shown in figure3.18.

(Bottom) MSAC line fit to intensities (i1, i2) at corresponding pixel locations in the two

images. Inliers/outliers are shown in red/blue.
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Image 1 Image 2 Image 1 (corrected)
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Figure 3.24: (Top) The original and corrected versions of image 1, either side of image 2.

The corrected version has lost its pink hue, closely resembling image 2, and just revealing

a purple fingerprint mark on the face. (Middle) Intensity-profile plots along a slice (shown

above in yellow) through each of the images. The profiles in the corrected image resemble

far more closely those of image 2 than those in the original image. (Bottom) Intensity-

profiles from the original image (red) and corrected image (green) overlaid on the profiles

from image 2 (black). The corrected profiles are a very good fit.
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3.8 Application : Recovering latent marks in forensic images

In this section, we describe an application which uses the above registration techniques to

allow latent marks to be recovered from forensic images. The aim is the removal of distract-

ing background patterns from forensic evidence so that the evidence is rendered more vis-

ible. An example is the image of a finger-print on a non-periodic background. The method

involves geometrically and photometrically registering the image with a control image of

the background pattern that we seek to remove. Image differencing then reveals the la-

tent mark. The method applies in situations where periodic background removal, accom-

plished by Fourier transform techniques [22, 68, 151, 171], would not be successful. The

work is described in detail in [30] and patent GB2342207A. All the example images in this

section were supplied by the UK Forensic Science Service, and the research was carried out

as part of the EU project “Image Processing for Forensic Science Support” (IMPROOFS) [3].

3.8.1 Motivation

Marks of interest to a forensic examiner are often encountered overlaid on a background

pattern. In many instances this background pattern can hinder or even prevent the reading

of the detail of interest in the mark. An example if shown in figure 3.25. Thus, the require-

ment of a forensic examiner is to have a tool that attenuates the unwanted background

signal whilst leaving the mark detail of interest unaffected. One of the most widespread

tools is the use of Fourier domain filtering methods for the attenuation of periodic back-

ground patterns interfering with the reading of a fingerprint pattern [22, 23, 68, 151, 171].

The major drawback to Fourier filtering is the requirement that the pattern is repetitive

across the area of interest. In many instances this is not the case, for example most bank-

notes have very irregular patterns designed into them. These non-periodic patterns do not

produce a regular pattern of spikes in the Fourier domain, and hence conventional back-

ground attenuation methods cannot be applied.

3.8.2 Method

The basic method is as follows : given an image containing a mark which is camouflaged

by the background pattern, and another image of the same scene, not necessarily aligned

with the first image, but in which the mark is not present, produce an image of the mark
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Figure 3.25: A British five-pound note image captured using a flat-bed scanner. The latent

finger-prints have been enhanced with a special dye, but are still difficult to interpret due

to the confusing background.

separated from the background, thereby rendering it more visible. The image containing

the latent mark is referred to as the evidence image, and the clean image as the control

image. As an example, we shall consider the two images shown in figure 3.26, which show

a section of a British five-pound note, scanned at 600 dpi on a flat-bed scanner.

The method assumes that any differences between corresponding pixels in the evi-

dence and control images will be due to the presence of the latent mark occluding pixels in

the evidence image. In order for this assumption to be true, the images must be aligned to

sub-pixel accuracy, and their global photometric characteristics must be the same. How-

ever, in practice the evidence and control images will be taken at different times, possibly

using different equipment with different settings, hence they will neither be geometrically

aligned nor colour balanced. To compensate for this, we make use of the registration meth-

ods described in sections 3.4 and 3.7 in order to bring the control image into accurate align-

ment with the evidence image, both geometrically and photometrically. The steps are as

follows :
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evidence control

Figure 3.26: Five-pound note images captured using a flat-bed scanner. The control image

is a clean note, the evidence image contains the latent prints.

1. Geometric registration Compute Harris interest point features in both images, and

register them using the algorithm of section 3.4.

2. Photometric registration Using the computed registration parameters, warp the con-

trol image into alignment with the evidence image, and apply the robust photometric

registration method described in section 3.7.

3. Attenuation Using the estimated photometric parameters, transform the colour chan-

nels of the control image. The two images should now be exactly alike modulo the

latent mark. Subtract the control image from the evidence image to obtain the sepa-

rated image.

Often, such as is the case with bank-notes imaged using a flat-bed scanner, a full 8 dof

homography is unnecessary for aligning the two images. In these cases, greater accuracy

can be achieved by modifying the geometric registration algorithm to compute a lower

order transformation, such as a 6 dof affine transformation or 4 dof similarity transforma-

tion.

60



evidence registered control

Figure 3.27: The evidence image and the control image after geometric alignment and pho-

tometric colour balancing.

Figure 3.27 shows the five-pound note images after geometric and photometric regis-

tration. The control image is aligned and colour balanced to match the evidence image.

The difference image, formed by subtracting the control from the evidence is shown in fig-

ure 3.28. The image has been intensity normalized and inverted to enhance the mark. The

finger-print is now clearly visible.

This example also exhibits a frequent problem when working with bank-note images -

some of the text is still visible. This is an artifact of the printing process : notes are gen-

erally composed from several printed layers, and the relative displacements of these lay-

ers can vary from one batch of notes to another by several pixels. To compensate for this

would require several independent homographies to be computed between the images,

one for each layer. The single homography fitted by the RANSAC algorithm only accounts

for the dominant background layer, and consequently the text in this example is not cor-

rectly aligned.

It is important to note that this method relies very strongly on the use of robust algo-

rithms. Clearly, a great many corresponding pixels in the two images have very different
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evidence difference image

Figure 3.28: The difference image quite clearly shows the latent finger-mark. In this exam-

ple, the relative displacements of the text layer and the dominant background patterns are

slightly different in the two notes. Consequently, the text layer is not registered by the com-

puted homography, and the text is still visible in the difference image. This is an artifact of

the bank-note printing process.

values, whether because they are occluded by the latent mark, or because they exist in a

different screen printing layer. It is imperative that the geometric and photometric align-

ment is robust to these outliers. The feature-based RANSAC algorithm is ideally suited to

this task.

3.8.3 Further examples

Figures 3.29,3.30 and 3.31 show the stages of processing for a US dollar bill. In this example,

the fingerprint is completely invisible in the evidence image. The low quality paper on

which these bills are printed absorbs some of the purple disclosure dye. The photometric

registration is able to compensate for this, as demonstrated in figure 3.30. The final result,

figure 3.31, quite clearly shows a partial print in the centre of the image.

Figures 3.32,3.33 and 3.34 show the stages of processing for two images of a PVC floor
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evidence control

Figure 3.29: US currency images captured using a flat-bed scanner. Note that the dye has

quite severely stained the note.

covering with a highly irregular patterning. The evidence image contains two partial marks

made by the tread of a shoe, although this is difficult to see in the original image. The

difference image, shown in figure 3.34, clearly shows the two marks.
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evidence registered control

Figure 3.30: After geometric and photometric alignment, the control image closely

matches the evidence image. The photometric registration phase is extremely important

in this example.

evidence difference image

Figure 3.31: Although almost impossible to see in the evidence image, the difference image

clearly shows a partial finger-print.
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evidence control

Figure 3.32: Images of a plastic floor covering captured with a digital camera. The evidence

image contains a partial shoe-mark, although it is extremely difficult to see.

evidence registered control

Figure 3.33: After registration, the control image is aligned with the evidence image to sub-

pixel accuracy.
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evidence difference image

Figure 3.34: Although very hard to see in the evidence image, the difference image clearly

shows two partial marks made by the tread of a shoe.
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3.9 Summary

In this chapter, the problems of accurate geometric and photometric registration of images

has been considered. An automatic algorithm has been described for the registration of

images under the assumption of a projective motion model using corresponding feature

points in two images. The algorithm has been shown to be highly robust to mismatched

features, whilst still being computationally very efficient. Through empirical investigation,

the accuracy of the method was shown to be very high. This will prove suitable for use in

the super-resolution algorithms described in later chapters.

A simple model was proposed to account for the photometric differences between pairs

of images which may be caused by illumination changes, camera gain, or white-balance.

A robust and efficient algorithm for estimating the model parameters given geometrically

registered images was described, and demonstrated to be effective in compensating for

photometric differences between a variety of real images.

Finally, a forensic application which utilizes both geometric and photometric registra-

tion was described and its effectiveness demonstrated with real examples.
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Chapter 4

Image mosaicing

4.1 Introduction

Image mosaicing is the alignment of multiple images into larger compositions which rep-

resent portions of a 3D scene. The mosaicing methods described in this chapter are con-

cerned with images which can be registered by means of a planar homography : views of

a planar scene from arbitrary viewpoints, or views of a scene taken by a rotating camera.

There are three important factors to consider when constructing a mosaic : the estimation

of a set of homographies which are consistent over all the views; the choice of reprojection

manifold on which the images are composited; and the choice of algorithm for blending

the overlapping images.

Section 4.2 outlines the basic steps in constructing a mosaic representation of a scene,

and in rendering an image from the mosaic. Section 4.3 details the rendering process,

describing the most commonly used reprojection manifolds and blending methods, and

demonstrating how the photometric registration method described in chapter 3 is effective

at eliminating visible “seams” between different source images in the rendered composites.

Section 4.4 describes how the 2-view ML homography estimator of chapter 3 is extended

to perform simultaneous, globally consistent registration of N-views. To facilitate the use

of this estimator, we describe a novel and efficient algorithm for matching feature points

over many views. Section 4.5 is concerned with the specific case of the planar reprojec-

tion manifold. We describe a new algorithm for automatically orienting the manifold so

as to produce a well-balanced and aesthetically pleasing rendered composite. Finally, sec-

tion 4.6 comments briefly on the many possible applications of image mosaicing proposed

in the literature.



4.2 Basic method

The construction of image mosaics is described in the literature in several contexts, but for

clarity we briefly review the basic method.

4.2.1 Outline

There are three basic steps : registration, reprojection and blending, which are now de-

scribed in more detail.

1. Registration The objective is to register every image into a global coordinate frame

which contains the whole scene. The choice of global frame is unimportant, but for

convenience it is usually chosen to be axis-aligned with one of the N input images,

called the reference image, so that the transformation between the global frame and

the reference image is simply the identity. For a given sequence of images, registra-

tion proceeds by first computing the geometric transformation between consecutive

pairs of images, using a method such as that described in chapter 3. The transforma-

tion between a particular image mk and the reference image mref is then obtained by

concatenating (multiplying) the intermediate sequence of homographies, for exam-

ple

H(ref→k) =
k−1
∏

n=ref

H(n→n+1).

However, this computation is prone to “dead-reckoning” error accumulation, which

is a particular problem in image sequences which “loop back”, imaging some part

of the scene more than once at temporally separated points in the sequence. This

issue is addressed in section 4.4, where it is shown that a globally consistent set of

homographies may be computed by simultaneously registering all views in the global

frame.

2. Reprojection After registration, every point in every image can be transformed to a

point in the global frame. The set of all images and homographies comprises the mo-

saic representation of the scene. In order to actually render an image from the mosaic

representation it is necessary to supply a further transformation which maps points

in the global frame to points in the rendered image. In some instances, this mapping
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may be as simple as a similarity transform (scaling and translation), or as discussed in

section 4.3, may be a more complicated transformation, such as a synthetic camera

rotation or cylindrical polar mapping. Having chosen a rendering transformation,

each image is then warped into the frame of the rendered image.

3. Blending The final stage in rendering from the mosaic is to blend the images together

in their overlapping portions. As we have already seen in chapter 3, it is often the

case that significant global photometric differences can occur between images in a

sequence. If not corrected, this can give rise to unsightly seams in rendered mo-

saics. The image blending function can be chosen to ameliorate this effect : common

methods include simple averaging of intensity values, feathering and temporal me-

dian filtering. Better results may be obtained however, if photometric registration

and correction is performed prior to rendering the mosaic. This problem is exam-

ined in more detail in section 4.3.3.

The process is outlined schematically in figure 4.1.

4.2.2 Practical considerations

Radial distortion Radial lens distortion is common in inexpensive camera optics and this

can cause problems when mosaicing sequences captured using camcorders or cheap dig-

ital cameras. Szeliski et al. [146, 148] propose that the images be weighted heavily toward

the centre when combining them in order to ameliorate the problem. A better solution is

to remove the radial distortion from the images prior to mosaicing, using one of the meth-

ods already discussed in chapter 3. An example of a mosaic created using this correction is

shown in figure 4.2.

Independent motion Suppose the camera rotates about its centre but during the acqui-

sition there is movement in the scene, for example a person walking. The moving object

will appear multiple times in the mosaic and, depending on the blending method, may

look blurred and ghost-like, or may be chopped or truncated in some way. It is often desir-

able to remove these artifacts altogether. One approach is to use a temporal-median filter

when combining the images. This removes the effect of temporary occlusions provided

that the true background is unoccluded in more than half the frames. Irani et al. [87, 88]
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registration
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H01 H12

H0 H1 H2

T

reprojection

Figure 4.1: The three basic steps in forming a mosaic representation of an image sequence

and rendering a novel view. In this example, the middle frame is being used as the reference

frame, and hence H1 is the identity. The rendering transformation T simply shifts the origin.

describe a more sophisticated approach in which the multiple independently moving im-

age regions are segmented and tracked through the sequence, starting with the dominant

frame-to-frame motion. The algorithm produces high-quality representations of each re-

gion. A different approach is proposed by Davis [46], in which the mosaic image is seg-

mented into several disjoint regions such that no moving object crosses the boundary of

any region. The mosaic image is then assembled from the jigsaw-like segmented regions.

4.3 Rendering from the mosaic

The mosaic representation provides a one-to-one mapping between points in each image

and some global coordinate frame. There are many ways in which this representation may
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Figure 4.2: (Top) Three images captured by a rotating camera fitted with a very wide-angle

lens. The images have severe radial lens distortion. (Middle) The images after radial lens

correction. (Bottom) A mosaic image composed from the corrected images.
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be used, as discussed section 4.6, but by far the most common requirement is to render

a novel view of the scene. In this case, there are two factors which determine the appear-

ance of the rendered image : the reprojection manifold and the blending function. We now

discuss these concepts and examine some commonly occuring cases.

4.3.1 The reprojection manifold

To render from the mosaic, we must specify a transformation T which maps points in the

rendered image to points in the global coordinate frame. T is referred to as the rendering

transformation. In principle, T could be any one-to-one mapping, but in practice it is usu-

ally determined by the choice of reprojection manifold, the surface which plays the role

of the imaging sensor in the virtual camera, for example a plane or a developable surface

such as a cylinder. Points in the global frame are back-projected onto the manifold, and if

the manifold is developable, it is simply “unrolled” to form the rendered image.

Planar projection The simplest and most commonly used manifold is a plane, onto which

all of the images are reprojected, as shown in figure 4.3. In this case, the rendering trans-

formation is a homography. The rendered image has the classic “bow-tie” form since the

projective distortion of the back-projected images increases toward the periphery of the

mosaic. An example is shown in figure 4.6(a). Note that straight lines are preserved. We

can think of this as simulating a camera with an extremely large sensor array. In reality,

of course, it would be very hard to construct such a camera : a large sensor array would

be subject to vignetting [8] (shading) at the periphery. Planar projection mosaicing allows

such images to be generated without these artifacts and without requiring exotic hardware.

However, for sequences which sweep a large angle (> 90 degrees), the projective distortion

means that the mosaic image becomes infinite in size, and the planar manifold cannot be

used.

It is important to note that the planar manifold is suitable for both general-scene/rotating-

camera and planar-scene/general-motion cases.

Cylindrical projection A cylindrical manifold, concentric with the rotating camera, is a

suitable manifold on which to reproject rotating camera sequences which sweep a very

large angle (possibly a full 360 degree sweep), as shown in figure 4.4. The method is best
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optic centre

planar reprojection manifold
plan view

Figure 4.3: Schematic illustration of mosaic rendering by reprojection onto a planar mani-

fold.

suited to image sequences in which the camera rotates about a single axis, in which case

the input images are tangent planes to the manifold. The rendered image does not suf-

fer from the same projective distortion seen in the planar manifold projections. Instead,

straight lines in the world are mapped to sinusoids, as can be seen in figure 4.6(b). The

rendering transformation maps cylindrical polar coordinates to rectangular image coor-

dinates as follows. A point (X, Y, Z) in the camera-centred coordinate system maps to a

point (θ, v) on the manifold as

θ = tan−1

(

X

Z

)

v =
Y√

X2 + Z2
(4.1)

When the camera motion is pure rotation, a homogeneous 2D point x = (x, y, 1) in image

n projects to a ray X = (X, Y, Z) in camera coordinates as

X = R−1
n K−1

n x (4.2)

where Kn is the calibration matrix for the nth camera, and Rn is the rotation of the nth cam-

era relative to the reference view. These equations are combined to obtain the mapping

between image points (x, y) and points on the manifold (θ, v).

Evidently, this method requires an estimate of the camera calibration matrices Kn. A

non-linear method for accurately estimating the internal parameters of a rotating cam-

era is described by Hartley [76, 78]. However, it is not essential for the calibration to be
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plan view
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Figure 4.4: Schematic illustration of mosaic rendering by reprojection onto a calibrated

cylindrical manifold.

supremely accurate in order for this rendering technique to be effective for interactive

display. Standard assumptions about the camera parameters (zero skew, square pixels,

and principal point at the image centre), together with a ball-park estimate of the focal

length, are perfectly adequate. With these assumptions, the much simpler, linear calibra-

tion method described by de Agapito et al. [47] provides a suitable estimate of the focal

length.

As a further example of the application of this method to very wide angle sweeps, fig-

ure 4.29 shows a full 360o panoramic mosaic projected onto a cylindrical manifold.

Spherical manifolds In a similar scheme to the cylindrical manifold, points in the mosaic

representation may be parameterized in terms of spherical polar coordinates. However,

due to the obvious problems with singularities, and the lack of any satisfactory mapping

from spherical to cartesian coordinates, there is little point in explicitly reprojecting the

images onto such a manifold. A spherical manifold cannot therefore play the same role as

the planar or cylindrical manifolds do in determining the rendering transformation.

That said, there are many references made to spherical panoramic representations in

the literature: in image-based rendering [101], wide-baseline 3D scene reconstruction [91,

92] and virtual-reality applications [147]. In each case, image sequences are used which

cover part or all of the view-sphere, and the mosaic simply provides a convenient implicit
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representation of the relative placement and orientation of each image on the view-sphere.

Rendering from such a mosaic is usually done by reprojecting a small portion of the

view-sphere onto a planar manifold. This is the basis of the QuickTime VR software [35],

and is discussed further in section 4.5. Another possibility is a Mercator projection [147].

Occasionally, to aid in visualization, an explicit spherical reprojection is performed by

texture-mapping the images onto a 3D VRML model, which may be manipulated by the

viewer [37, 38, 149].

Manifold projection Peleg’s manifold projection method [109, 112] attempts to display

the mosaic projected onto the envelope of the image planes from which it was acquired.

The method forms the basis of Peleg and Herman’s “VideoBrush” software [113]. The im-

plementation details will not be repeated here, but essentially the method lies somewhere

between planar mosaicing and calibrated projection onto a cylindrical manifold, and is

closely related to the linear push-broom camera. The images are registered using only Eu-

clidean transformations, and combined using the nearest image-centre method (see sec-

tion 4.3.2). The rendered image is locally similar to the input images and of finite extent ,

without the need for calibration. It has also been shown to generate reasonable mosaics

when the camera motion constraints are violated. An example of a mosaic generated by

manifold projection is shown in figure 4.6(c).

4.3.2 The blending function

Each pixel in the rendered image corresponds to some pre-image point in the scene. Fur-

thermore, each pre-image point is typically observed in several of the overlapping views.

Consequently, when choosing the value of a pixel in the rendered image, it is possible to

draw on information from several input images. The rendering algorithm for each pixel in

the rendered image has the following basic form :

1. Using the rendering transformation and pre-computed homographies, transform the

pixel coordinates into each input image in turn.

2. For each image in which the transformed pixel lies inside the image boundary, sam-

ple the intensity value using a suitable interpolation scheme (e.g. bilinear, bicubic or

area-sampling).
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Figure 4.5: A sequence of 24 images captured by a rotating camera.
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(a) Planar manifold

(b) Cylindrical manifold

(c) Peleg’s “manifold projection”

Figure 4.6: Mosaics created from the image sequence shown in figure4.5. (Top) Repro-

jection onto a planar manifold. Straight lines are preserved, but projective distortion in-

creases toward the periphery. (Middle) Reprojection onto a cylindrical manifold. Straight

lines are mapped to sinusoids, but there is no projective distortion, allowing large-angular

sweeps to be rendered as a single image. (Bottom) The mosaic created using Peleg’s “man-

ifold projection” method, in which the images are registered using only Euclidean trans-

formations. The result is very similar to the cylindrical projection.
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Figure 4.7: (Left) The bi-quadratic weighting function used to “feather” blended images.

(Right) The function is used to set the transparency of an image.

3. Combine the set of intensity values obtained into a single value using the chosen

blending function.

We now describe a few common blending functions, examples of which are shown in

figure 4.8.

Averaging The output pixel value is obtained by simply averaging the values extracted

from the input images.

Feathered blending A weighting function is associated with the input images, decaying

from a maximum at the centre of the image, to zero at the image boundary. This function

is used to weight the values extracted from the images when computing their average. An

example weighting function is shown in figure 4.7, in this case, a bi-quadratic function :

f(x, y) = (1 − (x − w
2 )2)(1 − (y − h

2 )2)

Nearest image centre When extracting values from the input images, the distance of the

sampling location from the image centre is also computed. The set of values are ranked

according to this distance, and the candidate closest to its image centre is taken as the

output pixel value.
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Figure 4.8: Six primary colour images blended using three common techniques : (Top)

nearest image-centre, (Middle) simple averaging, (Bottom) feathering.

Temporal median filtering The rendered pixel value is the medioid of the values ex-

tracted from the images. The mediod is a robust estimator of the centroid. Consequently,

mosaics composed using this blending method are robust to outliers caused by indepen-

dent moving objects, specularities, etc.
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4.3.3 Eliminating seams by photometric registration

In this section, we apply the photometric registration algorithm described in chapter 3

to eliminate “seams” in sequences which are affected by serious photometric variations.

In section 4.3.3, we described a robust method for performing photometric registration

and correction of a pair of images by estimating the 6 parameters of a simple colour-space

transformation. To apply this method to mosaicing, we first compute the photometric

parameters relating consecutive pairs of images in the sequence. As with the geometric

registration parameters, the computed colour-space transformations are easily chained to-

gether to compute the accumulated transformation between non-consecutive image pairs.

One frame in the sequence is chosen as a reference, and every other image is photometri-

cally registered with the reference, and corrected accordingly.

Figure 4.9 shows a sequence of 8 images taken by a rotating camera. The automatic

white balance control has evidently varied during the capture, causing considerable pho-

tometric differences between frames. Figure 4.10(a) shows a mosaic composed from the

uncorrected images, using the nearest image-centre blending method. Seams are clearly

visible between the different images. Figure 4.10(b) shows the same mosaic formed from

the photometrically corrected images, using the same blending method. Frame 5 was used

as the photometric reference frame. The seams have been eliminated.

4.3.4 Eliminating seams due to vignetting

Figure 4.11 shows a set of six ariel images of the Niger delta region. The images show sig-

nificant shading toward the periphery, an effect which is probably caused by vignetting [8].

Mosaics rendered from these images show severe artifacts due to the shading : noticeable

seams if simple averaging is used; smooth intensity variations resulting in a “tiger-stripes”

pattern if feathered blending is used.

Fortunately, it is fairly straightforward to correct this problem. Vignetting is modelled

by a cos4(α) fall-off in intensity away from the principal point, but for simplicity we ap-

proximate this with a quadratic curve. The method applied here assumes that the optic

axis passes through the centre of the image. The intensity fall-off at a radius r from the

principal point is computed by taking the median of all the pixels in an annulus between

radius r and r+δr. The median intensity is sampled at 100 increasing radii, and a quadratic
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Figure 4.9: A sequence of 8 images captured by a rotating camera. Variations in the cam-

era’s automatic white-balance control have caused considerable photometric differences

between the images.
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Figure 4.10: (Top) A mosaic rendered using the images shown in figure 4.9, using the near-

est image-centre blending method. Seams due to photometric differences are clearly visi-

ble. (Middle) The mosaic rendered using feathering. The problem is ameliorated, but the

unsightly variation of colour balance across the image still remains. (Bottom) The same

mosaic rendered using photometrically corrected images. Frame 5 was used as the photo-

metric reference frame. No seams are visible and the colour balance is uniform across the

image.
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Figure 4.11: (Top) Six ariel images of the Niger delta region. The images show significant

shading toward the periphery, probably due to vignetting effects.(Middle) A mosaic com-

posed from the six images using simple averaging. The shading causes very noticeable

seams in the mosaic. (Bottom) Using feathered blending, the seams are ameliorated, but

the mosaic still has a “tiger stripes” pattern of brightness variation.

curve fitted through the values obtained. The correction factor for a pixel at radius r is then

f(r)
f(0) .

Figure 4.12 shows the corrected images, and the mosaic composed from them. The

mosaic is now seam-free and the brightness is constant across the scene.
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Figure 4.12: (Top) The image sequence shown in figure4.11 after automatic shading cor-

rection. (Bottom) The mosaic composed using the corrected images is both seam-free and

of uniform brightness.

4.3.5 A fast alternative to median filtering

A drawback with the temporal median filtering method of blending is that it is computa-

tionally very expensive, requiring a sort operation for every pixel in the rendered image,

which can become prohibitively expensive when large numbers of overlapping images are

involved. An alternative, which has not been explored in the literature, is to use the mode

instead of the median as a robust estimate of the mean. This has the additional advantage

of being able to recover the correct pixel value in cases where the background is occluded

by an independently moving object in more than half the frames in which the pixel is visi-

ble.

One algorithm which has proved successful blends the images using a robust aver-

age which is guided by an estimate of the mode at each pixel. The method for 8-bit,

monochrome images is as follows :

1. At each pixel in the rendered image, bucket the values extracted from the input im-

ages to form a coarse histogram of overlapping bins. For example, 31 bins, each of

width 16, centred on every 8th grey-level.

2. Find the modal bin, and take the average of the values it contains to be the rendered
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pixel value.

This estimate can be computed very efficiently, even when the number of overlapping

images is very large, since the number of histogram bins is fixed, and the mean within each

bin requires only a single accumulator per bin. For colour images, the different channels

may be processed separately, and recombined to form the final image.

4.4 Simultaneous registration of multiple views

In this section we consider the problem of error accumulation when chaining together ho-

mographies over a sequence. This problem can be solved by simultaneously registering all

of the images into a single, global frame. There are two principal steps necessary to achieve

this goal : extension of the 2-view ML homography estimator to the N-view case; and iden-

tification of feature point correspondences over all views, termed the N-view matching

problem, for which we describe a novel algorithm.

4.4.1 Motivation

The image sequences seen in the previous sections have been simple, single direction cam-

era pans. By constrast, the sequence shown in figure 4.13 shows a planar scene captured

using a hand-held digital video camera. The key feature of this sequence is that it loops

around, re-visiting some parts of the scene more than once at different points in time : a

large portion of the first frame is also visible in the last.

Figure 4.14 shows an image rendered from the mosaic representation of the sequence,

using the nearest image-centre blending method. The close-up view clearly shows a mis-

match between the first and last frames. Figure 4.15 shows the same mosaic, rendered us-

ing median filtering, which in this case can do little to ameliorate the misregistration. The

problem is that, despite the fact that the two frames are spatially adjacent, with a high de-

gree of overlap, the homographies mapping them into the mosaic image were computed

by concatenating the homographies between the intervening consecutive frames, as de-

scribed in section 4.2. This permits registration errors to accumulate rapidly, resulting in a

kind of “dead-reckoning” error.

Various authors have suggested methods for ameliorating the effect of accumulated

registration error. Mann and Picard [100] suggest breaking the sequence into smaller sub-
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Figure 4.13: The “Oxford Map” sequence of 56 images, showing a planar scene captured

using a hand-held digital video camera. The sequence loops around, re-visiting some parts

of the scene more than once at different points in time.
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Figure 4.14: (Top) A mosaic image rendered from the sequence shown in figure 4.13, us-

ing the nearest image-centre blending method. The outline of every 5th frame is overlaid.

(Left) A close-up view of the region boxed in red. (Right) The corresponding region ex-

tracted from a single frame in the sequence. Comparison of the close-up views reveals a

clear mismatch between the first and last frames in the sequence. This is caused by the

accumulation of registration error over the sequence.
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Figure 4.15: The mosaic shown in figure 4.14, but rendered using median filtering. The

result is blurred in areas where registration between temporally distant images is poor.

sets of frames which are used to create sub-mosaics. The sub-mosaics are then registered

and combined to form the final mosaic. Davis [46] solves a linear system, derived from a

redundant set of pairwise homographies, so as to minimize an algebraic residual defined

over the actual H matrix elements. Sawhney et al. [128, 129] propose a scheme in which the

mosaic image is updated one frame at a time, and each additional frame is registered with

and blended into the current mosaic image.

Although these are all very practical methods, they are sub-optimal. The optimal solu-

tion, as has been known to photogrammetrists for many years [141], is to use block bundle-

adjustment. This is the method that we adopt. Hartley [78] describes a feature-based

bundle-adjustment scheme for the estimation of homographies. Sawhney et al. [127] de-

scribes a analogous intensity-correlation based method. The latter is rather less elegant

than the former, requiring a multi-scale approach combined with a progression of motion-
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model complexities.

Bundle-adjustment is a direct extension of the 2-view maximum-likelihood registration

framework to the multiple-view case. In the following sections, we first describe the gen-

eralization of the 2-view to framework to the N-view case, and derive the corresponding

N-view ML estimator. We then describe a novel and efficient solution to the problem of

matching point features across multiple views, which is a pre-requisite to bundle adjust-

ment.

4.4.2 Extending the 2-view framework to N-views

The N-view homography estimation problem can be described as follows. We have N over-

lapping views of a 3D scene. Points in the views are related to points in the scene by ho-

mographies. The objective is to register every view with some global frame containing the

whole scene. The choice of global frame is unimportant, but for convenience we shall as-

sume that it is aligned with one of the N images, called the reference image.

Now that we are dealing with more than 2 views, we shall adopt the following notation :

• xn
i is the ith interest point observed in the nth view.

• Hn is the homography which transforms points in the global frame into the nth view.

Every interest point xn
i is a noisy observation of a projected pre-image point Xj . Since

the views overlap, this pre-image point Xj will typically also project into several other

views, generating other interest points {x}. The set Mj = {xn
i |xn

i ≈ HnXj} is the set of

interest points in all views which correspond to the same underlying pre-image point Xj .

This is termed an N-view match. The situation is illustrated in figure 4.16, which shows

4 views of a planar scene. The same pre-image point – marked with a cross – is observed

in each view. These 4 interest points constitute an N-view match. It is important to note

that, in general, the number of points in an N-view match Mj will be less than the num-

ber of views, since the pre-image Xj is only observed in a sub-set of the views. Of course,

there will typically be several hundred or several thousand N-view matches in a given set

of overlapping images.

Clearly, the concept of an N-view match is a direct extension of the 2-view matches

already seen, in which certain pre-image points generate corresponding interest points in
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Figure 4.16: (Top) Four views of a planar scene. A particular interest point, marked with

a cross, is observed in all 4 views. (Bottom) When the views are transformed into a global

frame (aligned with the 4th image) it is clear that the 4 interest points are observations of

the same underlying pre-image point and that they therefore constitute an N-view match.
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Figure 4.17: The pre-image point X generates interest points x1,x2 and x3 in three different

views. The N-view ML estimator minimizes the distances d1,d2 and d3 with respect to the

homographies H1, H2 and H3 and the point X

both images. The derivation of the extended maximum likelihood estimator over all views

and all N-view matches also follows directly, as we shall now see.

The negative log-likelihood of the N-view matches Mj given the N scene-to-image ho-

mographies Hn, and M pre-image points Xj is

L = −
M
∑

j=1

∑

xn
i ∈Mj

log Pr(xn
i |Hn)

=
M
∑

j=1

∑

xn
i ∈Mj

d2(xn
i , HnXj)

(4.3)

where d2(x,x′) is the squared (inhomogeneous) Euclidean distance between homogeneous

points x and x′.

The ML estimate of the homographies Hn is obtained by minimizing L over both the pa-

rameters of the homographies and the positions of the pre-image points Xj . The schematic

example of figure 4.17 shows a pre-image point X which generates interest points x1,x2 and

x3 in three different views. The distances d1,d2 and d3 are to be minimized with respect to

the homographies H1, H2 and H3 and the point X.
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Efficient optimization Unlike the 2-view case, there exists no approximation to the N-

view log-likelihood which would allow us to avoid explicit parameterization of the pre-

image points Xj . The total number of parameters to be estimate is therefore

number of parameters = 8 × number of views + 2 × number of N-view matches

= 8N + 2M
(4.4)

Every interest point xn
i is a member of either 0 or 1 N-view match. Each point that is a

member of some Mj contributes error residuals (xn
i −Xn

j , yn
i − Y n

j ). As in the 2-view case,

this system of equations constitutes a non-linear least-squares problem, for which Gauss-

Newton style iterative algorithms, such as the ubiquitous Levenberg-Marquardt, provide

an efficient means of optimization. However, at first glance, the size of the problem ap-

pears to prohibit the use of these methods : a typical example may feature 100 views, 1000

N-view matches, and 10000 interest points, requiring 2800 parameters to be optimized

over 20000 residuals. Fortunately, on closer inspection, we note that certain groups of er-

ror residuals are independent of certain groups of parameters : the residuals due to inter-

est points in a particular view n depend only on the parameters of a single homography

Hn, and on the sub-set of N-view matches which contain points in view n. This means

that, given any any putative set of parameters {H,X}, the Jacobian matrix of the geometric

residuals with respect to the parameters is block-sparse with a predictable sparsity struc-

ture.

An implementation of the Levenberg-Marquardt algorithm which takes advantage of

this block-structure to allow efficient computation is described in the Manual of Photogram-

metry [141] and also by Hartley [76, 78] and Triggs et al. [162]. However, the bundle-adjustment

in this thesis was carried out using an implementation based on more modern approaches

to large-scale non-linear optimization [24, 103]. The implementation is detailed in ap-

pendix A.

4.4.3 A novel algorithm for feature-matching over N-views

We now address the problem of exactly how to go about finding the N-view matches, Mj .

Initially, we only have matches computed between consecutive pairs of images in the se-

quence. To initiate the N-view matching process we can simply chain together correspond-

ing feature points in consecutive views to form tracks. For instance, if point i in image 1 is
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matched with point j in image 2, which is in turn matched with point k in image 3, and so

on, then these feature points are all observations of the same pre-image point and hence

form an N-view match.

Unfortunately, feature points have a tendency to “drop-out” occasionally, causing what

should be a single long track to become fragmented. Also, a particular pre-image point may

be visible for short periods at several points in the sequence, but outside the field of view

in the intervening periods, again causing several distinct N-view matches to be detected

when there should only be one. Clearly, it is unrealistic to expect simple feature tracking to

provide any N-view matches connecting the first and last frames in our example sequence.

An algorithm is required for merging the disjointed tracks. To facilitate this, we introduce

the concept of a view graph.

The view graph The “view graph” is an undirected graph with images at the nodes, and

homographies and 2-view point-correspondence sets on the edges. Having performed reg-

istration between consecutive images in a sequence, the initial topology of the view graph

is linear, with edges between temporally adjacent images. Homographies between tem-

porally separated images may be computed by following a path through the graph from

node i to node j, chaining together the homographies on the edges. Similarly, the 2-view

matches may be chained together to form tracks. Performing explicit 2-view registration

between any pair of images allows a new edge to be inserted into the graph, admitting the

possibility of merging tracks which correspond to the same pre-image point, and which

pass through both images.

The view-graph concept allows us to explicitly define what we mean by a globally con-

sistent set of homographies :

A globally consistent set of homographies is such that an aggregate

homography computed by concatenation around any cycle in the

view graph is equal to the identity.

A set of homographies computed between overlapping frames using the 2-view algorithm

does not possess this property due to the error accumulation problem. In contrast, the

N-view ML estimator guarantees global consistency.

Explicit registration of every image with every other image, so as to form a fully con-

nected graph, will allow every stray track to be merged with its siblings, but clearly this is

infeasible for large numbers of images. An efficient N-view matching algorithm will add
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the minimum number of additional edges to the view graph such that all the fragmented

tracks are correctly merged into unique N-view matches. This is the aim of the novel algo-

rithm, which is now described.

The concept of a graph structure, whose topology represents the explicit pairwise reg-

istrations performed within a set of images, was also introduced independently by Sawh-

ney et al. [128]. However, whereas we are interested in propagating match-tracks across

spatially adjacent frames, and hence mostly interested in the point correspondences at-

tached to the graph edges, they are interested in the actual homographies attached to the

graph edges and in the choice of shortest-path routes along which to concatenate homo-

graphies in an effort to minimize error accumulation. They use an intensity-based regis-

tration method, and hence have no concept of N-view match tracks. Consequently, their

heuristic rules for deciding which images pairs to explicitly match are rather different to

the ones described below.

The key to our algorithm is the selection of a good criterion for deciding how benefi-

cial it may be to explicitly register any given pair of images. Our criterion is based on the

following observation :

Image pairs which have a high degree of overlap are likely to yield

many matched feature points. Therefore any such pair of images

which additionally share few N-view match tracks are good candi-

dates for explicit matching.

The important factors are therefore the area of overlap between a pair of images, and

the number of N-view matches which pass through both of them. It is clearly pointless to

try to match images with very little overlap. It is also of little benefit to match images which

already have many shared match tracks.

The area of overlap between a pair of images (i, j) is computed as follows. We first

compute the homography H(j→i) by following the current shortest path between nodes i

and j in the view graph. The boundary of image j is then transformed into and intersected

with the boundary of image i. We define the relative area of overlap as

aij =
area of intersection

max (area of image i, area of image j)
(4.5)

a is a number between 0 and 1, where 1 indicates perfect overlap. A simple function which

captures the heuristic rules given above is

Cij = aij exp(−Mij/k) (4.6)

95



where Mij is the number of N-view matches which contain feature points from both image

i and image j, and k is a constant which controls the relative importance of intersection

area and number of mutual matches (k = 100 is a ball-park value). This function has a high

value for image pairs which are considered to be good candidates for explicit matching.

The N-view matching is outlined in table 4.1.

Algorithm

1. Initialize the N-view matches by linking together pairwise matches be-

tween consecutive frames.

2. Using the current view graph, rank every possible pair of images ac-

cording to the criterion given in equation (4.6).

3. Perform explicit registration between the highest ranking pair, using the

algorithm of section 3.4.

4. Incorporate the new edge into the view graph, and merge N-view

matches where indicated by the newly found pairwise matches.

5. Repeat steps 2,3 and 4 until the total number of N-view matches stabi-

lizes.

Table 4.1: The main steps in the N-view matching algorithm.

When merging tracks it is important to ensure that the tracks being merged are consis-

tent. If each contains a different feature point in the same view then clearly they cannot be

merged, indicating that a mismatch has occurred somewhere. In this event, both tracks are

discarded. However, since the outlier rejection capability of the 2-view matching algorithm

is very powerful, such mismatches are extremely rare.

Figures 4.18(a) and (b) show the view graph before and after application of the N-view

matching algorithm. Figures 4.18(c) and (d) represent the number of feature matches be-

tween every pair of frames as a colour-coded matrix. Table 4.2 shows the distribution of

track lengths before and after N-view matching. The number of long tracks has increased

dramatically and there are now tracks linking the first and last frames in the sequences. 45

edges have been added to the graph.
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Figure 4.18: Results of applying the N-view matching algorithm to the “Oxford Map” se-

quence. (a) and (b) show the view graph before and after application of the N-view match-

ing algorithm. The image centres are represented by the circles. The explicitly computed

matches populate the graph with edges. The initial view graph contains only edges be-

tween consecutive image pairs. The described N-view matching algorithm inserts an ad-

ditional 45 edges into the graph by performing matching between image pairs where it is

considered to be advantageous according to the criterion described in equation 4.6. (c)

and (d) represent the number of feature matches between every pair of frames as a colour-

coded matrix.
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Distribution of track lengths > 10 frames > 20 frames > 30 frames

Before N-view matching 561 74 9

After N-view matching 804 175 18

Table 4.2: Oxford Map sequence The distribution of N-view match track lengths before

and after the automated N-view matching algorithm. N-view matching allows short tracks

to be spliced together across the sequence. The number of tracks longer than 10 frames is

increased by 43%.

4.4.4 Results

Having found a good set of N-view matches, we are in a position to compute a globally con-

sistent set of homographies using the N-view ML estimator. Being a non-linear method,

the estimator requires initial estimates of both the homographies {H} and the pre-image

points {X} (of which there will be one per N-view match). The homographies are initial-

ized by concatenating along shortest-paths in the view graph that is generated during the

N-view matching process. The pre-image points are initialized by selecting any one of the

feature points from each N-view match set, and transforming it into the reference frame.

Figure 4.19 shows the “Oxford Map” mosaic computed using both the original homo-

graphies (computed by concatenation), and the globally consistent homographies obtained

using bundle-adjustment. The close-up views clearly show that the mismatch between the

first and last frames has been eliminated.

Figure 4.20 shows a sequence of 94 images of the University Museum, captured using

a MiniDV camera. Figure 4.21 shows the view graphs for this sequence before and after

N- view matching. Table 4.3 shows the distribution of N-view match track lengths before

and after. In this example, the heuristic for choosing which images to match works very

well. The number of match tracks covering more than 10 frames is doubled, and more

than 50 tracks are longer than 40 frames. The completed, bundle adjusted mosaic is shown

in figure 4.28.

4.5 Automating the choice of reprojection frame

In this section we consider the problem of rendering “bow-tie” style, planar manifold mo-

saics from rotating camera sequences. We describe an automatic method for choosing the

rendering transformation which minimizes the projective distortion of the peripheral im-
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Figure 4.19: (Top) The mosaic shown in figure 4.14 after refinement of the homographies by

bundle-adjustment. (Left) A close-up view of the boxed region shown in red in figure 4.14.

(Right) The corresponding region extracted from a single frame in the sequence. Compar-

ison of the close-up views shows that the mismatch visible in the original mosaic has been

eliminated.
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Figure 4.20: The University Museum sequence. There are 94 frames in total, captured using

a mini-DV camera.
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Figure 4.21: (a) and (b) show the view graphs for the University Museum sequence before

and after N-view matching. The algorithm inserts an additional 25 edges into the view-

graph. (c) and (d) represent the number of feature matches between every pair of frames

as a colour-coded matrix. The amount of off-diagonal mass is significantly increased, in-

dicating many extra matches between non-consecutive image pairs.

Distribution of track lengths > 10 frames > 20 frames > 30 frames > 40 frames

Before N-view matching 686 132 39 0

After N-view matching 1383 475 189 51

Table 4.3: University Museum sequence The distribution of N-view match track lengths

before and after the automated n-view matching algorithm. The number of tracks longer

than 10 frames is more than doubled, and over 50 tracks are longer than 40 frames.
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Figure 4.22: (Top) The mosaic formed by composing the 94 images using temporal median

filtering. (Bottom) The outline of every 5th frame is overlaid.
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ages, producing a well-balanced and aesthetically pleasing mosaic.

4.5.1 Motivation

As explained in section 4.2, the task of the rendering transformation is to map points in the

rendered image into points in the global reference frame, and hence into the individual

images. The global reference frame is arbitrary, and for convenience, is generally aligned

with one of the input images, called the reference image. In the case of a planar reprojection

manifold, the simplest choice of rendering transformation is a similarity transformation,

the purpose of which is to shift the origin of the global reference frame to the origin of the

rendered image, and to scale the rendered image to the desired dimensions. The rendering

transformation from the rendered image into image k is then

Tk = H(ref→k)S (4.7)

where the similarity transform S combines the camera calibration matrices of the real ref-

erence camera and the virtual camera :

S = KrefK
−1
virtual (4.8)

In this case, the choice of reference image is critical to producing a well-balanced mosaic,

and a good choice is generally an image near the middle of the sequence.

The method is demonstrated in figure 4.24, which shows two mosaics made from the

sequence of 6 images shown in figure 4.23. Given the small number of images, our choice

of reference frame is very limited. The first mosaic is composed using the third image as

the reference frame, and the second mosaic uses the fourth image. The outlines of the

images are super-imposed on each mosaic. Clearly, neither choice provides a satisfactory

reference frame in which the projective distortion is balanced.

4.5.2 Synthetic camera rotations

In choosing a reference image, we are implicitly setting the optic axis of our virtual camera

to be the same as that of the real camera which captured the reference image. It is perfectly

possible however, to create a virtual camera, concentric with the real camera, but with any

chosen gaze direction and focal length. This idea is used to great effect in systems such as

the Quicktime VR software [35], which gives the user the sensation of standing at a single
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Figure 4.23: A sequence of 6 images of the Grand Canyon, taken with a hand-held 35mm

camera and scanned using a flat-bed scanner.

Figure 4.24: Mosaics composed from the 6 images shown in figure4.23. (Left) The third im-

age is used as the reference frame. (Right) The fourth image is used as the reference frame.

The third and fourth images are the closest to the middle of the sequence, yet neither pro-

vides a satisfactory reference frame in which the projective distortion is balanced.
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Figure 4.25: Schematic illustration of using planar manifold projection to simulate an ar-

bitrary camera rotation and zoom.

spot (referred to as a node) from where he is free to look in any direction and to zoom in or

out. In such systems, the environment is typically represented by a cylindrical or spherical

mosaic, and rendering is by reprojection of a small portion of the view sphere onto a planar

manifold. The scheme is illustrated schematically in figure 4.25.

Referring to equation (4.2), the model of a rotating projective camera, we can write the

homography relating any pair of images (i, j) as a conjugate rotation:

H(i→j) = KjR(i→j)K
−1
i (4.9)

Given the calibration matrix for each image Kn, along with the desired internal parameters

Kvirtual and rotation Rvirtual→ref of the required virtual camera, the appropriate rendering

transformation, which maps points in the mosaic image to points in image k, may be com-

puted using equation (4.9) :

Tk = (KkRvirtual→kK
−1
virtual)

= H(ref→k)(KrefRvirtual→refK
−1
virtual)

(4.10)

Unlike the QuickTime VR situation, we are interested in reprojecting all of the frames

in a sequence onto a planar manifold (in cases where this is possible.) Figure 4.26 shows

the Grand Canyon mosaic rendered under various different virtual camera rotations. As

the rotation varies, so does the projective distortion of the reprojected images. Our novel

algorithm automatically chooses a rotation which minimizes this projective distortion, re-

sulting in a well-balanced rendering.
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Figure 4.26: The same mosaic as shown in figure 4.24 rendered using a variety of synthetic

camera rotations, about the x-axis (top), y-axis (middle) and z-axis(bottom).

There are various ways in which we might quantify the level of distortion, but the one

that has been found particularly effective is to compute the ratio of the maximum and

minimum reprojected image area :

Ak = area( T−1
k × image boundary )

C =
max{Ak}
min{Ak}

(4.11)

A well balanced mosaic minimizes the cost function C (the optimal value being 1). As

can be seen in figure 4.26, rotation about the z-axis (cyclotorsion) has no effect on the level

of projective distortion, so optimization is only performed over the x- and y- axis rotations

(yaw and pitch). Correct application of cyclotorsion requires understanding of the correct

orientation of objects in the scene, and hence it is best left to the user to apply as a post-

processing step.

The automatic balancing algorithm is as follows :

• Initialization Initialize the yaw and pitch angles to zero. From all the images in the

sequence, choose a reference image which gives the minimum value of the cost func-

tion of equation (4.11).
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Figure 4.27: The mosaic sequence of figure 4.24, but with the rendering transformation

computed by the automatic balancing algorithm.

• Calibration Estimate the focal length of the real reference camera using de Agapito’s

linear method.

• Optimization Further minimize equation (4.11) with respect to the yaw and pitch

angles using gradient descent. Iterate until the minimum is reached.

• Post-processing Find the bounding box of the rotated mosaic, and compute the simi-

larity transformation S which maps the bounding-box onto the desired rendered im-

age (dimensions specified by user). Render the mosaic using the chosen blending

method.

The result of applying the algorithm to the image sequence shown in figure 4.24 is

shown in figure 4.27. The mosaic is now well balanced and pleasing to the eye.

4.6 Applications of image mosaicing

Irani et al. [84] provide a good review of 2D mosaicing applications. Some of these rely on

the idea of computing significant residuals between input frames and the mosaic. Such
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residual motions are usually the result of off-plane structure. These regions are segmented

out using a temporal median filter. One application of this is off-line video compression

using a static mosaic. The static mosaic consists of a single mosaic constructed by a tempo-

ral median and representing the dominant background. In addition to this, the significant

residuals for every frame are also extracted and, along with the mosaic image, can be com-

pressed using standard techniques to form a very compact representation of the sequence

— a point capitalized on in MPEG4.

Further examples of off-line applications include event synopsis [83] and video-editing [9,

81]. Event synopsis involves constructing a static mosaic and significant residuals and then

overlaying the residuals for a number of frames onto the mosaic simultaneously. This cre-

ates a synopsis of foreground events over an extended time period. This could be used to

create “strobe-effect” tracks of the players and ball at crucial moments in a football game.

Digital video composition can be greatly simplified by mosaicing because it effectively al-

lows the user to operate on many frames at once, removing the tedious task of (say) repo-

sitioning a matte mask in a whole sequence of frames.

On-line applications include low bit-rate transmission of video [85] and an artificial

“steady-cam”. These depend on building a dynamic mosaic. Such a mosaic is constructed

by continually updating with the current incoming image by calculating the significant

residuals between the current mosaic and the current image and using them to immedi-

ately modify the mosaic. The significant residuals are generally much smaller than for the

static mosaic and hence this method is well suited to low bit-rate transmission, requir-

ing only the registration parameters and compressed residuals to be transmitted for each

frame.

The dynamic mosaic is also well suited to “steady-cam” applications since most of the

high-frequency jitter in an unstabilized camera is due to small rotations. By writing each

frame into a dynamic mosaic it is possible to show a steady view and to synthesize smooth

camera rotations by appropriately warping the mosaic.

4.7 Mosaicing non-planar surfaces

The essence of chapter 3 is that, for particular camera motions or types of scene, images

may be registered by a global mapping with a small number of parameters. Once the pa-
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rameters of the mapping are determined, the mosaicing problem is reduced to image ren-

dering. As mentioned in chapter 3, parameterized mappings can be derived for surfaces

other than planes, such as quadrics or surfaces of revolution, without any requirement for

camera calibration, thereby allowing mosaics to be composed from images of such sur-

faces.

4.8 Mosaicing “user’s guide”

The following paragraphs summarize the different imaging situations to which each mo-

saicing and blending method previously discussed is best suited.

Planar mosaicing Reprojection onto a planar manifold emulates the view from a single,

perspective camera with a very large imaging sensor and wide field of view. It requires that

the camera motion be a true nodal pan, or alternatively that the scene be purely planar or

very distant. In practice, this projection is only really useful when the field of view swept by

the camera is < 90 degrees; any greater and the result is a mosaic which exhibits unaccept-

ably severe projective distortion of the source images. It does however have the advantages

of preserving straight lines and perspective projection.

Cylindrical mosaicing Reprojection onto a cylindrical or conical manifold emulates a

“panoramic” camera in which the film is wrapped in a cylinder about the optic centre.

The camera motion is required to be a true nodal pan, and estimates of the camera’s in-

ternal parameters are also required in order for this method to work correctly. It has the

advantage over planar mosaicing that it may be applied to sequences with upto 360 de-

grees camera rotation. However, it has the drawback that straight lines in the scene map to

curves in the mosaic, and the familiar impression of perspective is lost.

Peleg’s “manifold projection” This method may be used to generate mosaics from a cam-

era undergoing general motion, provided that a method exists to estimate the dominant

motion between consecutive frames. It is hence quite forgiving to deviations from the

nodal pan motion model. The mosaics so produced are similar to what might be gener-

ated by a 1D “push-broom” camera. Its robustness makes it a useful method for consumer

“desktop video” applications such as Videobrush. It may be used with camera rotations
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upto 360 degrees, as well as camera translations. It has the drawbacks that straight lines

map to curves, and the impression of perspective is lost. Furthermore, unlike planar or

cylindrical mosaics, the “manifold projection” does not represent the view from any sort

of real, single camera. It is therefore of little use in applications such as node-based virtual

reality (e.g. Quicktime VR).

4.9 Summary

In this chapter the basic principles of forming a mosaic representation of a scene, and of

rendering an image from that representation have been explained. The 2-view maximum

likelihood homography estimator described in chapter 3 has been extended to perform si-

multaneous estimation of homogaphies between multiple overlapping views. This N-view

ML estimator has been shown to find a globally consistent set of homographies, thereby

eliminating the problem of error accumulation when concatenating homographies be-

tween temporally distant frames. The photometric registration method described in chap-

ter 3 has been shown to be effective in eliminating seams and balancing colours in ren-

dered mosaic images. A novel algorithm has been described for automatically choosing

the gaze direction of the virtual camera so as to minimize projective distortion when ren-

dering a planar manifold mosaic.
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4.9.1 Further examples

The following figures show a few more examples of mosaics rendered using the algorithms

described in this chapter.

Figure 4.28: Mosaics created from a sequence of 43 images captured using a hand-held

MiniDV camera. (Top) Planar manifold projection, (Middle) Cylindrical manifold, (Bottom)

Peleg’s manifold projection method.
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Figure 4.29: A complete 360o panoramic mosaic composed from 178 frames and rendered

using cylindrical projection.
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Figure 4.30: A planar manifold mosaic composed from 44 images.
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Chapter 5

Super-resolution : Maximum
Likelihood estimation and

related approaches

5.1 Introduction

In this chapter we investigate the problem of fusing information from several views of a

scene in order to reconstruct a novel view of the scene with greater spatial resolution than

is available in any of the observed views.

In each view, light emitted from the scene is projected onto the sensor array of the

camera, producing an irradiance pattern which is temporally integrated, spatially sampled

and quantized to generate an image. In addition, the image is often blurred due to de-focus

and/or motion.

We attempt to reverse these degradations in order to estimate a high resolution repre-

sentation of the intensities in the scene. Under the assumption of Lambertian surfaces and

uniform illumination, this is equivalent to estimating surface albedo. These techniques are

often termed super-resolution.

In section 5.2 we briefly consider exactly what we mean by the term “resolution”. Sec-

tion 5.3 reviews the basic principle of single image restoration. Section 5.4 discusses in

detail the assumptions behind our generative image model, constrasting different imple-

mentation approaches, and proposing an accurate and efficient method. Section 5.5 de-

scribes a simple experiment which aims to justify the Gaussian blur assumption made

in the generative model. Section 5.6 describes the generation of the synthetic image se-

quences which are used to probe the behaviour of the super-resolution algorithms. Sec-

tion 5.7 describes the creation of an “average image” from a set of low-resolution images,

and presents derivations of its properties which are verified empirically. Section 5.8 briefly

reviews the super-resolution method proposed by Rudin et al. [123]. Section 5.9 introduces



the maximum-likelihood super-resolution estimator, and section 5.10 discusses its proper-

ties. Section 5.11 presents an empirical investigation of the behaviour of the ML estimator.

Section 5.12 reviews the super-resolution algorithm of Irani and Peleg [86], and analyses

its convergence behaviour and relationship to the ML estimator. Finally 5.13 demonstrates

the ML estimator applied to some real image sequences.

5.2 What do we mean by “resolution”?

Considering the types of image sequence to which super-resolution techniques are gener-

ally applied, we observe that they usually fall into two broad categories :

• Aliasing is the principal degredation : Sequences in which the optical or motion

blur was negligible, but the required texture details are unavailable because the spa-

tial sampling density of the camera was too low.

• Blur is the principal degredation : Sequences in which the sampling density would

be perfectly adequate to capture the required details, but in which the optical or mo-

tion blur is severe.

In most super-resolution literature, the term “resolution” is taken to mean the actual

number of pixels present in an image. The goal is then to obtain a high-resolution image

with a higher pixel density than any of the low-resolution images. A typical “zoom factor” is

a doubling of pixel resolution in the x and y directions, producing a high-resolution image

with 4 times the pixel density of any low-resolution image.

This “pixel counting” notion of resolution enhancement is readily applicable to the

aliasing dominated cases. In blur dominated cases however, it is generally unnecessary

to increase the pixel density. The required texture details are revealed by removing the

blur degradation. A motivating example of this idea is shown in figure 5.1, which shows

a severely motion blurred, and consequently unreadable, vehicle registration plate. The

deblurred version represents a dramatic improvement in readability, although the number

of pixels has not been increased. In such cases, using multiple images helps to reduce the

noise sensitivity of the reconstruction process compared to reconstruction from a single

image.

For this reason, we shall use a rather more liberal, perceptually motivated definition of

resolution enhancement :
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Figure 5.1: (Left) A severely motion blurred car license plate. (Right) After deblurring,

the perceived resolution is clearly much improved, although the number of pixels has not

changed.

“The super-resolution image should demonstrate an improvement in

the perceived detail content compared to that of the low-resolution

images. This will typically involve restoration of the high-frequency

content, which in turn may require an increase in pixel density.”

Clearly, this definition is rather subjective. However, we would hope that in most cases,

the improvement in perceived detail would be clearly visible to any observer.

5.3 Single image methods

In this section we motivate the argument for using multiple views by looking at an example

of restoration from a single image.

Image restoration from single images has generally concentrated on the removal of

optical blur and motion blur. A good survey of these methods is given by Gonzalez and

Wintz [72], and by Pratt [116]. The blurring process is modelled as convolution of the orig-

inal image with a blurring operator (also called the point spread function). Hence

go(x, y) = gt(x, y) ∗ hd(x, y) + n(x, y) (∗ = convolution) (5.1)

where go is the observed image, gt is the true image, hd is the blur operator, and n is a noise

term. Optical blur is modelled by an isotropic, linear, spatially-invariant convolution ker-

nel. Motion blur due to pure translational motion is modelled by a non-isotropic kernel.

The simplest approach to recovering the original images is to apply a reconstruction oper-

ator hr which reverses the effect of hd. Hence

ĝt(x, y) = go(x, y) ∗ hr(x, y)

= (gt(x, y) ∗ hd(x, y) + n(x, y)) ∗ hr(x, y)
(5.2)
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Figure 5.2: A synthetically blurred image and the reconstructed image using the inverse

filtering technique. Notice how noise in the blurred image has been amplified in the re-

construction.

The analysis becomes easier if we turn to the Fourier domain,

Ĝt = (GtHd + N )Hr (5.3)

The simplest reconstruction operator is the inverse filter, Hr = 1
Hd

. This leads to

Ĝt = Gt +
N
Hd

(5.4)

The blur operator hd is a low pass filter, so limω→∞Hd(ω) = 0. The inverse filter is therefore

a high-pass filter with the opposite characteristic, limω→∞Hr(ω) = ∞. This means that

the inverse filter greatly amplifies the high frequencies of the noise component N , and this

noise tends to dominate the reconstructed image. Figure 5.2 shows the effect of applying

an inverse filter to a blurred and noisy image.

A more sophisticated reconstruction operator is used in Wiener filtering, a technique

which utilizes prior knowledge of the spectral densities of the image noise and of the un-

degraded image. This allows a reconstruction kernel to be derived which minimizes the

restoration error E, where

E = ‖gt(x, y) − ĝt(x, y)‖2 (5.5)

The Wiener reconstruction kernel typically has a band-pass rather than a high-pass char-

acteristic, and hence does not suffer from the noise amplification seen in simple inverse

filtering. We shall return to the Wiener filter in the context of Bayesian super-resolution

methods in chapter 6.
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5.4 The multi-view imaging model

To recover information from several views, we must first model the process by which the

individual images are generated. In this section we describe our generative model, and

then briefly discuss the differences between this model and those adopted elsewhere in

the literature. The model used can be factored into several components as follows :

• The motion model is planar projective. In other words, the relative motion between

the scene and camera induces a projective transformation (homography) between

views.

• The scene is restricted by our chosen motion model to be either a planar Lamber-

tian surface, or a general static scene viewed by a camera rotating about its optic axis

and/or zooming. As shown in chapter 3, for such scenes the geometric transforma-

tion between views is a homography.

• The illumination is assumed to be uniform across the surface. It may also vary con-

stantly as the surface and/or camera moves.

• The camera sensor is linear device comprising a rectangular array of uniformly spaced

CCD elements, each of which integrates the radiant energy falling across its surface

for the duration of the open-shutter exposure. If the scene or camera moves during

the exposure, motion blur is observed.

• The camera geometry is taken to be that of a pinhole camera. That is to say, the scene

is projected onto the image plane of the camera by a perspective projection, which is

a special case of the general projective transformation.

• The camera optics may induce blur due to de-focus. The blur is assumed to occur

uniformly across the camera sensor, and is therefore modelled as the convolution of a

linear, spatially invariant point-spread function with the irradiance pattern projected

onto the sensor plane.

• The image noise is assumed to be spatially uncorrelated, isotropic, additive, nor-

mally distributed with mean equal to zero, and constant variance.
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optic centre

image plane

planar surface

quantization

Figure 5.3: (Top) A perspective camera is imaging a planar scene. (Left) The scene is pro-

jected onto the CCD array by perspective projection. (Right) The CCD elements are as-

sumed to integrate the radiant energy over their surface, producing a spatially-quantized

image of the scene.

(a) (b) (c) (d)

Figure 5.4: The principal steps in the imaging model : the high-resolution planar surface

(a), undergoes a geometric viewing transformation (b), followed by optical/motion blur-

ring (c), and finally down-sampling (d).
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The situation is shown schematically in figure 5.3, and the principal steps are illustrated

in figure 5.4.

The image-to-image transformations are estimated a priori using the geometric regis-

tration techniques described in chapter 3.

5.4.1 A note on the assumptions made in the model

In addition to the rotating camera and planar scene cases, in which the planar motion

model is exact, the planar homography is also a very good approximation of the view-to-

view transformation under imaging conditions in which parallax is negligible, i.e. when

the surface relief is very small by comparison with the distance to the camera. An example

of this is in high aeriel or satellite views of the earth.

The Lambertian model, together with the assumption that illumination varies uniformly

across the scene, means that the global intensity mapping between views can be modelled

as a simple affine scaling (a multiplicative term akin to contrast, and an additive term akin

to brightness.) Estimates of these parameters are also obtained a priori using the photo-

metric registration techniques described in chapter 4.

The spatial averaging performed by each CCD cell can be modelled as a convolution

with a rectangular window [28]. The effect of optical blur is typically modelled by a convo-

lution with a circular, “top hat” function [8]. We model the combined effect of the two de-

gredations as convolution with an isotropic Gaussian. Further justification for this model

is given in section 5.5. Note that we do not attempt to model motion blur.

The assumption of a linear mapping between scene irradiance and pixel value is not

perfectly true in practice because of the dynamic range compression often performed by

some component of the video capture system. Details of this non-linear mapping are usu-

ally not available in desktop video capture equipment, although methods have been pro-

posed to estimate it using calibration images [118, 166]. However, such mappings are typ-

ically fairly linear for a large portion of the mid-intensity range, a fact observed by Robert-

son et al.in their work on dynamic range improvement using multiple exposures [120].

5.4.2 Discretization of the imaging model

So far, our discussion of the imaging model has assumed that the scene intensities are

a continuous two-dimensional function. In order to make the model useful in an opti-
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mization context we choose a suitable discrete representation of the scene intensities, and

discretize the imaging model accordingly.

It is assumed that the set of observed low-resolution images were produced by a single

high-resolution image under the following generative model

gn(x, y) = αn S↓(h(u, v) ∗ f̄(Tn(x, y))) + βn + η(x, y) (5.6)

f̄ - ground truth, high-resolution image

gn - nth observed low-resolution image

Tn - geometric transformation of nth image

h - point spread function

S↓ - down-sampling operator by a factor S

αn, βn - scalar illumination parameters

ηn - observation noise

Transformation T is assumed to be projective. The point spread function h is assumed

to be linear, spatially invariant. The noise η is assumed to be Gaussian with mean zero.

After discretization, the model can be expressed in matrix form as

gn = αnMnf̄ + βn + ηn (5.7)

in which the vector f̄ is a lexicographic reordering of pixels in f(x, y), and where the lin-

ear operators Tn, h and S ↓have been combined into a single matrix Mn, as explained in

section 5.4.4. Each low-resolution pixel is therefore a weighted sum of super-resolution

pixels, the weights being determined by the registration parameters, and the shape of the

point-spread function, which combines the effects of optical blur, motion blur and spatial

integration.

Finally the generative models of all N images are stacked vertically to form an over-

determined linear system
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(5.8)

g = ΛαMf̄ + β + η (5.9)
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For the sake of convenience, the super-resolution pixels f are henceforth referred to as

super-pixels in order to distinguish them from the low-resolution pixels.

It is important to note that the model described can be expressed as a purely linear

transformation of the scene intensities.

5.4.3 Related approaches

Generative models found in the literature vary in their assumptions about the motion

model, the point-spread function and the modelling of illumination variation. Some au-

thors have adopted a simpler motion model, such as pure translation [10, 94, 104, 106, 114,

152, 164, 168], Euclidean [34, 54, 86] or affine [11, 87]. Others have chosen a more general

motion model such as full dense stereo matching [108, 132, 137, 138]. It is also common

to find other forms of point-spread function, such as a rectangular window [28], or a ker-

nel extracted directly from calibration images [86, 99], or even from the observed image

data itself [137]. At this time, it appears that no other authors have explicit photometric

parameters in their model.

A small number of authors have applied super-resolution techniques to problems in

which a linear relationship between scene irradiance and sensor measurement cannot be

assumed, such as positron emmission tomography [126, 175].

To summarize, the model presented here is rather more general than those typically

found in the literature : it allows for illumination changes, and has a quite flexible motion

model.

5.4.4 Computing the elements in Mn

In this section we address the issue of how exactly the entries in the matrices Mn are com-

puted. This issue is almost universally glossed-over in the literature, the only notable ex-

ceptions being the work of Smelyanskiy et al. [142], Zomet and Peleg [176], and that of Patti

and Altunbasak [106].

According to the imaging model, the value of each low-resolution pixel is given by an

area integral over the geometrically warped super-resolution image weighted by the point-

spread function (see figure 5.5). Each row in the matrix M is therefore a discretization of the

integral equation (5.6) for a single pixel.
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Figure 5.5: Each simulated pixel is a weighted sum of several super-pixels. The weights

are determined by the geometric viewing transformation, the form and size of the point-

spread function, and also by the quadrature rule used to discretize the generative model.

Essentially, there are three possible approaches to the discretization of the generative

model which we shall now examine.

Method A Warp the super-resolution image into an intermediate frame using some inter-

polation scheme (bilinear or bicubic), convolve with a discretized version of the PSF, and

finally sub-sample. The intermediate frame is aligned with the low-resolution image, but

the pixel density is the same as or greater than that of the super-resolution image. This

corresponds to the decomposition of Mn used by Zomet and Peleg [176] :

Mn = DHTn (5.10)

D - discrete down-sampling (decimation) matrix

H - convolution matrix formed from discretization of h(x, y)

Tn - geometric warp with suitable interpolation (bilinear/bicubic)

The matrix-vector operation Mnf may be implemented by applying the three consec-

utive linear transformations to the super-resolution image. Figure 5.6 illustrates how the
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method applies to a one-dimensional signal. A two-dimensional schematic is shown in

figure 5.10.

super-resolution pixels

pixels warped into low-res frame
with interpolation

filtered with discretized PSF at
low-res pixel positions

low-res pixels

Figure 5.6: Method A : The super-resolution image is warped according to the geometric

viewing transformation into an intermediate frame, using an interpolation scheme to com-

pute values at non-integer positions. The intermediate frame is filtered with a discretized

version of the point-spread function at positions corresponding to the low-resolution pixel

centres to generate the low-resolution image. This final step combines the convolution and

down-sampling operations.

Unfortunately, this scheme can give a poor approximation to the generative model, par-

ticularly in cases where perspective foreshortening is severe, resulting in large differences

in scale across the image. To understand why this is, it helps to think of the image warp-

ing process as a resampling operation, in which the resampling sites are at intra-pixel lo-

cations determined by the geometric transformation. The warping algorithm transforms

pixel locations from the destination frame into the source (super-resolution) frame, and

pulls back a value according to the interpolation scheme. Foreshortening effects can cause

the resampling locations to be sparsely distributed in the super-resolution image, leading

to under-sampling and frequency aliasing effects. Consequently, fine details in the super-

resolution image may be lost or distorted even before the point-spread function has been

applied. Figure 5.7 illustrates this problem.

It is, of course, possible to ameliorate this problem by increasing the resolution of the

intermediate image until an acceptable sampling density is achieved in the super-resolution

image. However, the associated increase in computational effort required to warp the im-

age and perform the convolution can quickly become unacceptable.

Method B Back-project the super-pixels as discrete points (no-interpolation) into the

low-resolution coordinate frame. Associate with each low-resolution pixel centre a continuous-
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homography

source (super-resolution) image

= resampling locations

destination (intermediate) image

Figure 5.7: An image warping algorithm transforms points from the destination frame into

the source frame, and pulls back a value according to the interpolation scheme. Foreshort-

ening effects can cause the resampling locations to be sparsely distributed in certain areas,

leading to under-sampling and frequency aliasing effects.

valued PSF which is used to weight the underlying warped super-pixels. The pixel value is

then the weighted sum of super-pixels (the sum of the weights having been normalized to

equal 1.) Figures 5.8 and 5.11 illustrate this scheme in one and two dimensions respec-

tively.

super-resolution pixels

pixels warped point-wise into 
low-res image frame

continuous PSF placed at low-res
pixel locations

low-res pixels

Figure 5.8: Method B : The super-pixels are warped point-wise into the low-resolution

frame according to the geometric viewing transformation, with no interpolation. A

continuous-valued PSF is associated with each low-resolution pixel centre. The PSF is

truncated at, say, 3 standard deviations. Each pixel is the PSF weighted sum of super-pixels.

There are two problems with this approach. Firstly, having performed the point-wise

warp of the super-pixels into the low-resolution frame, determing the set of those super-

pixels which lie within the “receptive field” of each truncated PSF can be hard to implement

efficiently. The problem is essentially the same as determining which of several thousand

non-uniformly distributed points lies with a circle - an operation which must be repeated
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at every pixel.

Secondly, if the pixel-density ratio, S, is low (between 1 and 2), the receptive field will

only contain a small number of super-pixels. In this case, the simple weighted sum of pixel

values is not a good approximation of the required integral.

Method C Warp the continuous PSF associated with each pixel into the super-resolution

frame, and making sensible assumptions about the intra-pixel continuity of the super-

resolution image, evaluate the integral exactly. Figures 5.9 and 5.12 clarify the method.

continuous PSFs in low-res frame

PSFs warped into super-res frame

area-integrals approximated using
a piecewise linear quadrature rule

super-resolution pixels

low-res pixels

Figure 5.9: Method C : A continuous, truncated PSF is associated with each low-resolution

pixel centre. The PSF is warped into the super-resolution frame. Both PSF and super-

resolution image are assumed piece-wise bilinear, allowing the integral to be evaluated

quite accurately.

The third approach is the one we use to generate the results in this thesis. Transfor-

mation of the Gaussian PSF of each pixel under a homography, which maps between a

low-resolution image and the super-resolution image, is accomplished by computing the

local affine approximation to the homography at each pixel position. Each Gaussian is

then transformed into the super-resolution image according to the affine transformation.

Writing the geometric transformation of points (x, y) in the low-resolution image to

points (x′, y′) in the super-resolution image as

(x′, y′) = H(x, y),

the required affine transformation is given by the first-order Taylor series approximation
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taken about a point (x0, y0) :

H(x0 + δx, y0 + δy) ≈ H(x0, y0) + ∇H

[

δx
δy

]

where the Jacobian ∇H is the 2 × 2 matrix

∇H =

[

∂Hx

∂x
∂Hx

∂y
∂Hy

∂x

∂Hy

∂y

]

evaluated at (x0, y0). Under this transformation, the parameters (µ, Σ) of the Gaussian

point-spread function, G(µ, Σ), with centre (µx, µy) and covariance matrix Σ, are trans-

formed into the super-resolution frame as

µ′ = H(µx, µy)

Σ′ = (∇H) Σ (∇H)>.

In order to compute the integral, we assume that both the PSF and the super-resolution

image can be approximated by a piecewise bilinear surfaces. The value at intra-pixel posi-

tions is then given by

f(x + δx, y + δy) = k00f00 + k10f10 + k01f01 + k11f11

where

f00 = f(x, y) f10 = f(x + 1, y) f01 = f(x, y + 1) f11 = f(x + 1, y + 1)

k00 = (1 − δx)(1 − δy) k10 = δx(1 − δy) k01 = (1 − δx)δy k11 = δxδy

The integral of the surface f × hpsf over a unit-square in the super-resolution image is

given by

∫ 1

0

∫ 1

0
fxyhxy dxdy =

1

9
(f00h00 + f01h10 + f10h01 + f11h11)+

1

18
(f00(h10 + h01) + f10(h00 + h11) + f01(h00 + h11) + f11(h10 + h01))+

1

36
(f00h11 + f10h01 + f01h10 + f11h00)

(5.11)

In practice, the point-spread function is truncated at 3 standard-deviations, and nor-

malized to ensure that its sum is equal to 1. The integral of f × hpsf over the PSF of a single

pixel is computed by evaluating equation (5.11) over every unit-square contained within

the 3 standard-deviation ellipse.
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Summary We can now summarize the algorithm for computing coefficients in the ma-

trix M. Remember that each row in the matrix determines how a single pixel is simulated

given the super-resolution image f . Each column in M corresponds to a particular super-

pixel. The dot product of a particular row R with the discretized super-resolution image

f should accurately approximate the integral of the surface f × hpsf over the PSF for the

corresponding pixel g(x, y). The coefficients on row R are determined as follows :

1. Compute the local affine transformation about the low-resolution pixel cen-

tre (x, y) into the super-resolution frame.

2. Transform the parameters of the Gaussian PSF centred on (x, y) under the

affine transformation.

3. Compute the 3 standard deviation ellipse.

4. Scan-convert the ellipse to obtain the set of super-resolution pixels con-

tained.

5. Evaluate the coefficients in equation (5.11) for every unit-square contained

within the ellipse . This implicitly defines the matrix coefficient on row R in

the column C associated with each contained super-pixel f(x, y).

6. Normalize the row so that its sum is equal to 1.

For problems featuring only a small number of super-pixels (say < 100 × 100 = 10000

pixels ), the coefficients for every row are pre-computed and stored in an appropriate

sparse matrix structure. For larger problems, for which the memory required for explicit

storage would be excessive, the matrix is implemented in a “black-box” style, with a func-

tional interface to common operations such as left/right vector multiply. In this scheme,

rows are computed on the fly as required. Caching of transformed pixel centres and trans-

formed PSF covariance matrices is used to obtain maximum efficiency.
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super-resolution image intermediate image low-resolution image

(a) (b)

discrete PSF kernel

Figure 5.10: Method A : In step (a), the super-resolution image is warped according to

the geometric viewing transformation into an intermediate frame, using an interpolation

scheme to compute values at non-integer positions. In step (b), the intermediate frame is

filtered with a discretized version of the point-spread function at positions corresponding

to the low-resolution pixel centres to generate the low-resolution image.

super-resolution image low-resolution image

(a) (b)

intermediate image

continuous PSF weighting function

Figure 5.11: Method B : In step (a), the super-pixels are warped point-wise into the low-

resolution frame according to the geometric viewing transformation, with no interpola-

tion. In step (b), a continuous-valued PSF is associated with each low-resolution pixel

centre. Each simulated pixel is a PSF weighted sum of super-pixels.

(a)

super-resolution image low-resolution imagelow-res coordinate frame

continuous PSF in low-res frame PSF warped into super-resolution frame

(b)

Figure 5.12: Method C : In step (a), the continuous, truncated PSF associated with each

pixel centre is warped into the super-resolution frame. In step (b), both PSF and super-

resolution image are assumed piece-wise bilinear, allowing the integral to be evaluated

quite accurately.
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5.4.5 Boundary conditions

The final implementation detail concerns the assumptions we make about the value of

super-pixels which lie outside the boundary of the super-resolution image. To understand

why this is necessary, consider the problem of forming the image model coefficients for a

pixel which lies close to the boundary of the super-resolution image. Although the pixel

centre is within the super-resolution boundary, the receptive field of its truncated PSF may

extend outside. In order to simulate the value of such a pixel it is necessary to make as-

sumptions about the values of the super-pixels beyond the boundary.

One solution to this problem is to simply discard pixels whose truncated PSF receptive

field extends beyond the boundary. There are two problems with this approach. Firstly, for

reasons of computational complexity, the super-resolution image is typically rather small

(128 × 128 pixels for many of the examples shown here), and consequently the region that

it covers in any low-resolution image does not constitute a very large number of pixels.

Hence, the ratio of pixels near the boundary to the total number of pixels covered can be

fairly significant, and so to discard these boundary pixels means throwing away a large

portion of the available image data. Secondly, having discarded these pixels, there will be

many super-pixels which are not in the receptive field of any pixels, and hence cannot be

estimated. Masking out these undeterminable pixels produces a super-resolution image

with a ragged boundary.

Of course, the issue of boundary conditions arises in many areas of single image restora-

tion, denoising and deblurring. There are many common generic choices of boundary

conditions, such as zero-padding, periodicity (infinite tiling of the image domain), reflec-

tion/symmetry (zero gradient across boundary), and skew-symmetry (constant gradient

across boundary). In such cases, the choice of boundary conditions is usually governed by

the method of solution that is to be applied, for example, use of Fourier transform tech-

niques implies periodic boundary conditions. However, it is rare that the conditions cho-

sen really reflect what is happening outside the image boundary.

In the multiple-view case, we can do slightly better than to assume some generic bound-

ary conditions. The solution we adopt is to compute a crude estimate of the actual super-

pixels in a border region around the super-resolution image. The width of this border is

large enough to contain the PSF ellipses of all the pixels whose centres lie with the super-
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resolution boundary. The border pixels are estimated very cheaply by forming the average

of the registered low-resolution images. The formation of the “average image” is covered

in detail in section 5.7, but in summary, it provides a smooth, low-noise approximation of

the super-resolution image. The method is illustrated in figure 5.13.

homography

A low-resolution image showing the outline of the
super-resolution image and PSFs of two pixels.

The PSFs are transformed into the super-resolution frame.

Problem : One of the low-resolution pixels depends on super-resolution

Solution : The super-resolution image is augmented with a border

The values of the border pixels remain fixed throughout any estimation.

pixels lying outside the super-resolution image.

estimated by averaging the registered low-resolution images.

Figure 5.13: A pixel whose centre lies within the super-resolution image may have a PSF

ellipse that extends beyond the boundary. To simulate such a pixel requires assumptions

to be made about the values of super-pixels outside the boundary. The solution we adopt is

to estimate those pixels using a cheaply computed average of the registered low-resolution

images.

During any estimation procedure, the values of the border pixels remain fixed. The

super-resolution image vector f can therefore be split into two parts, f free and ffixed. The

imaging model then becomes

Λα

[

Minside Moutside

]

[

ffree

ffixed

]

+ β + η = g. (5.12)

The effect of the fixed super-pixels is precomputed and subtracted from the stacked low-

resolution image vector g prior to beginning any estimation procedure :

Λα(Minsideffree + Moutsideffixed) + β + η = g

⇒ ΛαMinsideffree + β + η = g − ΛαMoutsideffixed

(5.13)

131



5.5 Justification for the Gaussian PSF

In this section we perform a simple experiment to measure a cross-section through the PSF

of a real camera. The method is a modification of that proposed by Reichenbach et al. [118].

A sharp white-black step edge is printed using a laser printer. The edge is imaged with a

monochrome Pulnix CCD camera arranged so that there is a very acute (but not zero) an-

gle between the direction of the edge and the horizontal scan lines of the camera. Canny

edges are extracted in the captured image, and a line is fitted to them by orthogonal regres-

sion. This provides a very accurate estimate of the sub-pixel location of the step edge. The

distance of any image pixel to the step edge may then be calculated to sub-pixel accuracy.

By considering all pixels that lie within a few pixels of the edge, we can obtain a very dense

super-sampling of the transition.

The convolution of the PSF with a step edge produces the cumulative integral of the

PSF. Under our Gaussian PSF assumption we would therefore expect the edge response

to correspond to the error function erf(x). Figure 5.14 shows the super-sampled edge re-

sponse. The best-fitting erf(x) is overlaid in red. This corresponds to a Gaussian PSF with

σ = 1.05 pixels. The fit is fairly close, evidence that the Gaussian approximation is quite

reasonable.

5.6 Synthetic test images

A principal aim of this research is to develop algorithms which work on real image se-

quences. However, on several occasions throughout this and later chapters we will make

use of synthetically generated test sequences. This has two benefits over using only real

data :

• Comparisons can be made between the known ground-truth image and the esti-

mated super-resolution image.

• Factors of the image model which affect the super-resolution estimate can be con-

trolled and investigated in isolation. Such factors include the accuracy of registration,

accuracy of the point-spread function, and level of observation noise.

Figure 5.15 shows the four ground-truth images from which all the synthetic sequences

are generated. The images are all 128×128 pixel, 8-bit gray-scale images. Each image ex-

132



−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

1.5
Super−sampled step−edge response

Fitted σ
psf

 = 1.05 pixels

image samples across edge
fitted erf(x)

Figure 5.14: The super-sampled edge response of a Pulnix CCD camera imaging a sharp

white-black transition. The best-fitting erf(x) is overlaid in red, corresponding to a Gaus-

sian PSF with σ = 1.05 pixels. The close fit is evidence that the Gaussian approximation is

reasonable.

hibits different characteristics which are of interest :

• “Text” is a high-contrast image with fine detail.

• “Test card” is bi-level image, with bar features of varying spatial frequency.

• “Faraday” is an extract from a bank-note, in which the grey-levels are coarsely quan-

tized. The image structure has a fairly piecewise constant profile.

• “Face” exhibits both areas of detail and areas of smooth variation.

The method by which the synthetic sequences are generated is outlined in table 5.6.

The synthesized images are also 8-bit grey-level images and have half the pixel density of

the ground-truth images.

Generating the random homographies In order to synthesize a variety of different views

it is necessary to generate a set of random planar homographies, each of which maps

coordinates in the super-resolution frame into the coordinate frame of a particular low-

resolution image. Simply randomizing the homography matrix elements does not give sat-
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“Text” “Test card” “Faraday” “Face”

Figure 5.15: The four ground truth images used to generate the synthetic sequences used

in this thesis.

Objective Generate synthetic low-resolution images.

Algorithm

1. Generate a set of 50 randomly chosen homographies (this procedure is

detailed below).

2. Warp the ground-truth image according to the homographies.

3. Convolve the resulting images with a Gaussian with standard deviation

2 pixels. This simulates combined isotropic optical blur and area inte-

gration by the CCD cells.

4. Scale the image intensities by a random factor chosen from a normal

distribution, α ∼ N (1, 0.1). This simulates the “contrast” component of

the illumination model.

5. Shift the image intensities by a random amount chosen from a normal

distribution, β ∼ N (0, 5). This simulates the “brightness” part of the

illumination model.

6. Down-sample by a factor of 2. This simulates the spatial quantization

due to the digitization process.

Table 5.1: The main steps in the procedure by which synthetic low-resolution images are

generated.

isfactory results. Instead, we use an algorithm which mimicks the real image formation

process. The super-resolution image is modelled as a unit-square planar surface which is

rotated and translated in space and viewed by a synthetic pinhole camera. The procedure

is outlined in table 5.6, and also in figure 5.16.

The first 5 synthetic images generated from each ground-truth image are shown in fig-

ure 5.17. For examples based on real images, the data sets will be introduced alongside
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x

y

z

optic centre at (0,0,0)

rotated, translated 
unit square at (0,0,1)

image plane at (0,0,-1)

image I transformed

Figure 5.16: A simple synthetic pin-hole camera viewing a unit-square, which is rotated

and translated in space, is used to generate random homographies.

Objective Generate synthetic projective image transformations.

Algorithm

1. Position a synthetic pin-hole camera with unit focal length and aspect

ratio at the origin, the optic axis aligned with the z-axis.

2. Position a unit-square directly in front of the camera, parallel to the

image plane and unit distance from the origin. The projection of the

unit-square onto the image plane forms an image which is also a unit-

square, denoted as Isquare.

3. Rotate the unit square about the x,y and z axes by randomly chosen

values in the range ±15 degrees.

4. Translate the unit square parallel to the image plane by randomly cho-

sen x and y distances in the range ±0.01.

5. Project the transformed square onto the image plane. Denote this im-

age as Itransformed.

6. Compute the homography which maps Isquare to Itransformed.

7. Post-multiply by a similarity transformation mapping the required

super-resolution coordinate frame to the unit square.

8. Pre-multiply by a similarity transformation mapping the unit-square to

the required low-resolution coordinate frame.

Table 5.2: The algorithm used to generate realistic projective image transformations.
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each example.

Figure 5.17: The first 5 synthetic images generated from each ground-truth image.

5.7 The average image

The average image is formed by a simple resampling scheme applied to the registered in-

put images. The image formed is typically an overly smooth approximation to the super-

resolution image, which is extremely robust to noise in the observed images. As such, it

provides an excellent starting point for any super-resolution estimation procedure. As ex-

plained in section 5.4.5, it also provides a reasonable estimate of super-pixels outside the

boundary of the super-resolution image, and is hence used to provide Dirichlet boundary

conditions.

The imaging model described in the previous sections encodes how a particular low-

resolution pixel gj is simulated by forming a weighted sum over the set of super-pixels {fi}
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with weights {wi}. Only super-pixels contained within the pixel’s PSF ellipse (receptive

field) have non-zero wi. The “average image” is formed by considering the adjoint opera-

tion, i.e favg
i is formed from a weighted sum of those pixels which depend on fi. To clarify

:

1. For each super-pixel fi, find, in all low-resolution images, the set of pixels {gj} that

depend on fi with weight wj (i.e. those that contain fi in their PSF receptive field.)

2. Compute favg
i =

∑

j wjgj
∑

j wj
.

This is easily expressed in terms of the image model matrix as

favg = K−1M>Λ−1
α (g − β) (5.14)

where K is a diagonal matrix whose non-zero entries are the column sums of M,

Kii =
∑

∀j

Mji (5.15)

Note that, in the above formulation, the low-resolution images have been pre-adjusted

to normalize their illumination parameters. Figure 5.18 shows the average image formed

from our 4 synthetic sequences.

Figure 5.18: (Top) The ground-truth images. (Bottom) The average images formed from

each of the 4 synthetic low-resolution image sequences. The average image is good starting

point for estimation of the super-resolution image.
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5.7.1 Noise robustness

As we might expect, the average image is extremely robust to additive noise in the low-

resolution images. This fact is clearly demonstrated in figure 5.19, in which an average im-

age is formed from just ten low-resolution images which have been corrupted by extremely

large levels of additive Gaussian noise.

σ = 12.5 σ = 15.0 σ = 17.5 σ = 20.0 σ = 22.5 σ = 25.0

Figure 5.19: Average images formed from 10 synthetic low-resolution images from the “Test

card” sequence, with increasing levels of additive Gaussian noise corrupting the images.

(Top) One of the low-resolution images with noise standard deviation σ grey-levels. (Bot-

tom) The corresponding average image for each noise level.

In fact, for a given number of input images N , each contaminated by spatially invariant,

mean zero, additive noise with variance σ2, the expected noise variance in the average

image can be quite accurately estimated, as we shall now demonstrate.

Denoting a noise-free low-resolution image as ḡn, and the average image formed by a

combination of noise-free images as f̄avg, the nth noisy, low-resolution image can be writ-

ten as

gn = ḡn + ηn

Hence,

favg = K−1M>Λ−1
α (ḡ + η − β)

= K−1
∑

∀n

α−1
n M>n (ḡ + ηn − βn)
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The expectation E(f avg) is therefore

E(favg) = E(K−1
∑

∀n

α−1
n M>n (ḡ + ηn − βn))

= K−1
∑

∀n

α−1
n M>n (E(ḡ) + E(ηn) − E(βn))

= K−1
∑

∀n

α−1
n M>n (ḡ − βn)

= f̄avg

Denoting the error as eavg = favg − f̄avg, the variance Σ(eavg) is given by

Σ(eavg) = Var[K−1
∑

∀n

α−1
n M>n (ḡ + ηn − βn)]

= K−1(
∑

∀n

α−2
n M>n Σ[ḡ + ηn − βn] Mn)K−1

= K−1(
∑

∀n

α−2
n M>n Σηn Mn)K−1

where Σηn is the noise covariance matrix for image n. Under the assumption that the noise

is spatially uncorrelated, with variance σ2 being the same in every image, the equation

becomes

Σ(eavg) = K−1(
∑

∀n

α−2
n σ2M>n Mn)K−1

= σ2K−1(
∑

∀n

α−2
n M>n Mn)K−1

(5.16)

Now, equation (5.15) for the diagonal matrix of column sums, K, may be re-written in terms

of the column-sums of each individual image model matrix Mn :

K =
∑

∀n

Kn

Knii
=
∑

∀j

Mnji

In general, there is very little variation among the values of the column sums for a partic-

ular image model matrix Mn, and we can therefore assume that Kn = knI, a multiple of the

identity. Hence,

K ≈
∑

∀n

knI

for some constant kn, the average column sum of Mn. Furthermore, within any particular

sequence of N images there is typically very little variation between the columns sum of
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different image model matrices, allowing the additional simplification of assuming that K

is directly proportional to the number of images N :

K ≈ kNI (5.17)

where k is the average kn over all n.
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Figure 5.20: Histograms of the columns sums for five different image model matrices Mn

from the “Test card” synthetic sequence. There is little variation either within or between

the different images.

These assumptions are verified in figure 5.20, which shows histograms of the column

sums for five different image model matrices Mn. Under these assumptions, equation (5.16)

reduces to

Σ(eavg) = σ2(kNI)−1(
∑

∀n

α−2
n M>n Mn)(kNI)−1

=
σ2

(kN)2

∑

∀n

α−2
n M>n Mn

Given that we are interested in the typical variance of a single pixel in the average image

we can safely ignore the off-diagonal elements of the covariance matrix for now, leaving

Var(eavg) =
σ2

(kN)2

∑

∀n

α−2
n diag(M>n Mn) (5.18)

We can now make our first useful observation : for a fixed number of images, we can expect

the noise variance in the average image to be directly proportional to the noise variance in

the low-resolution images. Indeed, this relationship is verified empirically in figure 5.22.

Considering the diagonal elements of a particular matrix M>n Mn, we can again assume

that there is little variation among these elements. Neither is there significant variation

of these elements between different M>n Mn. This fact is verified in figure 5.21, which shows

histograms of the diagonal elements of M>n Mn for five different images. We can therefore

make another simplification :
∑

∀n

diag(M>n Mn) ≈ dNI (5.19)
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Figure 5.21: Histograms of the diagonal elements of M>n Mn for five different image model

matrices Mn. There is little variation either within or between the different images.

for some constant d, the average of the diagonal elements of M>n Mn over all n . Equation (5.18)

then becomes

Var(eavg) =
σ2

(kN)2
dN

∑

∀n

α−2
n I

=
d

k2

σ2

N

∑

∀n

α−2
n I

(5.20)

The value of the photometric parameter αn is typically very close to one, and hence the

summation
∑

∀n α−2
n is generally near unity. This leads to our second observation : for

fixed image noise variance σ2, we expect the noise variance in the average image to be

inversely proportional to the number of low-resolution images available. This relationship

is also verified empirically in figure 5.23.

Finally, let us consider the ratio d
k2 . Both constants depend on the number of columns

in the image model matrices Mn. The number of columns is in turn proportional to S2, the

square of the pixel-zoom ratio. Remember that the row sums of Mn are always equal to one,

hence nomatter how many columns there are, the total sum of elements in Mn is constant

(the number of rows is equal to the number of pixels, and hence fixed). Consequently, from

the definition of k as the average column sum of M we obtain the following relationship :

k ≈ 1

NS2

Each diagonal element of M>M is simply the squared two-norm of the corresponding

column of M. Remember that the non-zero elements in a particular column indicate the

contribution that the corresponding super-pixel makes to a number of different low-resolution

pixels (those which include the super-pixel in their receptive fields.) In general, and given

a large number of images, the coefficients in a column will uniformly sample the point-

spread function, and their sum will of course be equal to the column sum. Hence, the
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two-norm of a column is equal to the two-norm of the point-spread function multiplied

by the column sum. So, from the definition of the d as the average of the diagonal elements

of M>M, we obtain :

d ≈ k2‖hpsf‖2

Hence
d

k2
= ‖hpsf‖2

In the case of a Gaussian PSF, as here, we can easily obtain an analytic expression for the

squared two-norm of hpsf , and hence finally obtain

d

k2
=

1

2σpsf
√

π

Note that, although the pixel-zoom S appears in the expression for k, it does not af-

fect the ratio d
k2 . Thus we arrive at our final pair of observations : the ratio d

k2 is directly

proportional to the squared magnitude of the point-spread function, and invariant to the

pixel-zoom ratio S. This final result is demonstrated empirically in figures 5.24 and 5.25.

To summarize, we have the following results concerning the noise variance Var(eavg) in

the average image :

1. Var(eavg) is directly proportional to σ2, the noise variance in the low-resolution im-

ages.

2. Var(eavg) is inversely proportional to the number of low-resolution images used.

3. Var(eavg) is directly proportional to the squared magnitude of the point-spread func-

tion ‖σpsf‖2.

4. Var(eavg) is invariant to the pixel zoom ratio, S.

Combining these results we obtain

Var(eavg) ≈
σ2

2Nσpsf
√

π
(5.21)

The importance of this results will become clearer in section 5.9, where we consider the

properties of the maximum-likelihood super-resolution estimator.

The following graphs were generated by computing the average image using synthetic

images from the “Test card” sequence, with Gaussian noise of the specified variance added

to the synthetic images. The noise variance Var(eavg) is computed by comparison with the

average image formed from noise-free images, f̄avg.
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Figure 5.22: Var(eavg) is plotted against σ2 for increasing levels of additive Gaussian noise.

The number of low-resolution images is fixed (N = 50). The graph demonstrates the direct

proportionality between Var(eavg) and σ2.
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Figure 5.23: (Left) Var(eavg) is plotted against the number of low-resolution images used.

The image noise variance is fixed (σ2 = 12.5 grey-levels). (Right) When plotted on log axes,

the graph clearly demonstrates the inverse proportionality between Var(eavg) and N .
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Figure 5.24: These three graphs demonstrate that, although there is significant variation in

d and k2 with respect to the pixel zoom ratio, S, the ratio d
k2 is nearly constant.
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Figure 5.25: Var(eavg) is plotted against pixel zoom ratio S. The number of images and

noise variance are fixed (N = 50, σ2 = 12.5 grey-levels). Var(eavg) is effectively invariant

with respect to S.
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5.8 Rudin’s forward-projection method

In this section, we briefly review the super-resolution estimator proposed by Rudin et al. [123].

The algorithm is quite simple and generally produces good results. We derive a result

which gives some insight into its success, and explain the conditions under which it is nec-

essary to employ the more computationally expensive techniques proposed in this thesis.

The proposed method is as follows :

1. Pre-compute the dense point-to-point correspondence between views.

2. Choose one input image as a reference coordinate frame.

3. For each input image, forward warp every pixel’s coordinates into the refer-

ence frame (i.e. no interpolation at this stage.)

4. Resample the resulting irregularly spaced data onto a uniform grid of pixels

at high spatial density. Each resampling location takes a weighted average

of nearby samples, weighted according to distance (w = e−|δx|).

5. Finally, deblur the resulting image using a standard single-image

method [33, 170].

Figure 5.26 illustrates the process.

low-resolution images

resampling kernels deblurred imageregistered images

resample deblur

Figure 5.26: Schematic representation of Rudin’s forward-projection super-resolution al-

gorithm.

The authors choose to employ an expensive dense-stereo matching algorithm to obtain

image registration. This is purely a detail of their specific implementation however, and in
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general any accurate registration algorithm appropriate for the particular motion model

may be substituted without changing the essence of the method.

Figure 5.28 shows the result of applying the algorithm to 50 synthetic images generated

from the ground-truth “Test card” image. The images differ from those shown in figure 5.17

in that the image-to-image transformations are only Euclidean (translation and rotation)

and there is no simulation of illumination changes (see figure 5.27). The reason for this will

be become clear shortly.

The reconstructed image is reasonably good, although it does not capture the very

finest details. The relative error1 is 0.18, equivalent to an rms error of 30.7 grey-levels.

Figure 5.27: 5 of the 50 synthetic images generated from the “Test card” ground-truth

image for the purpose of demonstrating Rudin’s forward-projection algorithm. Unlike

those in figure 5.17, the image-to-image transformations are purely Euclidean (transla-

tion/rotation only).

Figure 5.28: The result of applying Rudin’s forward projection method to 50 synthetic im-

ages, a sample of which are shown in figure 5.27. (Left) The ground-truth image. (Middle)

One of the low-resolution input images. (Right) The reconstructed high-resolution image.

To understand the success of the method, we consider the following component-wise

decomposition of the imaging process ( the effects of illumination variation can safely be

1The relative error between the ground-truth f and the reconstruction f̂ is defined as the ratio |f−f̂ |2
|f |2

.
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ignored for the moment )

gn = S↓(h ∗ Tn(f)) (5.22)

If the point-spread function h is isotropic, and if the viewing transformation Tn is Eu-

clidean, then the operations of geometric warping and convolution with the PSF are com-

mutable, so

gn = S↓(Tn(h ∗ f)) (5.23)

In other words, it makes no difference whether blurring occurs prior to warping, or

post warping. What this means is that, under these restricted conditions, a perfectly valid

way to obtain a super-resolution estimate from the low-resolution images is to first reverse

the down-sampling (i.e. up-sample), then to undo the geometric distortion of each frame

(i.e register and resample), and finally to apply a single deblurring step to the combined

registered/resampled data. This is essentially the method Rudin proposes.

In many real-life situations, the Euclidean motion model is fairly accurate, e.g. small

objects, distant from the camera moving parallel to the image plane; or a small region-

of-interest in a small-angle camera pan. In these situations, Rudin’s method can perform

well. However, as has already been noted, the method cannot recapture the finest details in

the super-resolution image. This is probably due to the somewhat unsatisfactory method

which is used to resample a band-limited signal encoded by a set of irregularly spaced

samples. The exponential distance weighting method adopted by Rudin is only a heuristic

solution to this problem. A superior solution would involve an optimization problem in

which an estimate is obtained of the uniformly spaced samples which, when optimally

interpolated using a sinc kernel, best approximate the irregularly spaced data.

5.9 The maximum-likelihood estimator

In this section we derive a maximum-likelihood estimator for the super-resolution image.

Assuming the image noise to be Gaussian with mean zero, variance σ2, the total probability

of an observed image gn(x, y) given an estimate of the super-resolution image f̂(x, y) is

Pr(gn|f̂) =
∏

∀x,y

1

σ
√

2π
exp

(

−(ĝn(x, y) − gn(x, y))2

2σ2

)

(5.24)

where the simulated low-resolution image ĝn is given by

ĝn = αnMnf̂ + βn
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The corresponding log-likelihood function is

L(gn) = −
∑

∀x,y

(ĝn(x, y) − gn(x, y))2

= −‖ĝn − gn‖2

= −‖αnMnf̂ + βn − gn‖2

(5.25)

The log-likelihood over all images is given by
∑

∀n

L(gn) = −
∑

∀n

‖αnMnf̂ + βn − gn‖2

= −‖ΛαMf̂ + β − g‖2

We seek an estimate fmle which maximizes the log-likelihood over all images :

fmle = arg max
f

∑

∀n

L(gn)

= arg max
f

(−‖ΛαMf + β − g‖2)

= arg min
f

‖ΛαMf + β − g‖2

(5.26)

The optimum fmle is given by

dL
df

= 2M>Λ>α (ΛαMf + β − g) = 0

⇒ f̂mle = (M>Λα
2M)−1M>Λα(g − β)

= (ΛαM)
+(g − β)

(5.27)

where (ΛαM)
+ is a Moore-Penrose inverse.

We now show that fmle is an un-biased estimator of the ground-truth super-resolution

image f̄ . Remembering that the observed images gn are corrupted by mean-zero additive

noise η we have

g = ΛαMf̄ + β + η

fmle = (ΛαM)
+(g − β)

= (ΛαM)
+(ΛαMf̄ + β + η − β)

= (ΛαM)
+(ΛαMf̄ + η)

= f̄ + (ΛαM)
+η

(5.28)

Hence the expected estimate is

E(fmle) = E(f̄ + (ΛαM)
+η)

= E(f̄) + E((ΛαM)
+η))

= f̄ + (ΛαM)
+E(η)

= f̄

(5.29)
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The covariance Σf of the estimated parameters is obtained as

Σf = Var[(ΛαM)
+η]

= (ΛαM)
+Ση(ΛαM)

+>

= (ΛαM)
+(σ2I)(ΛαM)

+>

= σ2(ΛαM)
+(ΛαM)

+>

= σ2(M>Λα
2M)−1

(5.30)

5.10 Predicting the behaviour of the ML estimator

The quality of the super-resolution reconstruction obtained using the ML estimator de-

pends on several factors :

• The noise on the observed images.

• The number of low-resolution images available.

• The zoom ratio S (i.e. the upsampling factor)

• The size and accuracy of σpsf .

• The accuracy of the geometric and photometric registration.

Inaccuracies in the estimation of the PSF and of the registration parameters constitutes

model noise, and we shall consider these sources of error in sections 5.11.2 and 5.11.3. In

this section, we reason about the properties of the ML estimator with respect to the image

noise, number of images, zoom ratio and the severity of the blur. The results are verified

by appeal to synthetic examples in the next section.

For the sake of clarity we shall omit the photometric parameters in this analysis. Their

re-introduction is a trivial exercise for the reader. The normal equations for the maximum

likelihood estimator have the form :

M>Mfmle = M>g

For reasons which will become apparent, we consider the equivalent system

K−1M>Mfmle = K−1M>g

where K is the diagonal matrix whose non-zero entries are the column sums of M, first in-

troduced in section 5.7. Hence

K−1M>Mfmle = favg (5.31)
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This allows us to take advantage of the analysis already performed for the average image

favg. Referring to equation (5.17) we can immediately make the following simplification in

the limit of a large number of images :

1

kN
M>Mfmle = favg. (5.32)

In the case of zero observation noise, when f avg = f̄avg, it is easily verified that fmle = f̄ ,

the ground-truth. In the case of additive observation noise, we can immediately infer that

the variance of the reconstruction error er = fmle − f̄ will be directly proportional to the

variance of the noise on f avg by virtue of the linearity of the system:

Var(er) ∝ Var(eavg)

=
σ2

2Nσpsf
√

π

where we have used the result of equation (5.20).

We have seen that favg resembles a blurred version of the required super-resolution

image. We would therefore expect that the operator 1
kN

M>M resembles the discretizaton

of a blur operator, and therefore has an approximate Toeplitz structure [31, 71]. This is

indeed the case, as can be seen from figure 5.29, which indicates the sparsity structure of

the matrices M and M>M for a toy super-resolution problem consisting of a 50 × 50 super-

resolution image, and 10 approximately 25 × 25 pixel low-resolution images.

To clarify this important point, we have that the ML super-resolution image, pushed

through a spatially varying blur operator produces the average image. Hence, the restora-

tion problem is in fact very closely related to the single-image deblurring problem, and the

same intuition may be applied.

Given a noisy favg, the reconstruction error er will depend of the condition number κ of

the symmetric, positive-definite matrix M>M. An upper bound on the reconstruction error

is given by
‖er‖
‖f̄‖ ≤ κ

‖eavg‖
‖f̄avg‖

(5.33)

which is a standard result of linear algebra. A poorly conditioned, near singular matrix

(high condition number), will lead to a large reconstruction error, as eigenvectors of M>M

with tiny eigenvalues increasingly corrupt fmle as the level of observation noise increases.

The character of the reconstruction error will depend on the character of these poorly con-

strained eigenvectors. Figure 5.30 shows the first 49 eigenvectors of M>M for the toy 50 × 50
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Figure 5.29: The sparsity structure of the matrices M and M>M for the toy super-resolution

problem described in the text.

super-pixel ML estimator. The vectors are ordered by decreasing eigenvalue. Evidently, and

as we might have predicted, the eigenvectors (or eigenimages as rendered here) resemble a

2D discrete sinusoid basis, with spatial frequency increasing as the eigenvalue decreases.

We would therefore expect the reconstruction error to take the form of high-frequency,

“checkerboard” patterns.

The condition number κ depends upon σpsf , pixel-zoom ratio S, and the number of

images N . The relationships have the following general form :

1. By analogy with single-image deblurring, the greater the severity of the blur (larger

σpsf), the more ill-conditioned the inverse problem, and hence the higher the value

of κ.2

2. From equation (5.20), we know that the effective noise variance on eavg decreases in

direct proportion to N , and this in turn will result in a reduced er. In tandem with this

effect, as the number of images N is increased, the number of equations constraining

2This result follows directly from the fact that the eigen-spectrum of a circulant matrix, which encapsulates
discrete convolution with some kernel h(x), may be obtained directly as the Fourier transform H(ω) ↔ h(x),
since any circulant matrix may be diagonalized by a Fourier basis.
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Figure 5.30: The first 49 eigenvectors (eigenimages) of M>M for the toy 50×50 super-pixel ML

estimator. The images resemble a discrete sine or cosine basis, with frequency increasing

as the corresponding eigenvalue decreases.

fmle increases roughly in direct proportion to N . Consequently, we would expect κ to

decrease as N increases, reaping further reductions in er. However, empirical investi-

gation indicates that κ decreases far more slowly than 1
N

when N is large. Intuitively,

the eigenspectrum of M>M begins to stabilize as more images are added. Hence, in the

limit of large N , it is the 1
N

reduction in V ar(eavg), on the right-hand side of equa-

tion (5.32), that is most important in terms of reducing er.

3. As the pixel-zoom ratio S increases, so the relative size of σpsf , measured in terms of

super-pixels, also increases, because a single low-resolution pixel covers an increased

number of super-pixels. This increases the effective severity of the blur with respect
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to the super-resolution image, and hence κ increases as explained above. Also, the

number of parameters to be estimated increases in proportion to S2, further increas-

ing κ. The combination of these two effects means that the zoom ratio has by far the

largest overall effect on the conditioning of the inverse problem.

To summarize, equations (5.33) and (5.21), together with the relationships explained

above, suggest the following form for the upper bound on the reconstruction error er :

‖er‖2 ≤ c

SpN qσr
psf

(

σ

π0.25
√

2Nσpsf

)

(5.34)

where c, p, q, r are unknown constants (although we suspect that p ≥ 2 and q << 1).

5.11 Sensitivity of the ML estimator to noise sources

In this section we examine the effect that various sources of noise, both in the observed

images, and also in the parameters controlling the image model, have on the maximum

likelihood estimate fmle.

The maximum likelihood estimate is computed using the preconditioned conjugate gra-

dient descent [71] (see appendix A) algorithm applied to the symmetric, positive-definite

system Af = b, where A = M>Λα
2M and b = M>Λα(g − β). The experiments in the following

sections employ a simple Jacobi preconditioner, diag(A)−1.

In every case, the algorithm is deemed to have converged when the relative residual

falls below 10−6, i.e.
‖Af − b‖2

‖b‖2
≤ 10−6 (5.35)

The algorithm terminates when convergence is achieved, or when the iteration count reaches

2000.

5.11.1 Observation noise

The effect of noise in the observed images is investigated by computing the maximum-

likelihood estimate from synthetic images which have been degraded with varying levels of

additive Gaussian noise. Figure 5.31 shows the ML estimates fmle computed using different

numbers of images and levels of image noise. The zoom ratio is fixed at 2 in every case. It

is clear that the estimator is extremely noise sensitive. Even when using 50 images, a tiny

amount of noise severely corrupts the estimate.
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From equation (5.30) we expect there to be a linear relationship between the image

noise variance and the variance of the ML estimate. This is indeed the case, as is demon-

strated in figure 5.32, in which the RMS error between the ground-truth super-resolution

image and the ML estimate is plotted against image noise standard-deviation σ.

It is clear from figures 5.31 and 5.32 that the reconstruction error decreases with in-

creased numbers of low-resolution images used. As predicted in section 5.10, the variance

of the reconstruction error decreases in proportion to N when N is large.

Figure 5.34 shows the ML estimates computed using different numbers of images and

different pixel zoom ratios. The observation noise is fixed at σ = 0.5 grey-levels in each

case. The reconstruction error decreases rapidly as the zoom ratio is reduced. Figure 5.35

shows the RMS error between the ground-truth and the ML estimate plotted against zoom

ratio and number of images. As anticipated in section 5.10, when the number of images

is relatively low (10 to 20), the reconstruction error increases rapidly as the zoom ratio is

increased.

5.11.2 Poorly estimated PSF

The point-spread function used in the imaging model can have a pronounced effect on the

super-resolution estimate. However, in real imaging situations, the point-spread function

is rarely known with any accuracy. Even given an approximate parametric form, such as the

Gaussian used here, it can be difficult to estimate the parameter(s) of the PSF from noisy,

low-resolution images. The Gaussian PSF adopted in this work has a single parameter -

σpsf - which controls the width of the PSF. In practice, variations in the value of this param-

eter have a predictable effect on the estimated super-resolution image, as demonstated in

figure 5.36.

The reason for this behaviour is easiest to understand in the case where the input im-

ages are related by only Euclidean transformations and the PSF is isotropic. As we have

already seen in the section 5.8, in this case, the operations of warping the super-resolution

estimate and convolution with the PSF commute. In the case of Euclidean registration

there is a family of PSF/super-resolution pairs that can give rise to the same set of ob-

served images. The ML estimator seeks a super-resolution image that, when geometri-

cally warped, filtered by convolution with the PSF, and down-sampled, accurately predicts

the observed low-resolution images. If σpsf is too high, the PSF is too wide and hence
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Figure 5.31: A table showing the computed maximum likelihood estimate, fmle given dif-

ferent combinations of image noise standard deviation σ, and number of low-resolution

images used N . The zoom ratio S was fixed at 2. The results demonstrate the extreme

sensitivity of the estimator to noise in the observed images.

too “low-pass”. In this case, the ML estimate tends to “compensate” by developing ex-

cess high-frequency content, which appears as “ringing” artifacts on sharp edges in the

super-resolution image. Alternatively, if σpsf is too low, the PSF is too narrow and hence too
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Figure 5.32: The RMS of the ground-truth error (fmle − f̄ ) is plotted against the additive

Gaussian noise standard-deviation σ in the low-resolution images for several different val-

ues of N , the number of images used. The zoom ratio S was fixed at 2. As one might expect

given the linearity of the system, there is a perfect linear relationship between the recon-

struction error and the observation noise.

“high-pass”. In this case, the ML estimate does not develop enough high-frequency con-

tent, and the super-resolution image is too smooth. A similar effect is observed even when

the image-to-image registration is affine or projective, as illustrated by figure 5.36.

Unfortunately, this ability of the super-resolution ML estimate to compensate for a

poorly estimated PSF implies that the log-likelihood score of equation (5.25) tends to be

rather insensitive to variations in σpsf . This in turn makes it difficult to include σpsf in the

maximum-likelihood estimation. However, since the artifacts induced are quite easy to

diagnose by eye, manual tuning of the PSF parameter is straightforward.

5.11.3 Inaccurate registration parameters

To simulate the effect of registration error, zero-mean Gaussian noise, variance σ2
H is added

to the translational components of the synthetic homographies. This at least gives σH

some intuitive meaning. Figure 5.37 shows the ML estimate computed from noise-free

50 synthetic images for increasing levels of registration error. The zoom ratio is fixed at
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1.5. As expected, the reconstruction error increases with increased σH , but unlike the error

induced by observation noise, it is not homogeneously distributed. This is due to the fact

that in smooth regions of the image, errors in registration make very little difference in

the simulated pixel values. Only in the vicinity of edges does the registration error have a

significant effect on the simulated pixels, and it is around the edges that the reconstruction

error tends to be most severe. The graph shows the variation of ground-truth error with

respect to σH . Interestingly, the error increases slowly for at first, becoming fairly linear for

larger values of σH . Note that, even when σH = 0, the reconstruction error is not zero. This

is due to the bicubic interpolation method which is used to compare the reconstructed

96 × 96 with the original 128 × 128.
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Figure 5.33: (Top) The RMS of the ground-truth error (fmle − f̄ ) is plotted against the num-

ber of images used N , for a range of image noise standard-deviations σ. The zoom ratio S
was fixed at 2. (Bottom) When plotted as the reciprocal of RMS error against

√
N it is clear

that, for N > 10, the reconstruction error is inversely proportional to the square-root of the

number of images used.
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Figure 5.34: A table showing the ML estimate given different combinations of pixel zoom

ratio S and number of images N . The image noise was fixed at σ = 0.5 grey-levels. The

reconstruction error decreases rapidly as the zoom ratio is reduced.
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Figure 5.35: The RMS error between the ML estimate and the ground-truth is plotted

against zoom ratio and number of images. When the number of images is relatively small

(10 to 20) the error increases rapidly as the zoom ratio increases.
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Figure 5.36: The effect of a poorly estimated point-spread function is investigated by com-

puting the maximum likelihood estimate for several different values of σpsf , the size of the

Gaussian PSF. The zoom ratio S was fixed at 2, and 50 noise-free images were used. The

correct σpsf is 1.0. When the PSF is too wide (too “low-pass”), the estimated exhibits high-

frequency “ringing” artifacts.When the PSF is too narrow (too “high-pass”), the estimate

is blurred. These effects are clarified in the intensity-profile plots on the right. The red,

dotted profile is the ground-truth.
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Figure 5.37: (Top) The ML estimate using 50 noise-free synthetic images at 1.5× zoom for

increasing levels of registration error σH . The reconstruction error is not homogeneous,

being more severe around edges in the image. (Bottom) The RMS error with respect to

the ground-truth is plotted against σH . The reconstruction error increases slowly at first,

becoming fairly linear for larger σH .
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5.12 Irani and Peleg’s method

In this section we review the extremely popular method proposed by Irani and Peleg [86,

87]. We show that, under certain circumstances, their method minimizes the same cost

function as the ML estimator (although the illumination parameters are omitted), and also

examine the convergence properties. For brevity, we refer to their methods as the IP algo-

rithm.

In the IP algorithm, the iterative update of the super-resolution estimate proceeds by

an error back-projection scheme inspired by computer-aided tomography. When all the

low-resolution images have been simulated, the residual images (simulated minus ob-

served) are convolved with a back-projection function (BPF) and warped back into the

super-resolution frame. The back-projected errors from all the observed images are aver-

aged and used to directly update the estimate as follows

si+1 = si +
1

C

∑

∀n

T −1
n [hbpf ∗ S↑(m̂n − mn)], (5.36)

where C is a constant and hbpf is the back-projection kernel. Irani and Peleg suggest that

hbpf = (hpsf)
k where k ≥ 1 is a good choice of BPF, ensuring convergence whilst suppress-

ing spurious noise components in the solution.

Before embarking on an analysis of Irani and Peleg’s estimator, we briefly review the

method of least-squares minimization by steepest descent, which we later refer to in the

analysis.

5.12.1 Least-squares minimization by steepest descent

An over-constrained least-squares problem has the form

x̂ = arg min
x

C(x) = ‖b − Ax‖2

The solution to this problem is easily obtained by differentiating the cost function C(x)

with respect to x :

dC

dx
= −2A>(b − Ax) = 0

⇒ x̂ = (A>A)−1A>b

When the system is very large, the solution cannot be obtained by direct means. A sim-

ple, iterative procedure for finding the vector x̂ which is the solution to this minimization
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problem is by the method of steepest-descent. The direction of steepest descent on the error

surface C is

d = A>(b − Ax) (5.37)

The algorithm proceeds by taking successive small steps in the direction of steepest de-

scent :

xi+1 = xi + kA>(b − Axi) (5.38)

where the constant k < 1 is chosen appropriately in order to ensure convergence.

5.12.2 Fixed point

Setting xi+1 = xi gives a fixed point x∞

x∞ = x∞ + kA>(b − Ax∞)

= (A>A)−1A>b (5.39)

Hence the fixed-point corresponds to the least-squares solution.

5.12.3 Convergence

Convergence is analysed with respect to the fixed point solution x∞

ei = x∞ − xi

xi = x∞ − ei

x∞ − ei+1 = x∞ − ei + kA>(b − A(x∞ − ei))

ei+1 = ei − kA>Aei (5.40)

= (I− kA>A)ei

Hence

‖I− kA>A‖ < 1 (5.41)

is a condition for convergence. This is equivalent to saying that the largest eigenvalue

(spectral radius) of I− kA>A must be inside the unit circle.

Decomposing the matrix A in terms of its SVD, and projecting the error vectors ei onto

the right-eigenspace gives

A = UΣV> (5.42)

ei =
∑

j

ei
jvj (5.43)
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The convergence scheme may then be rewritten as

∑

j

ei+1
j vj = (I− kVΣ>U>UΣV>)

∑

j

ei
jvj

= (I− k
∑

j

σ2
jvjv

>
j )
∑

j

ei
jvj

which, by orthogonality, yields

ei+1
j = (1 − kσ2

j )e
i
j (5.44)

Hence the eigenvectors with the largest corresponding singular values converge fastest.

5.12.4 Irani and Peleg’s algorithm

THe IP algorithm proceeds as follows

f i+1 = f i + k

∑

n T −1
n b ∗ S↑(gn − ĝn)

∑

n T −1
n b ∗ S↑(1)

= f i + k

∑

n T −1
n b ∗ S↑(gn − S↓(h ∗ Tnf i))

∑

n T −1
n b ∗ S↑↓

(5.45)

where b is the back-projection function. The function S ↑↓ is the 0-1 comb-function, a

uniform grid of delta functions of height 1, with zeros everywhere else. The denominator
∑

N T −1
n b ∗ S↑↓ amounts to a set of normalizing constants which may be precalculated. In

matrix form the algorithm becomes

f i+1 = f i + kB>(g − Mf i) (5.46)

where B> is the back-projection matrix, combining the up-sampling, convolution and in-

verse geometric transformation. B> is row-normalized so that each row is performing a

weighted-average of a set of error-residuals.

5.12.5 Fixed point

The fixed point of the algorithm is given by

f∞ = f∞ + kB>(g − Mf∞)

= (B>M)−1B>g (5.47)

Under our zero-mean, additive noise assumptions, we can subtitute g = Mf̄ + η and as-

suming a choice of B such that B>M is full-rank, we obtain

f∞ = (B>M)−1B>(Mf̄ + η)

= f̄ + (B>M)−1B>η
(5.48)
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where f̄ is the ground-truth super-resolution image. The expectation of the fixed point is

then

E(f∞) = E(f̄ + (B>M)−1B>η)

= f̄ + (B>M)−1B>E(η)

= f̄

Hence, the algorithm is an unbiased estimator of the ground-truth.

5.12.6 Convergence properties

Again, the convergence of the algorithm is analysed with respect to the fixed point solution

ei = f∞ − f i

f i = f∞ − ei

f∞ − ei+1 = f∞ − ei + kB>(g − M(f∞ − ei))

ei+1 = ei − kB>Mei (5.49)

= (I− kB>M)ei

Hence

‖I− kB>M‖ < 1 (5.50)

is a condition for convergence. Clearly, if B> = M> the IP algorithm is the same as steepest

descent (5.41).

5.12.7 Relationship to the MLE

In the case when B> = M>, we can see by comparing equation (5.48) with equation (5.28)

(neglecting the unused photometric parameters Λα), that the IP algorithm gives exactly the

same solution as the ML estimator.

The effect of the back-projection operator B> may be misconstrued as having some

regularizing effect on the solution. To a certain extent this is true. In theory, one could

choose a B> whose column-span does not include certain troublesome vectors (say, very

high-frequency components). It would then be impossible for these components to appear

in f . However, it is hard to imagine exactly how such a B> might be chosen.

In practice then, B> will be full-rank. As seen in equation (5.48), B> has no effect on the

expected f over repeated trials. It does however affect the character of the reconstruction
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error eip = (B>M)−1B>η. One way to think about the effect of B> is as follows. Imagine that

the noise η on our low-resolution pixels is not independent and identically distributed,

but rather has some covariance Ση. In this case, the ML estimate would be obtained by

minimizing

L = (g − Mf)>Ση(g − Mf)

for which the stationary point occurs at

dL
df

= M>ΣηMf − M>Σηg = 0

Substituting B> = M>Ση, we obtain

B>(g − Mf) = 0

⇒ f = (B>M)−1B>g

which is identical to the fixed point of the IP algorithm in equation (5.47). To summarize

then, the IP algorithm can always be thought of as an ML estimator, but one in which the

choice of B> implies some underlying assumption about the noise covariance Ση of the

observed low-resolution pixels, namely that B> = M>Ση. For the choice of back-projection

function suggested in the authors original paper, hbpf = h2
psf , B 6= M and the algorithm does

not perform ML estimation under independent noise assumptions.

5.12.8 Convergence properties

In the case when B = M, the only difference between the ML estimator and the IP algo-

rithm is that the latter implies a particular method of reaching the optimum : fixed step-

length, gradient descent. Consequently, it is several orders of magnitude slower to converge

than the conjugate gradient algorithm applied to the same problem. This fact is demon-

strated with a synthetic example using 20 low-resolution images, corrupted by additive

noise σ = 0.5 grey-levels. The reconstruction is performed at zoom ratio S = 2. Fig-

ure 5.38, shows the ground-truth RMS error plotted against number of iterations for the

ML estimator using conjugate gradient descent, and the IP algorithm with B> = M>. The

value of k was manually tuned to the largest value for which the algorithm still converges.

Note the difference in scale of the horizontal axes. CG converges within 600 iterations. By

comparison, even after 25000 iterations, the IP algorithm has yet to converge.
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Irani−Peleg algorithm with BT = MT, k = 1

Figure 5.38: Comparison of the rates of convergence of the ML estimator using conjugate

gradient descent, and the IP algorithm, which is the same as fixed step-length steepest

descent. Note the difference in scale on the horizontal axes. Even after 25000 iterations,

the IP algorithm has yet to converge.

5.13 Gallery of results

Figures 5.39 through to 5.46 show a variety of results obtained using the ML super-resolution

estimator applied to 4 different real image sequences. These results demonstrate that, de-

spite its shortcomings, it is possible to obtain reconstructions using the MLE which show

marked improvement in detail over the original low-resolution images, even though the

levels of pixel zoom are quite modest.

The median image In some of the following examples, the super-resolution results are

compared to the “median image”, obtained by geometrically warping/resampling the input

images into the super-resolution coordinate frame, and combining them using a median

filter.

Note on the presentation of low-resolution images Throughout this section, and in-

deed the rest of this thesis, in order to give a fair representation of the performance of

the super-resolution algorithms when compared to a “text-book” image zooming method,
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Figure 5.39: A sequence of 25 JPEG images downloaded from the NASA Mars Lander web-

site. The images show the “Wedge” rock captured by successive sweeps of a rotating cam-

era.

low-resolution input images are shown up-sampled using bicubic interpolation to the res-

olution of the corresponding super-resolution results.
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Low-res ROI (bicubic 2× zoom) Average image

MLE @ 1.25× zoom MLE @ 1.5× zoom

MLE @ 1.75× zoom MLE @ 2.0× zoom

Figure 5.40: The ML estimate obtain from the “Wedge” sequence, reconstructed at 4 differ-

ent pixel zoom levels. The results upto 1.75× zoom show a marked improvement in detail

over the low-resolution image and average image. The result at 2× zoom is badly cor-

rupted by “checkerboard” reconstruction error. σpsf was set to 0.45 for this sequence. For

comparison the low-resolution region-of-interest (ROI) is shown bicubically up-sampled

to 2× zoom.
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Figure 5.41: (Top) 16 frames from a sequence of 200 captured at the University of Surrey,

using a hand-held digital video camera. (Bottom) A mosaic composed from the entire se-

quence. The region-of-interest (boxed in green) contains a car.
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Low-res ROI (bicubic 2× zoom) Average image @ 2.0× zoom

Median image @ 2.0× zoom MLE @ 1.25× zoom

MLE @ 1.5× zoom MLE @ 1.75× zoom

MLE @ 2.0× zoom

Figure 5.42: ML super-resolution estimates computed using 50 low-resolution images. Re-

constructions upto 1.5× are show marked improvement over the low-resolution, average

and median images. Reconstruction error starts to become apparent at 1.75× zoom. σpsf

was set to 0.425 for this sequence.
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Figure 5.43: (Top) 16 frames from a sequence of 250 captured at the University of Surrey,

using a hand-held digital video camera. (Bottom) A mosaic composed from the entire se-

quence. The region-of-interest (boxed in green) contains some illegible text.
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Low-res ROI (bicubic 2× zoom)

Average image @ 2.0× zoom

Median image @ 2.0× zoom

MLE @ 1.25× zoom

5

MLE @ 1.5× zoom

MLE @ 1.75× zoom

MLE @ 2.0× zoom

Figure 5.44: ML super-resolution estimates computed using 30 low-resolution images. Re-

constructions upto 1.75× show marked improvement over the low-resolution, average and

median images. Reconstruction error starts to become apparent at 2.0× zoom. σpsf was set

to 0.4 for this sequence.
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Figure 5.45: (Top) One of a sequence of 10 images captured by Tomas Pajdla & Daniel Mar-

tinec at CMP, Prague. The camera is fitted with a Nikon 360◦ lens. The rig is designed such

that the CCD array can be micro-translated independently of the lens system. (Bottom) A

close-up view of the test-card.
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Low-res ROI (bicubic 2× zoom)

Average image @ 2.0× zoom

Median image @ 2.0× zoom

MLE @ 1.25× zoom

MLE @ 1.5× zoom

Figure 5.46: ML reconstructions using 10 images. The small number of input images means

that reconstruction error becomes apparent at quite modest zoom. σpsf was set to 0.4 for

this sequence. The median image produces a marginally sharper result than the average

image in this example.
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5.14 Summary

In this chapter we have examined a maximum-likelihood estimator for super-resolution

reconstruction, based on a generative model of the imaging process. The implementation

issues regarding the generative model have been discussed, and an accurate and efficient

implementation proposed. The sensitivity of the ML estimate to noise on the observed im-

ages, and errors in the model (registration and point-spread function) has been analysed

and empirically demonstrated using a variety of synthetic examples. The classic super-

resolution algorithm of Irani and Peleg has also been analysed, and the conditions under

which it converges to the ML estimate have been explained. The algorithm was demon-

strated to have an extremely slow rate of convergence compared to the conjugate gradient

scheme which is used throughout this thesis. Finally, the ML estimator was applied to sev-

eral real image sequences, and was shown to produce reasonable results provided the pixel

zoom ratio is relatively low.

In the next chapter, we investigate the use of a Bayesian framework for super-resolution

restoration, and see how statistical image models may be used to dramatically improve the

condition of the problem.
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Chapter 6

Super-resolution Using
Bayesian Priors

6.1 Introduction

This chapter introduces the use of Bayesian prior image models in the super-resolution

reconstruction problem. As seen in chapter 5, the maximum-likelihood estimator of the

super-resolution image is a highly ill-conditioned inverse problem. Consequently, the so-

lution is extremely sensitive to noise in the observed images and to errors in registration.

It is notable that, in cases where the ML estimator performs poorly, the resulting super-

resolution image does not resemble what we would normally consider a “sensible” image.

It is this observation that motivates the Bayesian super-resolution methods described in

this chapter. Whereas the ML estimator only considers the conditional likelihood of the

observations with respect to the super-resolution image, the Bayesian methods introduce

an additional probability density defined a priori over the space of all images. The com-

bined distribution over possible super-resolution images is termed the posterior, and the

maximum a posterior (MAP) estimator provides a solution which is both a good fit to the

observations, and also has a high likelihood with respect to the prior image model. The

image priors considered in this chapter are simple Markov Random Field (MRF) models,

based on heuristic notions about the short-range spatial correlations between pixels in

“typical” images.

In section 6.2, we show how the introduction of a Bayesian prior modifies the super-

resolution reconstruction problem. In section 6.3, we expose the relationship between cer-

tain MAP estimators and the classical method of optimal (Weiner) filtering, demonstrat-

ing how this method can be re-cast in a Bayesian framework. In section 6.4, we examine

some common image priors which have been proposed in both the image restoration and

super-resolution literature, and demonstrate the particular applicability of the Huber MRF



model [29, 132] for the super-resolution reconstruction of images containing text. In sec-

tion 6.6 we demonstrate the improved noise robustness which is obtained using the MAP

estimators. In section 6.7, we describe a novel algorithm which uses cross-validation to

automatically set the “hyper-parameter” which balances the influence of the prior model

against the influence that the observed images have on the reconstructed image. Finally,

section 6.8 demonstrates the MAP estimators applied to several real image sequences.

6.2 The Bayesian framework

In this section we derive the general form of the maximum a posterior estimator for the

super-resolution image. From equation (5.24), the total probability of an observed image

gn(x, y) given an estimate of the super-resolution image f̂(x, y) is determined by the as-

sumed Gaussian distribution of the image noise

Pr(gn|f̂) =
∏

∀x,y

1

σ
√

2π
exp

(

−(ĝn(x, y) − gn(x, y))2

2σ2
n

)

where the simulated low-resolution image ĝn is given by

ĝn = Mnf̂

Note that, throughout this and the subsequent chapter, we shall drop the explicit pho-

tometric parameters, (αn, βn), in order to improve the clarity of the equations presented.

Putting them back in is a trivial exercise for the reader. Of course, the algorithms used to

generate the results in this chapter do still include the photometric parameters in their

computations, and in the real examples they are estimated robustly using the method de-

scribed in chapter 3.

Assuming independent observations, the probability over all images in the sequence is

Pr(g|f̂) =
∏

∀n

Pr(gn|f̂) (6.1)

where g is the stack of vectors gn. The prior image model provides an additional pdf de-

fined over the space of all images, Pr(f). By invoking Bayes’s theorem [93, 96, 119, 139], we

can combine the two to obtain the posterior distribution :

Pr(f̂ |g) =
Pr(g|f̂) Pr(f̂)

Pr(g)
(6.2)
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The maximum a-posterior (MAP) estimate of f is then

fmap = arg max
f

Pr(g|f̂) Pr(f̂)

Pr(g)

= arg max
f

Pr(g|f̂) Pr(f̂)
(6.3)

Taking logarithms we obtain

fmap = arg max
f

lg Pr(f̂) + lg Pr(g|f̂)

= arg max
f

lg Pr(f̂) − 1

2σ2
n

‖Mf − g‖2
(6.4)

The specific form of lg Pr(f̂) depends on the prior being used. All the priors in this

chapter, and in fact the majority of those in the image restoration literature, are Markov

Random Field priors.

6.2.1 Markov Random Fields

Our basic image model is a random field, a collection of independent random variables.

The Markov Random Field concept tightens this with the assumption that the conditional

pdf of a single pixel, conditioned on all other pixels in the image, is equal to the pdf condi-

tioned on just some sub-set of the other pixels, i.e.

Pr(fi|fj 6=i) = Pr(fi|fk, k ∈ Ni) (6.5)

The neighbourhood Ni is termed the Markov blanket of pixel fi. In some sense, MRFs are

the N-dimensional analogue of the familiar 1-d Markov chain. In MRF image models, the

pixel neighbourhoods N are typically determined by some spatial adjacency rule. They are

invariably spatially homogeneous, meaning that every pixel has the same neighbourhood

structure regardless of its position in the image. Common examples are the 4-neighbour

and 8-neighbour blankets.

This formulation of the MRF in terms of a conditional pdf is rather inconvenient when

it comes to actually defining a prior which has particular properties, such as smoothness,

or piecewise constancy. For this reason, most MRF models are expressed in terms of the

equivalent Gibbs distribution.
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6.2.2 Gibbs priors

Any MRF can be expressed as an equivalent Gibbs distribution1 which has the form

Pr(f) =
1

Z
exp

(

−
∑

∀C∈C

VC(C)

)

(6.6)

where Z is a normalizing constant (called the partition function in statistical mechanics),

C are cliques of images pixels, the VC(C) are potential functions defined over the pixels in

each clique, and C is the set of all cliques contained within the image f . A clique is set of pix-

els which are mutual neighbours according to some adjacency rule. Common image priors

are defined using only pair-cliques, meaning that each V is a functions of only two pixel

values, V (C) = V (fi, fj). They are typically homogeneous, meaning that the V (C) depend

only upon the clique type and not upon the position of the clique in the image. They are

typically isotropic, meaning that the V (C) depend only on the distance between the pair

of pixels in C and not upon its orientation. For further details on the modelling of images

with Gibbs distributions the reader is referred to Besag [14, 15], Geman and Geman [67]

and Li [98].

In the case when the prior is a Gibbs distribution, equation (6.4) becomes

fmap = arg max
f

−
∑

∀C∈C

VC(C) − 1

2σ2
n

‖Mf − g‖2 (6.7)

The difference between the many image priors proposed in the literature essentially

comes down to the size and spatial extent of the cliques used, and the nature of the poten-

tial functions. The latter fall into three categories : quadratic, non-quadratic convex and

non-convex. In the following sections we shall see examples of each of these three cases.

6.2.3 Some common cases

The simplest and most common Gibbs priors have potential functions that are quadratic

in the pixel values f , hence

Pr(f) =
1

Z
exp

(

−f>Qf
)

(6.8)

where Q is a symmetric, positive-definite matrix. In this case, equation (6.7) becomes

fmap = arg max
f

− f̂
>
Qf̂ − 1

2σ2
n

‖Mf − g‖2 (6.9)

1The equivalence of MRFs and Gibbs distributions is known as the Hammersley-Clifford theorem [98].
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This case is of particular interest, since the MAP estimator has, in principle, a linear solu-

tion :

fmap =
(

M>M + Q
)−1

M>g (6.10)

Of course, in the context of image restoration, it is computationally infeasible to perform

the matrix inversion directly, but since both terms in equation (6.9) are quadratic, the con-

jugate gradient ascent method may applied to obtain the solution iteratively.

The simplest matrix Q which satisfies the criterion is a multiple of the identity, giving

fmap = arg max
f

− γ2‖f‖2 − 1

2σ2
n

‖Mf − g‖2 (6.11)

A common variation on this scheme is when Q is derived from a linear operator L applied

to the image f :

fmap = arg max
f

− γ2‖Lf‖2 − 1

2σ2
n

‖Mf − g‖2 (6.12)

in which case Q is L>L. The matrix L is typically chosen to be a discrete approximation of a

first or second derivative operator. Equations (6.11) and (6.12) will be familiar to many peo-

ple as forms of Tikhonov regularization [59, 73, 150] , a technique proposed by Tikhonov

and Arsenin in the context of solving Fredholm integral equations of the first kind. Image

deconvolution is one example of this class of problem.

Another way to think about equation (6.8) is as a multi-variate Gaussian distribution

over f , in which Q is the inverse of the covariance matrix.

6.3 The Optimal Wiener filter as a MAP estimator

In this section we briefly review the Wiener filtering method, a classical frequency domain

technique which is used to “regularize” the ill-conditioned image deconvolution problem.

We show how this method can be cast as MAP estimation with a Gibbs prior, and con-

versely, how certain Gibbs priors may be interpreted as priors in the frequency domain.

The Weiner filter or “optimal least-squares filter” [72, 90, 116] has proved to be a very

successful tool in the reconstruction of single blurred, noisy images. It is a frequency do-

main method which provides an estimate of the deblurred image which minimizes the er-

ror between the reconstruction and the ground-truth in a least-squares sense. The method

requires accurate knowledge of the point-spread function, and approximate knowledge of

the power spectral densities of the ground-truth image and the additive noise corrupting
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the observed image. As with other frequency domain restoration methods, the blurring is

limited to a linear convolution with a point-spread function and must therefore be spatially

invariant.

The degraded image g is modelled as

g = h ∗ f + n (6.13)

where f is the undegraded image, h is the point-spread function, n is an additive noise term

and ∗ is the convolution operator. Transforming the problem to the frequency domain, we

have

G(ω) = H(ω)F (ω) + N(ω) (6.14)

The Wiener method finds a reconstruction filter Q(w), which is applied to the degraded

image G(w) to obtain the reconstructed image F̂ (ω) :

F̂ (ω) = Q(ω)G(ω)

= Q(ω)(H(ω)F (ω) + N(ω))
(6.15)

The expected reconstruction error is

r = E[‖F̂ (ω) − F (ω)‖2]

= E[‖Q(ω)(H(ω)F (ω) + N(ω)) − F (ω)‖2]
(6.16)

where E[.] is the expectation operator. It is easily shown (see [72]) that the optimal choice

of Q(ω), which minimizes the reconstruction error in a least-squares sense, is

Q(ω) =
H(ω)∗PF (ω)

H(ω)∗PF (ω)H(ω) + PN (ω)
(6.17)

where H∗ indicates the complex conjugate, and PN (ω) and PF (ω) are the power spectral

densities (PSD)2 of the noise and signal respectively.

Given this choice of Q(ω) the reconstructed image is

F̂ (ω) =
H(ω)∗PF (ω)G(ω)

H(ω)∗PF (ω)H(ω) + PN (ω)
(6.18)

It is straightforward to show that F̂ (ω) is the solution to the following frequency domain

restoration problem :

F̂ (ω) = arg min
F

∥

∥

∥

∥

∥

H(ω)F (ω) − G(ω)
√

PN (ω)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

F (ω)
√

PF (ω)

∥

∥

∥

∥

∥

2

(6.19)

2The power spectral density of a signal F (ω) is the expectation of its auto-correlation spectrum, PF (ω) =
E[F (ω)∗F (ω)]
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Using Parseval’s theorem, and remembering that component-wise multiplication/division

in the Fourier domain is equivalent to convolution/deconvolution in the spatial domain,

we can re-write this equation as an equivalent spatial domain image restoration problem :

f̂ = arg min
f

(Hf − g)>Λ−1
n (Hf − g) + f>Λ−1

f f (6.20)

in which Λ−1
n and Λ−1

f are the circulant convolution matrices whose rows are the inverse

Fourier transforms of PN (ω) and PF (ω). We can now see that the PSD prior imposed in the

Wiener filter corresponds to an image noise covariance matrix Λn and a Gibbs prior of the

form

Pr(f) =
1

Z
exp(−f>Λ−1

f f) (6.21)

which is a multi-variate Gaussian distribution over f . Any Gibbs prior which has a quadratic

form may be interpreted as a frequency domain prior using equation (6.21).

6.4 Generic image priors

This section describes some commonly used, simple, generic image priors. Some of these

priors will be used to generate the results in the following sections.

The ‖x2‖ prior Referring to equation (6.8), and setting Q equal to some multiple of the

identity is equivalent to assuming zero-mean, Gaussian i.i.d pixel values. We shall modify

this distribution slightly to use the average image as the mean instead. This allows us to

take advantage of the good super-resolution estimate which is provided by the average

image, by defining a prior which encourages the super-resolution estimate to lie close to

it. The associated Gibbs prior is

Pr(f) =
1

Z
exp

(

−|f − favg|2
2σ2

f

)

(6.22)

This prior is not actually an MRF, since it involves no spatial correlation between pixels.

Gaussian MRFs When the matrix Q in equation (6.8) is non-diagonal, we have a multi-

variate Gaussian distribution over f , in which spatial correlations between adjacent pixels

are captured by the off-diagonal elements. The corresponding MRFs are termed Gaussian

MRFs or GMRFs.
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As noted in section 6.2.3, it is common for Q to be defined by the action of some 1st or

2nd derivative operator L on f , such that Q ∝ L>L. For the purpose of our examples, we

define a GMRF in which L is formed by taking first-order finite difference approximations

to the image gradient over horizontal, vertical and diagonal pair-cliques. For every loca-

tion fx,y in the super-resolution image, L computes the following finite-differences in the 4

adjacent, unique pair-cliques :

dx = fx+1,y − fx,y dy = fx,y+1 − fx,y

dxy =
1√
2
(fx+1,y+1 − fx,y) dyx =

1√
2
(fx+1,y−1 − fx,y) (6.23)

The corresponding Gibbs potentials are V (Cx) = γd2
x, V (Cy) = γd2

y and so on, where γ is

a constant which controls the “peakiness” of the resulting Gibbs distribution. This prior

encourages a smooth solution.

In the frequency domain, convolution with a 1st derivative operator is equivalent to

multiplication by jω. From equation (6.21), we have that

L>L ↔ PF (ω)−1

⇒ ω2 ∝ PF (ω)−1

⇒ PF (ω) ∝ 1

ω2

Hence, roughly speaking, this GMRF is assuming that the signal power in f decays as 1
ω2 .

This is in agreement with investigations regarding the statistics of natural scenes [105, 140],

where it is observed that the power in the frequency spectrum decays as approximately 1
ω2 .

However, it has also been noted that it is phase coherence in a signal which is important in

defining structure, and in particular discontinuities. The GMRF has no ability to capture

this notion.

Schultz and Stevenson [132] suggest a prior based on 2nd derivatives, in which the spa-

tial activity measures are defined over triplet-cliques

d2
x = fx−1,y − 2fx,y + fx+1,y d2

y = fx,y−1 − 2fx,y + fx,y+1

d2
xy =

1

2
fx−1,y−1 − fx,y +

1

2
fx+1,y+1 d2

yx =
1

2
fx−1,y+1 − fx,y +

1

2
fx+1,y−1

The associated GMRF assumes a 1
ω4 decay in signal power. We will not make use of this

particular prior in our examples.
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Huber MRFs A common criticism levelled at the GMRF priors is that the associated MAP

super-resolution estimates tend to be overly smooth, and that sharp edges, which are what

we are most interested in recovering, are not preserved. This problem can be ameliorated

by modelling the image gradients with a distribution which is heavier in the tails than a

Gaussian. Such a distribution accepts the fact that there is a small, but nonetheless tangi-

ble probability of intensity discontinuities occuring.

In a Huber MRF (HMRF), the Gibbs potentials are determined by the Huber function,

ρ(x) = x2 if |x| ≤ α

= 2α |x| − α2 otherwise (6.24)

In our examples, the clique statistic x is given by the 1st derivative difference equations (6.23),

and the associated Gibbs potentials are V (Cx) = γρ(dx), etc. This prior encourages local

smoothness, whilst being more lenient toward step edges than ρ(∆) = ∆2. The associated

Gibbs prior is Gaussian close to the origin, becoming Laplacian (double-tailed exponen-

tial) in the tails :

Pr(x) = 1
Z

exp(−γx2) , if |x| ≤ α

= 1
Z

exp(−γ(2α|x| + α2)) , otherwise (6.25)

Figure 6.1 shows the Huber potentials function, and the corresponding Gibbs pdf plotted

for several values of α. Note that the transition from the quadratic to the linear region

maintains gradient continuity. HMRFS are an example of convex, but non-quadratic pri-

ors.

Schultz and Stevenson use their 2nd derivative scheme with the Huber potentials as a

piecewise-smooth image model.

Generalized Gaussian MRFs Bouman and Sauer [21, 125], and also Borman et al. [19,

20] propose a prior in which the image gradients are modelled by a Generalized Gaussian

distribution, which is of the form

Pr(x) =
1

Z
exp

(

− xp

pσp

)

(6.26)

When 1 < p < 2, this produces a heavy tailed distribution, which the authors claim is

also suitable for modelling of piecewise-smooth images. The GGMRF is also a convex, but

non-quadratic prior.
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Figure 6.1: (Top) The Huber potential functions ρ(x), plotted for three different values of α.

(Bottom) The corresponding Gibbs distributions are a combination of a Gaussian (dashed-

line) and a Laplacian distribution.

Total Variation The total variation norm as a gradient penalty function has become ex-

tremely popular in the single-image denoising/deblurring literature in recent years [32,

145, 169, 170]. The Gibbs potentials for this prior are of the form

ρ(x) = |x| (6.27)

where x is the image gradient statistic within each clique. The corresponding Gibbs pdfs

are a double-tailed exponentials. Although convex, there are practical problems when per-

forming optimization involving the TV norm. The gradient of the TV term is

dρ

dx
= −

∫ ∇.∇x

|∇x| (6.28)

and hence there is a singularity at ∇x = 0. This is can be problematic for gradient descent

or Newton optimization strategies, so the term |∇x| is often replaced by
√

dx2 + dy2 + β,
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where β is a small constant. An alternative scheme with better global convergence proper-

ties is proposed by Chan et al. [33].

Weak-membrane MRFs Blake and Zisserman [17] propose a 2D analogue of the weak-

string constraint, in which the gradient penalty is

ρ(∆) = min(∆2, α2) (6.29)

where ∆ is the image gradient. The parameter α controls the step-sensitivity, a threshold

beyond which a constant penalty α2 is applied. ρ(∆) can be used as a Gibbs potential given

the following modification :

ρ(∆) = min(∆2, α2) if |∆| < ∆max

= 0 otherwise (6.30)

where ∆max is some maximum plausible gradient, e.g. 255 for an 8-bit image. The corre-

sponding Gibbs distribution is then Gaussian near the origin, and uniform when |∆| > α.

The potential function and Gibbs distribution is plotted in figure 6.2 for several values of

α.

There are some severe drawbacks with the use of this model. It is both non-convex,

has gradient discontinuities, and both zero gradient and zero curvature at high values of

∆. All of these factors make efficient optimization rather difficult. Furthermore it is shown

in [21] that images reconstructed using this prior are discontinuous in the data to which

the model is being fitted. In other words, small perturbations to the observed data can

cause the MAP estimate to “switch modes”.

6.5 Practical optimization

The results in the remainder of this chapter use only the ‖x‖2 prior and the first-derivative

GMRF and HMRF priors. Recalling equation (6.7), the general solution to the MAP estima-

tion problem involving a Gibbs prior,

fmap = arg max
f

−
∑

∀C∈C

VC(C) − 1

2σ2
n

‖Mf − g‖2 (6.31)

we can write down the MAP estimators for each of the three priors :
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Figure 6.2: (Top) The Blake-Zisserman potential functions ρ(x), plotted for three different

values of α. (Bottom) The corresponding Gibbs distributions are a combination of a Gaus-

sian and uniform distribution.

‖x‖2 prior

fmap = arg max
f

− 1

2σ2
f

‖f − favg‖2 − 1

2σ2
n

‖Mf − g‖2

GMRF

fmap = arg max
f

− γ‖Lf‖2 − 1

2σ2
n

‖Mf − g‖2

HMRF

fmap = arg max
f

− γρ(Lf) − 1

2σ2
n

‖Mf − g‖2

Each prior has associated with it some variance-like parameter which determines the

spread of the distribution : σ2
f in the case of the ‖x‖2 prior, γ in the case of the first-

derivative GMRF and HMRF. Typically, these parameters are not known a priori. Neither

is the image noise σn, for which it is generally rather hard to obtain an accurate estimate.
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Consequently, we adopt the common practice of absorbing both of these parameters into

a single parameter λ which is the ratio of the two. The MAP estimate using the ‖x‖2 prior

becomes

fmap = arg max
f

− λ‖f − favg‖2 − ‖Mf − g‖2

The others follow similarly. We return to the problem of selecting an optimal value for λ in

section 6.7.

For the ‖x‖2 and GMRF priors, the cost function is quadratic, and hence optimization

may be efficiently performed by conjugate gradient ascent. The HMRF prior on the other

hand, introduces a non-quadratic term into the cost function, and hence the solution re-

quires a general, unconstrained non-linear solver. For this purpose, we use a damped

Newton method which is directly analogous to the Levenberg-Marquardt algorithm for

non-linear least-squares problems which was used in the N-view homography estimator

of chapter 4. The difference is that we must use the full Hessian of the non-linear cost

function, rather than the Gauss-Newton approximation which may be used in non-linear

least-squares problems. The method is described in more detail in appendix A.

6.6 Sensitivity of the MAP estimators to noise sources

In this section, we use our synthetic image sequences to examine the noise robustness

properties of the ‖x‖2, GMRF and HMRF priors described in the previous section.

6.6.1 Exercising the prior models

To get some idea of the effect that each prior has on the reconstructed image, we first per-

form a reconstruction from 20 noise-free images, varying λ from very small to very large.

Figures 6.3 and 6.4 show reconstructions using the simple ‖x‖2 and GMRF priors respec-

tively. Both priors produce a similar result. They are not good at preserving step edges as

λ increases. It is interesting to note that the ‖x‖2 prior, although it does not directly im-

pose spatial correlation between pixels in the solution, still tends to produce a smoothed

solution for large values of λ.

Figure 6.5,6.6 and 6.7 show results using the HMRF prior for three different values of α.

As α decreases, the step edge preserving property of the HMRF prior becomes apparent.

Note though that this prior also exhibits a kind of hysteresis effect : having allowed a step to
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Figure 6.3: Reconstructions at 2× zoom from 20 noise-free synthetic images using the sim-

ple ‖x‖2 prior, as λ varies. This prior can not preserve step edges, which become smoothed.

occur, it is reluctant to allow another nearby. Hence the highest frequency bars are turned

into solid grey blocks, albeit with sharp edges.

191



λ 
=

 1
e−

05

0 20 40 60 80
0

100

200

λ 
=

 1
e−

04

0 20 40 60 80
0

100

200

λ 
=

 1
e−

03

0 20 40 60 80
0

100

200

λ 
=

 1
e−

02

0 20 40 60 80
0

100

200

λ 
=

 1
e−

01

0 20 40 60 80
0

100

200

λ 
=

 1
e+

00

0 20 40 60 80
0

100

200

Figure 6.4: Reconstructions at 2× zoom from 20 noise-free synthetic images using the sim-

ple GMRF prior, as λ varies. This prior is also unable to preserve step edges.
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Figure 6.5: Reconstructions at 2× zoom from 20 noise-free synthetic images using the sim-

ple HMRF prior, as λ varies with fixed α = 0.1. As α decreases, we expect this prior to be

much better at preserving step edges than the ‖x‖2 and GMRF priors.
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Figure 6.6: As figure 6.5, but with α = 0.05.
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Figure 6.7: As figure 6.5, but with α = 0.01.
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Figure 6.8: Reconstructions using the ‖x‖2 MAP estimator at 2× pixel-zoom using the syn-

thetic images described in the text. A small λ produces a solution close to the MLE, which is

corrupted by noise. A very large λ reduces noise effectively, but produces an overly smooth

solution. The optimal value balances reconstruction noise against smoothness.

6.6.2 Robustness to image noise

Figures 6.8, 6.9 and 6.10 show reconstructions using the three MAP estimators applied

to 20 noisy synthetic images. The reconstructions are all performed at 2× zoom, and the

synthetic images are all degraded by quite severe additive Gaussian, σ = 10 grey-levels.

The behaviour of the ‖x‖2 and GMRF priors is much as expected : when λ is small, the

solution is much like the MLE, and consequently noisy. When λ is very large, the solution

is not noisy, but is overly smooth. Somewhere in between lies the optimal value of λ which

balances noise against smoothness in the solution.

The reducing effect that α has on the penalty term in the HMRF prior generally means

that λ must be higher in order to achieve a similar regularizing effect as the other two MAP

estimators. The edge preserving characteristic of the estimator becomes apparent when λ

is large and α small, the reconstructions taking on a cartoon-like appearance. This prior is

particularly suitable for reconstructing scenes in which the intensities are quantized into a

small number of distinct levels, such as images containing text.
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λ = 0.00032 λ = 0.00100 λ = 0.00320

λ = 0.01000 λ = 0.03200 λ = 0.10000

Figure 6.9: Reconstructions using the GMRF-MAP estimator. The behaviour follows the

same pattern as the ‖x‖2 prior in figure 6.8.
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α = 0.10 α = 0.05 α = 0.01

λ = 0.0010

λ = 0.0320

λ = 0.0100

λ = 0.03200

λ = 0.10000

Figure 6.10: Reconstructions using the HMRF-MAP estimator for varying λ and α. The

value of λ must generally be higher than that used in the ‖x‖2 and GMRF estimators in or-

der to achieve a similar regularizing effect. In the bottom-rightmost images, the edge pre-

serving characteristic of the HMRF becomes clear, as the images take on a rather cartoon-

like appearance.
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6.7 Hyper-parameter estimation by cross-validation

In this section, we demonstrate how a cross-validation technique may be used to estimate

the optimal value of the prior influence parameter λ.

The cross-validation scheme employed here is an example of “hold-out” cross-validation.

The basic principle is to divide the observed data into two sets, compute a MAP estimate

using only one of the sets, and then use this estimate to compute the cross-validation resid-

ual error over the second set. The process is repeated, adjusting the hyper-parameter, so

as to minimize the cross-validation residual. We shall refer to the two sets as the fitting set

and the validation set.

In this context, the data set is divided by holding-back every nth image, and computing

the super-resolution MAP estimate, given some value of λ, using the remaining images.

The estimate is then projected into each image in the validation set, and the total RMS

reprojection error computed.

The intuition as to why this works is as follows. When λ is very large, the super-resolution

estimate is overly smooth. Consequently, the reprojection error with respect to any image

in the sequence is large. Initially, as λ gets smaller, both the fitting residual and the vali-

dation residual decrease, and the MAP estimate improves. However, when λ is very small,

the MAP estimate tends toward the ML estimate and is over-fitted to the data, appearing

extremely noisy. In this case, the fitting residual is artificially small, smaller than the actual

noise level in the images, but the validation residual is again large. Hence, the validation

residual has a minimum with respect to λ. In a fully automated system, this minimum

could be sought by an iterative root-finding algorithm.

The choice of validation set It is important that the set of images held back for validation

purposes is a good “cross-section” of the entire set of images. A set of mutally very similar

images will not provide a good validation set. The method employed here of choosing

every nth image is an attempt to obtain such a cross-section. Of course, the larger the

size of the validation set, the fewer images are left with which to actually compute the

super-resolution estimate. One possible method by which both of these issues might be

addressed is to use several small, randomly chosen validation sets. Each validation set is

then held back in turn, with all of the remaining images going into the fitting set. The
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optimization task is then to choose the hyper-parameter so as to minimize the total cross-

validation residual across all of the validation sets.

A synthetic experiment For this experiment, 25 images were generated from the “Text”

ground-truth image undergoing projective motion. The point-spread function σpsf was

0.7, the down-sampling ratio was 3, and zero-mean, additive Gaussian noise with σn = 5

grey-levels was added to the images. Every 5th image was held-back. The MAP estimator

used the ‖x‖2 prior.

Figure 6.11 shows MAP estimates computed using the 20 remaining images, at 3×pixel-

zoom, as log10 λ varies from −1 to −5. As expected, for a large value of λ, the estimate is

overly smooth. When λ is very small, the estimate is very noisy. Subjectively, we might say

that log10 λ = −3 looks about the best.

Figure 6.12(a) shows the variation of the fitting residual with respect to λ. As expected,

the error decreases monotonically with decreasing λ, and offers no help in choosing an

optimal value. Figure 6.12(b) shows the corresponding variation of RMS reconstruction

error compared to the ground-truth. The minimum appears at around log10 λ = −3. Fig-

ure 6.12(c) shows the variation of validation residual with respect to λ. A close-up of graphs

(b) and (c) is shown in figure 6.13. The minimum of the validation residual occurs in almost

exactly the same place as the minimum ground-truth error, and hence provides an excel-

lent guide as to the optimal value of λ.

Figure 6.14 shows on of the low-resolution input images, the average image, and the

MAP estimate computed using log10 λ = −3.

A real example To demonstrate the cross-validation approach applied to a real example,

we use the “Wedge” sequence of 25 JPEG images, first shown in section 5.13. Again, every

5th image is held-back. The MAP estimate is computed using the first-derivative GMRF

prior, at 3× pixel-zoom. The point-spread function σpsf for this sequence is 0.4.

Figure 6.15 shows MAP estimates as log10 λ varies from 0 to −4. For clarity, only a 100 ×
100 pixel region from the full 300×300 pixel reconstruction is shown. Figure 6.16(a) demon-

strates the monotonic decrease of the fitting residual with respect to λ. Figure 6.16(b)

shows the validation residual, which has a minimum at around log10 λ = −2. Figure 6.17

shows one of the low-resolution input images, the average image, and the MAP estimate
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−1 −1.2 −1.4 −1.6

−1.8 −2 −2.2 −2.4

−2.6 −2.8 −3 −3.2

−3.4 −3.6 −3.8 −4

−4.2 −4.4 −4.6 −4.8

Figure 6.11: MAP estimates computed using 20 noisy, synthetic images (the synthesis pa-

rameters are described in the text). The ‖x‖2 prior was used. log10 λ varies from −1 to −5.

The subjective optimal value appears to be around log10 λ = −3.

201



−5 −4 −3 −2 −1 0
4

5

6

7

8

9

10

11

12

log
10

 λ

RMS reprojection error

(a)

−5 −4 −3 −2 −1 0
0

50

100

150

200

250

300

350

log
10

 λ

Ground−truth RMS error

−5 −4 −3 −2 −1 0
5

6

7

8

9

10

11

12

13

log
10

 λ

Cross−validation RMS reprojection error

(b) (c)

Figure 6.12: (a) The fitting residual decreases monotonically with respect to λ. (b) The

ground-truth reconstruction error has a mininum at approximately log10 λ = −3. (c) The

minimum of the validation residual is also at log10 λ = −3. A close-up view of graphs (b)

and (c) is shown in figure6.13. The validation residual therefore provides an excellent esti-

mate of the optimal value of λ.
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Figure 6.13: Close-up views of graphs (b) and (c) from figure6.12.

(a) (b) (c)

Figure 6.14: (a) One of the 20 noisy, low-resolution input images. (b) The average image. (c)

The super-resolution ‖x‖2 prior MAP estimate at 3× pixel-zoom, computed using log10 λ =
−3.
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using this value of λ. The result is clear, without being overly noisy, exactly as desired.
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0 −0.2 −0.4 −0.6

−0.8 −1 −1.2 −1.4

−1.6 −1.8 −2 −2.2

−2.4 −2.6 −2.8 −3

−3.2 −3.4 −3.6 −3.8

Figure 6.15: Reconstructions at 3× pixel-zoom using the GMRF-MAP estimator prior ap-

plied to the “Wedge” sequence of 25 images. log10 λ varies as indicated. Only 100×100 pixel

regions from the full 300 × 300 pixel reconstructions are shown. The subjective optimum

occurs around log10 λ ∼ −2.
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Figure 6.16: For the reconstructions shown in figure 6.15 : (Left) The fitting residual mono-

tonically decreases with respect to λ. (Right) The validation residual has a minimum at

log10 λ = −2, which agrees with the subjective optimum.
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(a) (b)

(c)

Figure 6.17: (a) One of the 25 low-resolution images from the “Wedge” sequence (shown

at 3× zoom using bicubic interpolation). (b) The average image. (c) GMRF-MAP recon-

struction at 3× pixel-zoom, with the value of λ selected using the cross-validation method

(λ = 0.01). The result is clear and not noisy.
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6.8 Gallery of results

Figures 6.18 through to 6.20 show results generated using the methods described in this

chapter applied to the same sequences as were shown in section 5.13. The best ML result

is also shown in each case for the purpose of comparison. All of the MAP reconstructions

are obtained at 3× pixel-zoom ratio. The value of σpsf for each sequence is the same as was

quoted in section 5.13

6.9 Super-resolution “user’s guide”

The following paragaphs summarize the imaging situations to which each of the super-

resolution algorithms discussed so far is best suited.

ML estimator This estimator is the simplest to implement, requiring only a large-scale,

quadratic optimization algorithm such the preconditioned conjugate gradients (PCG) method

in order to perform the estimation. It has the drawbacks of being extremely sensitive to ob-

servation noise and registration error, and is only useful for very low zoom ratios (typically

< 2×).

‖x‖2 prior Also requires only quadratic optimization. It is superior to the ML estimator in

terms of noise and mis-registration tolerance, and has the advantage that it achieves this

robustness without explicitly imposing any spatial smoothness on the super-resolution es-

timate. Suitable for use with zoom ratios > 2×. It is hard to imagine a scenario in which

the ML estimator would be preferred over this one.

GMRF prior Requires only quadratic optimization. It also achieves far greater robustness

than the ML estimator, but does so by imposing a penalty on spatial “non-smoothness”

in the super-resolution estimate. In practice, this algorithm performs very similarly to the

‖x‖2 prior, and either are a good choice for performing super-resolution restoration of gen-

eral scenes.

HMRF prior This estimator requires a large-scale, non-linear optimizer such as a glob-

alized Newton method. It also achieves excellent noise robustness, achieved by imposing

208



Low-res ROI (bicubic 3× zoom) Average image

MLE @ 1.5× pixel-zoom Simple ‖x‖2 prior (λ = 0.006)

GMRF (λ = 0.006) HMRF (λ = 0.009, α = 0.05)

Figure 6.18: The three MAP results, reconstructed at 3× pixel-zoom, all show more con-

vincing detail than the ML reconstructed, especially around the door handles and wing

mirror. The ‖x‖2 and GMRF priors produce similar results, but note the sharp edges around

the windows and headlights in the HMRF reconstruction. The level of detail in the recon-

structions compared to the low-resolution images is very apparent.
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Low-res ROI (bicubic 3× zoom)

Average image

MLE @ 1.5× pixel-zoom

Simple ‖x‖2 prior (λ = 0.004)

GMRF (λ = 0.003)

HMRF (λ = 0.01, α = 0.05)

Figure 6.19: Again, the superiority of the MAP results over the MLE is quite convincing. The

HMRF estimator is particularly effective at reconstructing the sharp edges of the letters in

this example. The text is clearly legible, which is certainly not the case in the low-resolution

input.
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Low-res ROI (bicubic 3× zoom)

Average image

MLE @ 1.25× pixel-zoom

Simple ‖x‖2 prior (λ = 0.004)

GMRF (λ = 0.003)

HMRF (λ = 0.01, α = 0.04)

Figure 6.20: For this sequence the ML estimator starts to break down at only 1.25× pixel-

zoom. Considering the small number of images in this sequence (only 10), the quality of

the MAP reconstructions compared to that of the low-resolution input is fairly remarkable.

Again, the edge-preserving property of the HMRF is particularly suited to this example.

211



piecewise spatial smoothness on the super-resolution estimate. This gives it the ability to

preserve and enhance edges. This estimator is best suited to restoration of approximate

piecewise constant intensity profiles, such as images of text.

6.10 Summary

In this chapter, we have investigated the use of Bayesian prior image models as a regular-

izing influence in super-resolution restoration. Several “generic” image priors have been

described and their properties exercised by empirical investigation using synthetic images.

A novel algorithm has been described which uses cross-validation to set the level of influ-

ence that the prior model has on the MAP solution in order to minimize reconstruction

error without introducing excessive smoothness. The algorithm has been shown to pro-

duce near-optimal results on both real and synthetic examples. Finally, the performance of

various of the MAP estimators was demonstrated by application to real image sequences.

In each case, the MAP estimators were seen to outperform the ML estimator in terms of

reconstruction quality, and ability to restore images at greatly increased pixel densities.

In the next chapter, we investigate whether the performance of super-resolution al-

gorithms can be improved still further by the use of image models which are tuned to a

specific class of image.

212



Chapter 7

Super-resolution using
sub-space models

7.1 Introduction

In the previous chapter we demonstrated that generic MRF prior models can go a long

way towards improving the performance of our super-resolution estimators. However, the

generality of these priors is also their weakness, and in computing a super-resolution MAP

estimate, there is a trade-off to be made between reduced noise and excessive smoothness.

In this chapter we introduce the use of compact image models that are tuned to partic-

ular classes of image. In certain cases, the range-space of these models may be learnt from

training images. We consider in particular the case of super-resolution reconstruction of

text and face images. In the first case, we show that a simple constrained model can give

better results than the MAP-MRF estimators, whilst avoiding the need to impose spatial

correlation. In the second case, we use a simple face model analogous to the “Identi-Kit”

method often used to compose images of police suspects. The model is composed from

compact models of key facial features – the eyes, nose, mouth and cheek areas – which are

learnt from training data using principal-components analysis. The power of this compact

representation is demonstrated as we derive an ML estimator and two MAP estimators

based on the model. In both cases, constraining the super-resolution estimate to lie in

or near a low-dimensional, highly problem-specific sub-space greatly improves the condi-

tioning of the problem. The MAP results typically exceed those possible with generic image

priors.

The methods presented here are similar in spirit to those proposed by Baker and Kanade [10]

who also examine the use of spatially varying priors for face images. The novelty over their

approach is two-fold: first, the low resolution images need not be at the same resolution

and indeed the resolution can vary across the image. This generalization is essential in the



case that the low resolution images are related by a transformation more general than 2D

pure translation; second, a generative model is used throughout.

In section 7.2 we demonstrate the power of a simple constrained model applied to the

reconstruction of text images. Section 7.3 describes the PCA-based face model, and sec-

tion 7.4 describes an ML estimator and two MAP estimators based on this model. In sec-

tion 7.5, the behaviour of the estimators is analysed using synthetic images. Finally, sec-

tion 7.6 presents results of the estimators applied to real images sequences.

7.2 Bound constraints

The motivation for this chapter comes from the success of a very simple constrained model

applied to the super-resolution reconstruction of text image sequences. Although not prop-

erly explored in the super-resolution literature, it is widely recognized in the single-image

restoration literature that placing hard constraints on the individual pixel intensities, which

restrict the solution to some sub-space of the full image space, can give excellent results

without the need for a spatial prior. Examples of such constraints are non-negativity and

upper/lower bound constraints on pixel values.

As a motivating example, figure 7.1 compares super-resolution estimates computed by

both unconstrained and bound constrained ML estimators using synthetic images. The

synthetic images are generated from the “Text” ground-truth images, using a σpsf = 0.7

and down-sampling ratio S = 3. The super-resolution images are therefore constructed at

3× zoom. Three different levels of Gaussian noise is added to the synthetic images. Even

for these tiny levels of noise, the unconstrained ML estimate is completely corrupted by

reconstruction error. The bound-constrained estimate on the other hand is unaffected

and of high-quality.

Figure 7.2 compares the performance of the bound constrained estimator to results

obtained using MAP estimators. In this case the noise on the synthetic images is a much

more realistic σ = 5 grey-levels. The constrained results is clearly superior to both MAP

results. The lack of any imposed spatial correlation means that the constrained estimator

is able to generate sharper results than the MAP estimators using spatial MRF priors.

Figure 7.3 compares ML, HMRF and bound-constrained reconstructions of a real image

sequence – the “Czech” sequence seen in section 5.13. The reconstruction is performed at
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σn = 0.25 σn = 0.50 σn = 0.75

Figure 7.1: (Top) 5 of 30 synthetic perspective images generated from the “Text” ground-

truth image. The images have been sub-sampled by a factor of 3 compared to the ground-

truth. (Middle) ML reconstructions at 3× zoom for three different levels of Gaussian noise

(in grey-levels) added to the low-resolution images. (Bottom) The same ML reconstruc-

tions with a 0/255 lower/upper bound on the pixel intensities. The reconstruction error

has been eliminated in the constrained cases.

1.75× pixel zoom. The ML estimate is badly corrupted, whilst the bound-constrained esti-

mate is comparable in quality to the MAP estimate using the first-derivative HMRF spatial

prior.

Optimization The method used to compute the bound-constrained estimates is More &

Toraldo’s “Gradient-Projection Conjugate Gradient” (GPCG) algorithm [102]. This method

is efficient for the solution of large-scale quadratic problems when the number of con-

straints is very large, as here. The number of iterations required is typically fewer than that

required for convergence of the unconstrained ML estimator.
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(a) (b) (c)

Figure 7.2: Reconstructions computed from the same 30 images used in figure 7.1, but

with a much higher level of Gaussian noise added (σ = 5 grey-levels). (a) Simple ‖x2‖
Tikhonov prior with λ = 0.005. (b) First-derivative HMRF prior with λ = 0.005, α = 0.1.

(c) Bound-constrained. The constrained estimator out-performs both MAP estimators on

this problem.

(a) (b)

(c) (d)

Figure 7.3: Super-resolution reconstructions of the “Czech” sequence of 10 real images,

first shown in section 5.13, at 1.75× pixel-zoom. (a) The region of interest in the refer-

ence low-resolution image (shown with 1.75× bicubic zoom). (b) The ML estimate. (c) The

HMRF estimate with λ = 5 × 10−3, α = 5 × 10−2 (d) The bound-constrained ML estimate.

The ML estimate is badly corrupted, whilst the bound-constrained estimator produces a

clean, clear result close to that of the HMRF estimator.

7.3 Learning a face model using PCA

In this section the image is modelled using a PCA basis computed from training images at

the target resolution. Given a set of images the variation in the signals is optimally mod-

elled for a given number of principal components. This representation is applicable to

signals of a particular class where the aim is to model the within-class variation.

The use of PCA sub-space priors provides an interesting middle ground between the

generic local priors previously used, and the type of priors based on sampling exemplars
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from training images (e.g. for homogeneous texture generation [53]) which have been ap-

plied to super-resolution by Candocia and Principe [26], and Freeman and Pasztor [63]

The image will be modelled by its PCA components as f̂ = Vy + µ, where V represents

the set of PC basis vectors and µ is the average of the training images. The aim is a low

dimensional representation where the dimension of the parameter vector y is far less than

the number of pixels in the image (the dimension of f ). This representation is applied here

to registered face images. It is known from extensive use of PCA since at least [167] that a

compact representation can be achieved in this case.

Rather than learn the PC for the entire image, the face is divided into four key facial

regions: the eyes, nose, mouth and cheek areas; and a separate PCA basis is learnt for

each feature. The intuition is that these regions are relatively uncorrelated, and that by

considering small regions, better models can be learnt than would be by performing PCA

on the whole face.

The region segmentation is shown in figure 7.4. To learn the model, PCA analysis is ap-

plied to 160 face images which have been geometrically registered using a similarity trans-

formation. The registration is computed from manually selected points on the eyes and

mouth. Both male and female faces are used in the training set. To increase the number

of training samples, each face is flipped symmetrically around the y-axis, providing a total

of 320 faces. Some of the training faces are shown in figure 7.5. The average eye, nose and

mouth features and the first few “eigen-features” are shown in figure 7.6. The composed

average regions are shown in figure 7.4(b).

A face image is thus represented here by 6 sets of principal component coefficients (one

for each of the left and right eyes, nose, mouth, left and right cheeks),

f = [VlefteyeVrighteye . . . Vrightcheek]y + µ

= Vy + µ
(7.1)

where the matrices V are the projection matrices whose columns form the PCA basis for

each feature, y is the stacked vector of coefficients associated with each basis, and µ is a

vector containing the average image features for each region. It is important to note that,

by representing the face in terms of the sub-space parameterization y, the dimensional-

ity of the (in this case) 120 × 120 pixel images is reduced from 14400 parameters down to

just 319 × 6 = 1914 parameters. This reaps benefits in terms of both improved problem

conditioning and faster optimization.

217



(a) (b)

Figure 7.4: (a) The four facial regions (eye,nose,mouth,cheek) for which separate PCA bases

are computed. (b) The average image computed over each of the regions independently

using the 320 training images (160 ×2 using symmetry.)

Figure 7.5: 20 of the 160 training images. The faces have been registered using a similarity

transformation computed from hand-placed marker points on the eyes and mouth.
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Figure 7.6: The first 20 eigenimages of each of the four facial features.

When using the PCA model, we often do not want to use all 319 basis vectors per fea-

ture. For instance, we would intuitively expect that the cheek, which is a smooth, low-detail

feature, will required fewer principal components to accurately represent it than (say) the

eye. Also, by reducing the number of components used to represent each feature to the

lowest acceptable number, we are reducing the dimensionality of the model still further,

and we would expect this to improve the condition of the super-resolution estimators. The

criterion we will use to choose an appropriate dimensionality for each feature is to keep the

minimum number of components that span some fraction ν of the total variance. This cal-

culation is extremely simple, since the variances of the principal component are obtained
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ν 0.95 0.98 0.99 0.995 1.0

Eye 27 64 103 149 319

Nose 39 92 142 190 319

Mouth 22 59 105 157 319

Cheek 8 29 69 126 319

Table 7.1: The number of principal components required to represent a particular fraction

of the total variance within each feature.

original image ν = 0.90 ν = 0.95 ν = 0.98

ν = 0.990 ν = 0.995 ν = 0.999 ν = 1.000

Figure 7.7: A face image not in the training set is projected onto the PCA face model. The

number of components used to represent each feature is chosen to span some fraction

(shown underneath) of the total variance.

as a by-product of the PCA. Table 7.1 shows the required dimensionality of each feature in

order to span various fractions of the total variance.

To demonstrate the ability of the model to represent a new face figure 7.7 shows a face

which was not in the training set projected onto the PCA model, using feature dimensions

chosen to preserve increasing fractions of the total variance. Reconstructions for which

ν ≥ 0.99 are very close to the ground-truth.
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7.4 Super-resolution using the PCA model

In this section we derive an ML estimator and two different MAP estimators based on the

learnt face model.

7.4.1 An ML estimator (FS-ML)

The simplest way to use the PCA model is to constrain the super-resolution reconstruction

to lie in the sub-space defined by the column span of V. The ML solution using the sub-

space parameterization follows directly from equation (5.26):

ymle = arg min
y

‖M(Vy + µ) − g‖2 (7.2)

for which the minimizer is given by

V>M>MVy = V>M>(g − Mµ) (7.3)

Note that, as always, the average image is used to provide an estimate of super-resolution

pixels outside the boundary of the reconstruction. In the case of the face model, this in-

cludes the missing triangular segments either side of the mouth. Also note, that the num-

ber of parameters to be estimated is equal to the dimension of y, the total number of prin-

cipal components used.

7.4.2 MAP estimators

There are two straightforward ways to develop priors based on the face model, which are

now described.

A prior over face-space (FS-MAP) A by-product of the PCA is an estimate of the variance

of each principal component. This immediately gives us a very simple prior defined over

the coefficients of the principal components. We use this to augment the ML estimator

above, producing a MAP estimator :

ymap = arg min
y

‖M(Vy + µ) − g‖2 + λy>Σ−1y

for which the minimizer is given by

(V>M>MV + λΣ−1)y = V>M>(g − Mµ) (7.4)
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where Σ is the diagonal matrix of component variances obtained from the PCA. We refer to

this as a prior over face-space since, as with the ML estimator, the solution is constrained

to lie on the sub-space defined by the PCA model, and the prior is defined in the sub-space.

This estimator imposes a penalty proportional to the Mahalanobis distance of the features

in y to the average features in µ. As with the FS-ML estimator, the number of parameters

to be estimated is equal to the number of principal components that are used.

A prior over image-space (IS-MAP) A different way to use the learnt model is as part of a

prior which encourages the estimated image to lie near to the PCA sub-space. We assume

that the probability of obtaining f̂ is Gaussian in the distance of f̂ from V. The resulting

MAP estimator has the form

fmap = arg min
f

‖Mf − g‖2 + λ‖(I− VV>)(f − µ)‖2

The minimizer is given by

(M>M + λ(I− VV>))f = M>g + λ(I− VV>)µ (7.5)

We refer to this as a prior over image-space, since the Gaussian distribution attached to

the face-space defines a prior over all images f . The solution is not constrained to lie in

face-space.

For all three proposed estimators, the optimization is efficiently performed using con-

jugate gradient descent. Note however that the ML and FS-MAP estimators require op-

timization over the compact face-model parameters y, and can therefore be computed

much more rapidly than the IS-MAP estimator, which is parameterized in terms of the ac-

tual super-resolution pixels f .

7.5 The behaviour of the face model estimators

To probe the behaviour of the three estimators we use a sequence of 30 synthetic images,

generated using the “Face” ground-truth image, where the PSF σpsf = 0.7 and the down-

sampling ratio is S = 3. Gaussian noise with σ = 5 grey-levels is added to the images, five

of which are shown in figure 7.8. All of the super-resolution reconstructions are performed

at 3× zoom.
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Figure 7.8: Five of the set of 30 synthetic images used to probe the behaviour of the face-

based super-resolution estimators. The synthesis parameters are described in the text.

(a) (b) (c)

(d) (e) (f)

Figure 7.9: (a) The ground-truth “Face” image, (b) one of the 30 synthetic, low-resolution

images. Reconstructions at 3× zoom : (c) the average image, (d) MAP estimate with the

simple Tikhonov ‖x‖2 prior (λ = 0.05), (e) using the first-derivative GMRF prior (λ = 0.05),

(f) using the first-derivative HMRF prior (λ = 0.05, α = 0.025).

For the purposes of comparison, figure 7.9 shows the ground-truth image, one of the

low-resolution input images, the average image formed from all 30, and reconstructions at

3× zoom using the three different MAP estimators from chapter 6.
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ν = 0.95 ν = 0.98 ν = 0.99 ν = 0.995 ν = 0.999

Figure 7.10: The face-space constrained ML estimate computed from 30 images at 3×
zoom, using an increasing number of principal components to represent each facial fea-

ture (chosen according to ν). As ν increases, the reconstruction moves away from the av-

erage face µ, and the accuracy improves. But for ν > 0.99 the final few components, which

are typically less structured, allow excessive noise into the solution.

N = 5 N = 10 N = 15 N = 20 N = 30

Figure 7.11: The face-space ML estimate computed using an increasing number of low-

resolution images, with the number of components per feature fixed according to ν = 0.99.

As we would expect, the reconstruction improves as the number of images increases.

The ML estimator Figure 7.10 shows the constrained estimate computed at 3× zoom

with increasing numbers of principal components used per feature (according to variance

fraction ν). In each case, all 30 low-resolution images are used. Initially, as ν increases,

the reconstruction improves, moving away from the average face µ. But for ν > 0.99, the

reconstruction quality decreases rapidly as the more spurious and unstructured compo-

nents allow noise to be introduced into the solution.

Figure 7.11 compares the face-space ML estimate as the number of input images is

varied. In each case, the number of components used to represent each feature is chosen

according to ν = 0.99. As we might expect, an increasing number of images results in a

reduced reconstruction error.

Note that in both of the above examples, the amount of noise on the observations (σ = 5

grey-levels) is far beyond the level that the regular ML estimator of chapter 5 could possibly

deal with.

Also note that, even in the noise-free case, we would not expect the face-space ML es-
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d E d M

closest projection

constrained mle

face-space manifold

unconstrained mle
(= ground-truth if noise is zero)

Figure 7.12: The face-space constrained MLE is the closest point in face-space to the

unconstrained MLE in terms of Mahalanobis distance dM (defined by the normal equa-

tions (5.27)). This can be very different from the closest reprojection in terms of Euclidean

distance dE . Hence, even in the noise-free case, when the unconstrained MLE is equal to

the ground-truth, the constrained MLE is does not generally correspond to the orthogonal

projection of the ground-truth onto face-space.

timate to correspond exactly to the closest orthogonal projection of the ground-truth onto

face-space (which is shown in figure 7.7). The reason for this is as follows. The uncon-

strained ML framework of chapter 5 effectively defines a multi-dimensional normal dis-

tribution over the space of all images f . The unconstrained MLE, which is equal to the

ground-truth in the noise-free case, sits at the mean of this distribution, and the covari-

ance is determined by the matrix M>M−1 as shown in equation (5.30). The ML estimate

constrained to lie in face-space sits at the maximum of the distribution defined by the in-

tersection of face-space with the normal distribution. This is equivalent to saying that it is

the closest point in face-space to the unconstrained MLE (and hence to the ground-truth

in the noise-free case) in terms of Mahalanobis distance. The situation is illustrated in fig-

ure 7.12. In general, this will not be the same as the orthogonal reprojection, which is the

closest face-space point to the ground-truth in terms of Euclidean distance. Because the

matrix M>M is very ill-conditioned, the normal distribution will be severely elongated in

certain directions. Consequently, even in the noise-free case, the constrained MLE can lie

some distance from the unconstrained MLE.
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λ = 1.00 λ = 0.50 λ = 0.25 λ = 0.10 λ = 0.05

Figure 7.13: Reconstructions using the FS-MAP esimator. As λ varies by a factor of 20, the

reconstruction remains fairly constant. At very high values of λ the solution tends toward

the average face µ.When λ is zero, the solution is equivalent to the constrained FS-ML

estimator.

MAP with face-space prior (FS-MAP) When using the MAP estimator defined over face-

space we can afford to use all of the principal components, since the prior ensures that

those which contribute only a tiny amount of variance will be heavily surpressed in the

super-resolution reconstruction.

Figure 7.13 compares the MAP estimate as the value of the prior influence varies. Even

though λ varies by a factor of 20 in these examples, the estimate remains fairly constant,

with just a small amount of reconstruction error entering as λ becomes very small. This is

probably due to the fact that the variance of the principal components falls off very rapidly.

For instance, in the case of the mouth components, the variance of the 40th component is

1000 times smaller than that of the 1st component. Consequently, even a small contribu-

tion from this prior is enough to severely dampen all but the first few tens of principal com-

ponents. For very high values of λ, y tends toward zero, and hence the super-resolution

estimate tends toward the average-face µ. When λ is zero, the solution is equivalent to the

constrained FS-ML estimator.

MAP with image-space prior (IS-MAP) For the MAP estimator based on the image-space

prior, both the number of components per feature and the prior influence λ. Figure 7.14

compares the MAP estimate as ν varies with λ fixed at 0.1. If ν is too large, the solution

tends to become noisy, much like the FS-ML estimate. If ν is too small, the sub-space is not

descriptive enough : the boundaries between the facial features start to become apparent,

and the quality of the estimate decreases. The optimum value in this example is at around

ν = 0.98.

Figure 7.15 shows the effect of varying λ, whilst fixing ν at 0.9. If λ is zero, the estimate
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ν = 0.995 ν = 0.990 ν = 0.980 ν = 0.950 ν = 0.900

Figure 7.14: Reconstructions using the IS-MAP estimator for varying numbers of principal

components per feature. λ is fixed at 0.1. The optimal number of components per feature

in this example appears at around ν = 0.98.

λ = 0.005 λ = 0.010 λ = 0.020 λ = 0.050 λ = 0.100

λ = 0.200 λ = 0.500 λ = 1.000

Figure 7.15: IS-MAP reconstructions as λ varies, with ν fixed at 0.9. For small λ the solution

will approach the unconstrained MLE. For large λ the solution approaches the face-space

constrained MLE.

will be identical to the unconstrained MLE. At the other extreme, when λ is large, the result

is almost equivalent to the constrained ML estimate as the image is forced to lie on the face

sub-space. Between the two, the solution has some freedom to lie a short distance from the

sub-space, and this can ameliorate some errors due to inadequacies of the face model. The

benefit can be seen in the closeness to the ground truth at around λ = 0.1.

Finally, figure 7.16 compares the HMRF-MAP result from figure 7.9 with the best results

using the face specific MAP estimators. Arguably, both FS-MAP and IS-MAP estimators

give a better results than the HMRF, although the FS-MAP estimate appears to be the best,

providing a fairly good reconstruction of both smooth and detailed areas. All three are of

vastly superior quality to input images, one of which is shown.
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Low-res input image HMRF-MAP FS-MAP IS-MAP

Figure 7.16: Comparison of the HMRF-MAP estimate of figure 7.9 with the best results of

the two face-specific MAP estimators. The FS-MAP estimate seems to be the best, recon-

structing both smooth and detailed areas fairly accurately. All three are of vastly superior

quality to the input images, one of which is shown.

Figure 7.17: Five frames from a sequence of 50 showing a moving face. The face occupies

40 × 40 pixels in these images.

7.6 Examples using real images

Fixed camera, moving face Figure 7.17 shows 5 frames from a sequence of 25 of a mov-

ing face1 captured using a monochrome Cohu CCD camera. The faces were initially regis-

tered using the feature-based N-view maximum-likelihood method, and the photometric

parameters were initialized using the method of chapter 3. Having obtained this initial reg-

istration, the average image was formed. Finally, the registration and photometric parame-

ters were refined by optimizing the super-resolution likelihood function of equation (5.25)

with respect to the parameters (H, α, β)n of each image, keeping f = f avg fixed. The face

occupies a 40 × 40 pixel region. The super-resolution reconstructions are 120 × 120 pixels,

i.e. 3× pixel zoom.

For the purpose of later comparison, figure 7.18 shows the region of interest in one of

the input images; the average image; and the super-resolution reconstruction using the

HMRF-MAP estimator with λ = 0.025, α = 0.05 (tuned by trial-and-error).

1Coincidentally, this face and the one used in the synthetic examples belong to the same person. Experi-
mental volunteers are somewhat scarce in this very dangerous area of research.
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(a) (b) (c)

Figure 7.18: For the sequence shown in figure 7.17 (a) the region of interest in one of the

input images (shown at 3× zoom using bicubic interpolation), (b) the average image, (c)

the super-resolution HMRF-MAP estimate at 3× zoom with λ = 0.025, α = 0.05.

Figure 7.19 shows reconstructions using the face-space constrained ML estimator as

the number of components per features varies. The FS-ML estimator performs surpris-

ingly well on this data set. The reconstruction for which ν = 0.995 shows good detail with

relatively little noise.

Figure 7.20 shows reconstructions using the FS-MAP estimator as λ varies. As with the

synthetic examples, the quality of reconstruction is consistently quite high, even though λ

varies over a wide range.

Figure 7.21 shows the reconstructions using the IS-MAP estimator as λ varies, ν being

fixed as 0.99. When λ = 0.005, the estimate tends toward the unconstrained MLE, and

reconstruction error is evident. But when λ = 0.05, the reconstruction is very good.

Finally, figure 7.22 compares the quality of the input images, the HMRF-MAP estimate

and the IS-MAP estimate with λ = 0.05, ν = 0.99. Both reconstructions are very good, but

the IS-MAP estimator produces better detail around the eyes, nose and mouth.

Fixed face, moving camera Figure 7.23 shows a mosaic featuring a face. The mosaic was

created from a sequence of 30 PAL size, JPEG compressed images captured using a Cohu

CCD camera which was rotated on a tripod. 8 of the original frames are also shown. The

face occupies only 30 × 30 pixels in the low-resolution images.

Figure 7.24 shows reconstructions using the FS-MAP and IS-MAP face-space estima-

tors with various parameters settings. For comparison, one of the input images, the aver-

age image, and a reconstruction using the HMRF-MAP estimator are also shown. The size
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ν = 0.90 ν = 0.95 ν = 0.98

ν = 0.990 ν = 0.995 ν = 0.999

Figure 7.19: FS-ML estimates at 3× zoom for varying numbers of components per feature.

As ν increases the estimate moves away from the average face µ.

of the reconstructed image is 120 × 120 pixels, 16 times as many pixels as in the 30 × 30

pixel low-resolution region of interest. The 4× zoom ratio and the fairly poor quality of

the input imagery means that the face-space ML estimator does not produce good results

and is omitted here. In this example, the quality of the IS-MAP estimates is arguably equal

or superior to the HMRF estimate, although some artifacts are visible on the boundaries

between the different facial features.

FS-MAP vs. IS-MAP In contrast to the results obtained using synthetic sequences, in the

real image examples IS-MAP gives slightly better results than FS-MAP. It is not entirely clear

why this should be the case, although it may indicate that IS-MAP is more robust to regis-

tration error and/or deviations from the Gaussian noise model than FS-MAP, since neither

of these effects were investigated in the synthetic examples. However, to fully resolve this

issue would require a much larger set of examples.
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λ = 0.001 λ = 0.005 λ = 0.01

λ = 0.1 λ = 1.0 λ = 10.0

Figure 7.20: FS-MAP reconstructions as λ varies. The quality of the reconstruction is con-

sistently high over a large range of values of λ.

λ = 0.005 λ = 0.05 λ = 0.1

Figure 7.21: IS-MAP reconstructions as λ varies, ν being fixed at 0.99.
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Low-res ROI (bicubic 3× zoom) HMRF-MAP IS-MAP

Figure 7.22: A comparison of the quality of the input imagery with the HMRF-MAP esti-

mate, and the face-model IS-MAP, all at 3× zoom from 25 images. The IS-MAP estimator

produces a more veridical result around the eyes, nose and mouth.

Choosing λ In these examples, λ has been systematically varied in order to demonstrate

its effect. In practice however, the same cross-validation method as described in section 6.7

may be used to choose an optimal value of λ.

7.7 Summary

In this chapter we have described the use of problem specific sub-space models for the

super-resolution reconstruction of two different types of image. The use of sub-space

models has several advantages over the generic priors seen in the previous chapter. First,

they can regularize the super-resolution inverse problem without imposing undesirable

spatial correlations between pixels in the solution. Second, in certain cases, such as the

face model, the solution space can be represented very compactly, thus reducing the num-

ber of parameters to be estimated and dramatically decreasing the computational effort re-

quired to obtain a solution. Third, in certain cases, the parameters of the sub-space model

may be learnt from training data, thus tuning the model to represent accurately the type of

images that are of interest. We have demonstrated that super-resolution estimators based

on sub-space models are applicable to real image sequences, and generate results which

at least equal those obtained using generic image priors.

The quality of the results based on the face-space model may be improved by using

a larger set of training images, or by employing a more sophisticated method of register-

ing the face images, such as one based on a deformable mesh. The artifacts which are
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Figure 7.23: (Top) 8 of 30 PAL size, JPEG compressed images captured using a rotating CCD

camera. (Bottom) A mosaic created from the image sequence. Figure 7.24 shows the results

of super-resolution enhancement applied to the face.
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Low-res ROI (bicubic 3× zoom) Average image HMRF-MAP)

FS-MAP (λ = 0.1) IS-MAP (λ = 0.1, ν = 0.90) IS-MAP (λ = 0.1, ν = 0.95)

Figure 7.24: Super-resolution estimation from 30 images. (Top) The region of interest in

one of the low-resolution input images; the average image; and the HMRF-MAP estimate

with λ = 0.025, α = 0.075. (Bottom) Super-resolution reconstructions using the FS-MAP

and IS-MAP face-model priors method. The size of the reconstructed image is 120 × 120
pixels, 16 times as many pixels as in the 30 × 30 pixel low-resolution region of interest.

The quality of the IS-MAP estimates is arguably equal or superior to the HMRF estimate,

although some artifacts are visible on the boundaries between the different facial features.
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sometimes visible on the boundaries between the different features may be ameliorated

by including a prior term which penalizes spatial incoherence across the boundaries.
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Chapter 8

Conclusions and extensions

8.1 Summary

This thesis has investigated the problem of combining information contained in multi-

ple, overlapping views of a scene into a single, high-resolution still image. There were

three main threads to this investigation : image registration, image mosaicing, and super-

resolution.

Image registration A robust and efficient algorithm has been described for finding cor-

responding feature points in two images and for obtaining an estimate of the homography

relating them using the method of maximum likelihood. The sub-pixel accuracy of the

method has been demonstrated empirically, and the statistical assumptions regarding the

localisation of the Harris feature points have also been verified experimentally.

A simple scheme for modelling the global photometric differences between images has

been described, along with a robust method for estimating the parameters of this transfor-

mation given geometrically registered views. The model has proved effective in compen-

sating for colour-space transformations due to various effects including camera gain and

white balance.

Finally, the effectiveness of these registration algorithms has been demonstrated in a

change detection application which allows latent marks to be extracted from confusing,

non-periodic backgrounds. The method produces very good results when applied to real

forensic images : for the separation of finger-marks from scanned bank-notes; and foot-

marks from digital photographs of floor tiles.

Image mosaicing It has been shown how the ML estimator of the homography relating a

pair of views can be generalized to simultaneously estimate the set of homographies map-

ping multiple, overlapping views into a common frame. To enable this computation, a



novel algorithm has been described for the efficient matching of corresponding interest

points across multiple views. The resulting N-view ML estimator has been demonstrated

to be immune to the “dead-reckoning” error accumulation which is possible when con-

catenating pair-wise image transformations over long sequences.

The photometric registration algorithm has proved effective for the removal of “seams”

in image mosaics caused by variation in automatic gain control and white balance over the

course of a sequence.

Based on these methods, mosaic images have been composed from a variety of differ-

ent image sequences, the longest of which combines 177 images into a full 360◦ panorama.

Super-resolution The implementation of a generative image model for use in super-

resolution reconstruction has been discussed in detail and an efficient implementation

described. An intuitive picture of the behaviour of the ML super-resolution estimator has

been developed. Using synthetic ground-truth data, the effects of image noise, registra-

tion inaccuracy, and variation in point-spread function have been investigated. By appeal

to both analytical and empirical results, the dependency of the reconstruction error on the

input image noise, point-spread function, number of images used, and zoom ratio has also

been examined. The classic error back-projection algorithm of Irani and Peleg [86, 87] has

been analyzed and its relationship to the ML estimator highlighted.

The Bayesian framework for super-resolution restoration has been described, and the

general form of the super-resolution maximum a posterior (MAP) estimator derived. The

relationship between the Wiener filter and certain MAP estimators has been examined,

showing how certain spatial priors may be interpreted in the frequency domain. Several

“generic” Markov random field (MRF) prior models have been described and the charac-

teristics of the corresponding MAP estimators investigated. A novel algorithm has been

described which uses cross-validation to set the level of influence that the prior model has

on the MAP solution in order to minimize reconstruction error without introducing exces-

sive smoothness. The algorithm has been shown to produce near-optimal results on both

real and synthetic examples.

A novel approach to super-resolution restoration based on problem-dependent sub-

space models has been proposed. The method has been applied to two different classes

of image : text and faces. In the latter case, the sub-space model is learnt directly from
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training images. In the case of text images, a simple constrained ML estimator has been

shown to perform as well as the best MRF-MAP estimator, but without the need to intro-

duce spatial correlations between pixels. In the case of face images, the learnt sub-space

model has been used to define an ML estimator and two different MAP estimators. The

sub-space estimators have been shown to perform at least as well and frequently better

than the MRF-MAP estimators.

All of the super-resolution algorithms described have been applied very successfully to

a variety of real, uncalibrated image sequences.

8.2 Extensions

This final section discusses some possible avenues for future super-resolution research.

8.2.1 Application to digital video

Modern video imagery is, almost without exception, subject to some form of lossy com-

pression. The current crop of compression methods, such as Motion-JPEG and MPEG, are

based on block-wise transform encoding. The image is divided into typically 8 × 8 pixel

blocks and each block is projected into an orthogonal basis, such as the Discrete Cosine

Transform. Transform components with coefficients below a threshold are dropped, and

the remaining coefficients are quantized, packed into space-efficient data structures, and

finally compressed using a loss-less method. Decompressing/reconstructing the image is

simply the inverse process, but the information lost in discarding and quantizing the orig-

inal transform coefficients means that the decompressed image will not be identical to

the original. Globally, the difference is hardly noticeable, but at the level of the individual

blocks, the difference can be severe. The problem is illustrated in figure 8.1, which shows

an image before and after JPEG compression. Although globally the images appear very

similar, the close-ups reveal that high-frequency information has been lost.

Consequently, a major source of degradation in modern video images is due to lossy

compression. However, the compression/decompression operations could be thought of

as providing an explicit generative model describing the transformation of the original

high-resolution image into the degraded, decompressed image. Unlike the generative model

used throughout this thesis, whose parameters involve the blur and sampling rate, the pa-
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Figure 8.1: (Top) An uncompressed image. (Bottom) The image after JPEG compression.

Artifacts are clearly visible in the close-up of the compressed image due to excessive loss

of high-frequency information.

rameters of this modern model would depend on knowing which transform components

were dropped in each block, and on the level of quantization applied. These values may

be recovered from the compressed image file itself. Such a generative model could be used

as a direct replacement for the one described here, allowing super-resolution restoration

from multiple transform-encoded images. Inspiration in this direction may be provided

by [74, 134, 163].

8.2.2 Model-based super-resolution

In chapter 7 we investigated model-based super-resolution algorithms, in which a model

specified for a particular class of image is used either to constrain the super-resolution esti-

mate, or as the basis for a Bayesian prior. The potential of this approach was demonstrated

for images of faces, for which a simple, very specific model can be easily developed. Here
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Figure 8.2: Due to blur, many pixels in the degraded image depend on two or more charac-

ters in the number plate.

we discuss two further areas of application.

Vehicle registration plates Another potential area of application is in the restoration of

vehicle registration plates from degraded surveillance video. Registration plates conform

to a very restricted set of possible formats and font types. In fact, as of August 2001, all

new UK registration plates must legally conform to an exactly specified format and font.

Consequently, a very low dimensional model has already been provided, the parameters

being simply the seven characters on the plate, which consists of five letters and two num-

bers. There are therefore around 265 +103 total configurations (ignoring the fact that some

combinations are disallowed.)

The problem with using such a model is in the optimization stage. Since the parame-

ter space is discrete, and hence not differentiable, gradient based optimization techniques

cannot be employed. The size of the configuration space is far to large to permit an ex-

haustive search. If the observed pixels could be partitioned into independent sets of ob-

servations, such that within each set the observations depend only on a single character,

then each character could be optimized independently of the others, and a simple brute

force search would suffice, whereby the observation likelihood is evaluated for each possi-

ble state.

Unfortunately, such a partitioning is not generally possible, since the effect of blur

means that many low-resolution pixels are dependent on two or more adjacent charac-

ters. The problem is illustrated in figure 8.2. Some form of stochastic global-optimization

method must therefore be employed. This typically involves evaluation of the observation

likelihood for a vast number of trial solutions, each evaluation requiring the plate to be pro-

jected through the generative model, which is a rather expensive operation. Consequently,

naive application of simulated annealing or a genetic algorithm may prove prohibitively
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expensive due to the high-cost of evaluating putative solutions.

An effective solution to this problem would probably involve as a first step the selection

of a small number of candidates for each character on the plate. This could be achieved by

performing an approximate partitioning of the observations, followed by brute force likeli-

hood evaluation over all states for each individual character or pair of adjacent characters.

Having reduced the configuration space in this way, a stochastic method may be applied

more successfully. Mean-field or belief propagation [172] techniques may also offer an ef-

ficient method of solution.

Learnt image models Part of the attractiveness of the model-based approach is the po-

tential for learning image models from sets of training images. The recent work of Freeman

& Pasztor [64, 66] may be a useful pointer in this direction. In their method, an image is

represented by a uniform grid of overlapping blocks. Each block is drawn from a lexicon

of exemplars, which are learnt by vector quantization of blocks sampled from the training

images. The smaller the blocks, the more generic are the image features compiled into the

lexicon. The size of the blocks must be small enough to allow a reasonable size lexicon

to be compiled, but large enough to capture something meaningful about the small scale

structures present in the images. Finally, a compatibility constraint on the overlap between

blocks encourages long range order.

Freeman & Pasztor’s application is the direct inference of missing high frequency detail

in single images. The basic principal is as follows. Training images are split into high and

low frequency parts, and a block-wise lexicon is learnt for each frequency band. Given

an new image, inference is performed by projecting the image block-wise onto the low

frequency lexicon, and then inferring the corresponding high-frequency blocks by cross-

referencing the two lexicons. The cross-references are determing by the co-occurences of

particular high-low frequency blocks in the training images.

They reason that the lowest spatial frequencies are of little use in inferring the missing

high frequencies, and therefore that including the very lowest frequency components in

their model constitutes an unnecessary modelling burden. Consequently, they only apply

learning to mid-pass and high-pass filtered training images. This idea may also be ex-

ploited in the super-resolution framework, where an excellent approximation of the low

frequency part of the super-resolution image can be computed very cheaply using the av-
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erage image, or a MAP estimator with a strong smoothness prior. Only a single lexicon

would need to be learnt, capturing the high frequency image structure. The compact im-

age model would then consist of the fixed, precomputed low frequency part together with

the exemplar-based model of the high frequency part.

The challenge in using such a model is similar to that posed by the registration plate

model. Each block has a discrete parameter – an index into the potentially large lexicon of

exemplars – and one or more continuous parameters specifying a uniform intensity trans-

formation. Again, a feasible means of solution will require a method for selecting a handful

of high-likelihood candidate exemplars for each block. A stochastic optimization strategy,

or possibly a belief propagation method may then be employed.

8.3 Final observations

The success of both the mosaicing and the super-resolution algorithms described here de-

pends heavily upon the accuracy of the geometric registration. Registration inaccuracy

in mosaicing causes inconsistencies due to sequential error accumulation over long se-

quences. In super-resolution, it leads to correlated errors in the reconstructed image. The

fact that good results have been demonstrated in both areas is further evidence, if any were

needed, that the ML homography estimation based on Harris point-features is indeed an

excellent, accurate method.

Image mosaicing and super-resolution offer two different solutions to the problem of

generating a high-resolution, wide field-of-view (FOV) image : mosaicing multiple, zoomed-

in (narrow FOV) images; or super-resolution restoration applied to multiple, zoomed-out

(wide FOV), low-resolution images. Given the computational expense involved in apply-

ing super-resolution restoration to large images, it is probably safe to conclude that “video

paintbrush” mosaicing offers by far the most efficient solution. However, image mosaicing

may easily be combined with an inexpensive, multiple image resampling method, such as

that proposed by Rudin et al., thus providing a very powerful tool.

One of the basic ideas motivating super-resolution research is driven by a counting ar-

gument : that by using many images, the number of observations is much greater than

the number of parameters to be estimated, and hence the ill-posed single image restora-

tion problem can be turned into a well-posed one. Indeed, providing the image motion is
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not degenerate, this argument holds true. But as we have seen, where super-resolution is

concerned, well-posed does not necessarily equate with well-conditioned. In the current

literature, it is always assumed that super-resolution implies an increase in pixel density

(by at least a factor of 4), affording the super-resolution image the ability to represent fre-

quencies beyond the Nyquist limit of the input images. As we have demonstrated, it is

the pixel-density, or zoom ratio, that has the most dramatic effect on the condition of the

restoration problem. It is perfectly possible to obtain acceptable results using the uncon-

strained ML estimator for modest zoom ratios. If blur or noise is the dominant degradation

in the source imagery, then an increase in pixel density is not necessary for the restored im-

age to have a much higher perceived resolution. By taking advantage of multiple images to

perform deblurring and denoisng only, text may be made legible, and faces recognizable.

Furthermore, we have seen the potential for model-based maximum-likelihood methods

to produce super-resolution results comparable to those determined by Bayesian meth-

ods. In summary, there is still a place for the careful use of maximum-likelihood methods

in super-resolution, and awareness of this fact will hopefully benefit imaginative future

researchers.
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Appendix A

Large-scale linear and
non-linear optimization

This appendix outlines the efficient methods which are employed for the iterative solution

of very large, sparse systems of equations, both linear and non-linear. To aid visualization,

the methods are illustrated here using examples with only two variables. However, the

methods may be used in problems featuring thousands of parameters.

A.1 Notation

The general problem is the minimization of a scalar function of N variables

xmin = arg min
x

f(x) : <n → <

where x is an N-dimensional vector of parameters. The gradient ∇f(x) of f(x) is the vector

∇f(x) =

[

∂f

∂x1
. . .

∂f

∂xN

]

The Hessian H(x) of f(x) is the symmetric matrix

H(x) =









∂2f

∂x2

1

. . . ∂2f
∂x1∂xN

...
. . .

∂2f
∂x1∂xN

∂2f

∂x2

N









A.2 Quadratic functions

A multi-dimensional quadratic function has the form

f(x) = a + b>x +
1

2
x>Cx

If C is symmetric, posi-definite then the curvature is everywhere positive, and the function

has a unique minimum at

xmin = −C−1b

When N is large, it is not feasible to perform this inversion directly. There are two common

situations in which such systems arise :
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Figure A.1: A simple quadratic function of 2 variables.

Linear least squares

xmin = arg min
x

‖Ax − b‖2

= arg min
x

(b>b − 2b>Ax + x>A>Ax)

Local Taylor series approximation

f(x + h) ≈ f(x) + ∇f(x)>h +
1

2
h>H(x)h

A.2.1 Steepest descent

The simplest means of solution is the method of steepest descent, in which minimization

of the N-dimensional function proceeds by a series of 1D line-minimizations

xn+1 = xn + λnpn

The steepest descent method chooses pn to be parallel to the gradient

pn = ∇f(xn)

Step-size λn is chosen to minimize f(xn+λnpn). For quadratic forms there is a closed form

solution :

λn =
p>

n pn

p>
n Cpn

Figure A.1 shows a quadratic function of two variables which has its minimum at (5, 5).

Figure A.2 shows the steps taken by the steepest descent method in seeking the minimum.

Note that, in a contour plot, the function gradient is everywhere perpendicular to the con-

tour lines. After each line minimization the new gradient is always orthogonal to the pre-

vious step direction (this is true of any line minimization.) Consequently, the iterates tend

to zig-zag down the valley. In general, steepest descent is an extremely slow and computa-

tionally inefficient method of optimization.
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Figure A.2: The minimum of the quadratic function of figure A.1 is sought by the method

of steepest descent. The iterates zig-zag down the valley. Steepest descent is a slow and

inefficient method of minimization.

A.2.2 Conjugate gradient descent

The method of conjugate gradients descent [71, 117] chooses successive descent directions

pn such that it is guaranteed to reach the minimum in a finite number of steps. Each pn is

chosen to be conjugate to all previous search directions with respect to the Hessian C

p>
n Cpj = 0, 0 ≤ j < n (A.1)

The resulting search directions are mutually linearly independent. Remarkably, pn can be

chosen using only knowledge of pn−1,∇f(xn−1) and ∇f(xn) (see [71] for proof)

pn = ∇fn +

(

∇f>
n ∇fn

∇f>
n−1∇fn−1

)

pn−1

Using conjugate gradients, an N-dimensional form can be minimized in at most N steps.

Figure A.3 shows the algorithm applied to minimization of the quadratic shown in fig-

ure A.1. The algorithm is run from three different starting points. In each case, the mini-

mum is reached in only two steps.

A geometrical explanation of the power of this method is as follows (illustrated in fig-

ure A.4.) Given any starting point and any descent direction, line minimization ends at a

point on one of the contour ellipses tangent to the descent direction. The conjugate point

is the corresponding tangent point on the other side of the ellipse, and the line joining the

two points is guaranteed to pass through the center of the ellipse. The direction of that

line, p1, is defined implicitly by p>
1 Cp0 = 0, as in equation (A.1).

Conjugate gradient descent is far superior to steepest descent, and is the method of

choice for the minimization of quadratic functions when the number of parameters N is

very large.
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Figure A.3: The method of conjugate gradient descent applied to the minimization of the

quadratic function shown in figure A.1. Regardless of the starting point, the minumum is

reached in at most 2 steps.

gradient direction

p1 (conjugate direction)

x1*

function contour
(conjugate point)

x1

x0

p0

Figure A.4: A geometric interpretation of the conjugate gradient method. After each line

minimization, such as at point x1, the next conjugate direction is the line joining x1 with

its conjugate point x∗
1.
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Figure A.6: Steepest descent applied to the Rosenbrock function. Performance is even

worse than in the quadratic example. The zig-zag behaviour is clear in the zoomed view

(100 iterations)

A.3 General non-linear functions

In the case where f(x) is not a quadratic function of x, the above method cannot be used.

A toy example of such a function is Rosenbrock’s function of two variables

f(x, y) = 100(y − x2)2 + (1 − x)2

This function, shown in figure A.5, has its minimum at (1, 1).

A naive approach to minimizing this function, using the method of steepest descent,

meets with even poorer convergence performance than in the quadratic example above.

This is demonstrated in figure A.6. Even after 100 iterations, the iterate is nowhere near the

function minimum. Note that, unlike the quadratic case, there is no closed formed solution

to the 1D line-minimization sub-problems, so an iterative line-minimization algorithm

must be used [70, 117].

A.3.1 Newton methods

The standard approach to minimizing such functions is to use the N-dimensional analog

of Newton’s method [70, 117]. Approximating f(x) locally by its Taylor series expansion
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gives

f(x + h) ≈ f(x) + ∇f(x)>h +
1

2
h>H(x)h

which is a quadratic in terms of the gradient∇f(x) and Hessian H(x) of f(x). The minimum

of the local quadratic approximation is at

xmin = xn − H(xn)−1∇f(xn)

Naively continuing the analogy with Newton’s method would mean minimizing successive

local quadratic approximations until the minimum of f(x) is reached. Such a method is

appealing since it has a quadratic rate of convergence. However, it suffers from very poor

global convergence characteristics, meaning that it will only converge if the initial iterate is

suitably close to a local minimum of f(x). The reason for this is that the quadratic approx-

imation is generally poor far from the minimum. Furthermore, if f(x) is non-convex, the

quadratic approximation at some points x will have an indefinite Hessian. In this case the

quadratic is not bounded below, and hence does not have a unique minimum.

A simple and effective globalization strategy is the “damped” Newton method [70]. In

modern terminology, this algorithm is closely related to the “trust region” strategy [24, 50,

70, 103]. It works by augmenting the Hessian H(x) by adding some multiple of the identity.

The Newton step becomes

xmin = xn − [H(xn) + λI]−1∇f(xn)

= xn − Haug(xn, λ)−1∇f(xn)
(A.2)

When λ is small, the method is equivalent to Newton’s method, and has the same de-

sireable quadratic convergence rate. When λ is large, the identity dominates and the method

tends toward steepest-descent, which is slow, but guarantees a decrease in f(x) even when

far from the local minimum. The method is completed by some simple rules for controlling

the size of λ. The complete algorithm is as follows

1. Set λ = 1

2. Solve δx = −Haug(x, λ)−1∇f(x)

3. If f(xn + δx) > f(xn), increase λ (×10 say) and go to 2.

4. Otherwise, decrease λ (×0.1 say), let xn+1 = xn + δx, and go to 2.

The algorithm is run until the function gradient ∇f(x) or the step-length δx is deemed

to be suitably small. Figure A.7 shows the method applied to find the minimum of the

Rosenbrock function. A contour on each of the successive quadratic sub-problems is also

shown. The algorithm converges after 31 iterations. The damped Newton method has the

advantages of being efficient, globally convergent, and very simple to implement.

A.3.2 Computing a Newton step

In the above example, the Newton step δx is trivial to compute by inverting the 2 × 2 aug-

mented Hessian. When N is extremely large however, direct inversion is infeasible. In this

case, δx is computed by iteratively solving

Haug(x, λ)δx = −∇f(x)
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Figure A.7: (Right) Successive iterates in the damped Newton method, applied to find the

Rosenbrock minimum. (Left) Contours of the successive quadratic sub-problems. The

algorithm converges in 31 iterations.

As stated earlier, conjugate gradient descent is an efficient solver for this problem. Further-

more, the CG termination tolerance may be very “loose”. There is nothing to be gained by

wasting large amounts of computational effort solving for the Newton step to a high degree

of accuracy, particularly since, if the step does not lead to an overall function decrease, it

will be discard and λ modified. For this reason, the CG iteration is terminated when then

CG residual (Haugδxn +∇f) falls to one tenth of its initial value. This typically requires only

a few tens of iterations.

A.4 Non-linear least-squares

It is very common in vision problems for a cost function f(x) to be the sum of a large

number of squared residuals :

f(x) =
M
∑

i=1

r2
i

If each residual depends non-linearly on the parameters x then the minimization of f(x)
is a non-linear least squares problem. The M × N Jacobian of the vector of residuals r is

defined as

J(x) =







∂r1

∂x1
. . . ∂r1

∂xN

...
. . .

∂rM

∂x1

∂rM

∂xN







Hence

∇f(x) = 2J>r

H(x) = 2J>J +
M
∑

i=1

ri
d2ri

dx2
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Note that the second-order term in the Hessian H(x) is multiplied by the residuals ri. In

most problems, the residuals will typically be small. Also, at the minimum, the residuals

will typically be distibuted with mean equal to zero. For these reasons, the second-order

term is often ignored, leading to the Gauss-Newton approximation of the Hessian

H(x) = 2J>J

Using this approximation, explicit (and potentially expensive) computation of the full

Hessian is avoided when solving non-linear least squares problems. Substituting the Gauss-

Newton approximation into the damped Newton method of equation A.2 produces the

well known Levenberg-Marquardt algorithm [52, 70, 97, 117].
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