
EE 271 Lecture 8AEN

Synthesis is …

HDL Source

Generic Boolean

Target Technology

Translate

Opt + MapSet the goals through constraints

Design Compiler optimizes the

design to meet your goals

EE 271 Lecture 8AEN

Other information needed for logic synthesis

• What else does the synthesis tool need besides RTL?

• Library of cells into which to map

• Information about clocks

• Information about inputs

• Information about outputs

• Hints for synthesis tools

EE 271 Lecture 8AEN

Target Standard Cell Library

• Used by Design Compiler for building a circuit

• During mapping, DC will
– Choose functionally-correct gates from this lib

– “time” the circuit using supplied timing data for these gates

• Produced either by fab or third parties
– Often available for “free” (fab adds fee to wafer cost)

• Large set of combinational cells
– Primitive: INV,NAND, NOR, AOI, OAI, XOR, MUX, etc.

– Compound: AND,OR, ADD, etc.

– Sequential, flip-flop/latch, {positive, negative} D-type Flip-flop
with {set, reset}

EE 271 Lecture 8AEN

Needed for each Cell

• Logical: relationship between outputs and inputs

• Timing/Electrical:
– Capacitance information for each pin

– Delay information for each input->output path

– Slope of outputs

– Power consumption of cell

– Required setup time for sequential cells

– Models are generally tables

• Physical:
– Layout

– Abutment and Pin location for place and rout

– Area of cell for synthesis

EE 271 Lecture 8AEN

Partitioning for Synthesis

• Why?
– Separate distinct functions
– Workable size and complexity
– Design reuse
– Meet physical constraints
– Good for team projects

• Bad partitioning may end up with long wires and slow
design, no opt cross the boundaries

• Related CL and destination registers are grouped into
one block

• Balance block size with run time
• Separate core logic, pads, clocks, …

EE 271 Lecture 8AEN

Chip Synthesis Process

Chip Specification

Partition Chip

Floorplan

HDL Description

Logic Level Netlist

Place and Route

EE 271 Lecture 8AEN

Coding for Synthesis

• Think Hardware!
– Think of topology implied by the code

• Think RTL! (Register Transfer Level)

• Writing in an RTL coding style means describing
– The register architecture

– The circuit topology

– The functionality between registers

• Design Compiler optimizes the logic in between not
the register placement

EE 271 Lecture 8AEN

Logic Synthesis Example – 4-bit Gray Counter

module gray(clk, reset,out);
input clk, reset;
output [3:0] out;
wire clk,reset;
reg [3:0] out;
always @(posedge clk)
begin

if(reset == 1) out = 4'b0000;
else begin

case(out)
4'b0000: out = 4'b0001;
4'b0001: out = 4'b0011;
4'b0010: out = 4'b0110;
4'b0011: out = 4'b0010;
4'b0100: out = 4'b1100;
4'b0101: out = 4'b0100;
4'b0110: out = 4'b0111;
4'b0111: out = 4'b0101;
4'b1000: out = 4'b0000;
4'b1001: out = 4'b1000;
4'b1010: out = 4'b1011;
4'b1011: out = 4'b1001;
4'b1100: out = 4'b1101;
4'b1101: out = 4'b1111;
4'b1110: out = 4'b1010;
4'b1111: out = 4'b1110;

endcase
end

end
endmodule

D Stark

EE 271 Lecture 8AEN

Synthesis of Gray Counter

module gray(clk, reset,out);
input clk, reset;
output [3:0] out;
wire clk,reset;
reg [3:0] out;
always @(posedge clk)
begin

if(reset == 1) out = 4'b0000;
else begin

case(out)
4'b0000: out = 4'b0001;
4'b0001: out = 4'b0011;
4'b0010: out = 4'b0110;
4'b0011: out = 4'b0010;
4'b0100: out = 4'b1100;
4'b0101: out = 4'b0100;
4'b0110: out = 4'b0111;
4'b0111: out = 4'b0101;
4'b1000: out = 4'b0000;
4'b1001: out = 4'b1000;
4'b1010: out = 4'b1011;
4'b1011: out = 4'b1001;
4'b1100: out = 4'b1101;
4'b1101: out = 4'b1111;
4'b1110: out = 4'b1010;
4'b1111: out = 4'b1110;

endcase
end

end
endmodule

• Use 0.13µ library

• Set clock period to 2ns

• Set clock skew to 100ps

• Set input drive equal to
INVX1

• Set input arrival to be 1ns
after clk

• Set output load to be 4
NAND2X2 gates

• Require output valid by
1ns after clock

D Stark

EE 271 Lecture 8AEN

Results of Synthesis

• Read back into schematic system after synthesis
• Gate placement in schematic is somewhat random

D Stark

EE 271 Lecture 8AEN

Results of Synthesis – State and Clocking

• 4-FF’s – corresponds to original code
• All connected to global clock

EE 271 Lecture 8AEN

Results of Synthesis – Critical path

• Tool chose gates to meet required cycle time (2ns)
• Plenty of margin

0.29ns

0.51ns 0.69ns 0.85ns+setup:=0.99ns

D Stark

EE 271 Lecture 8AEN

Code Style and Synthesis Results

module gray(clk, reset,out);
input clk, reset;
output [3:0] out;
wire clk,reset;
reg [3:0] out;
always @(posedge clk)
begin

if((reset == 1) || (out == 4'b1000)) out = 4'b0000;
else if (out == 4'b0000) out = 4'b0001;
else if (out == 4'b0001) out = 4'b0011;
else if (out == 4'b0010) out = 4'b0110;
else if (out == 4'b0011) out = 4'b0010;
else if (out == 4'b0100) out = 4'b1100;
else if (out == 4'b0101) out = 4'b0100;
else if (out == 4'b0110) out = 4'b0111;
else if (out == 4'b0111) out = 4'b0101;
else if (out == 4'b1001) out = 4'b1000;
else if (out == 4'b1010) out = 4'b1011;
else if (out == 4'b1011) out = 4'b1001;
else if (out == 4'b1100) out = 4'b1101;
else if (out == 4'b1101) out = 4'b1111;
else if (out == 4'b1110) out = 4'b1010;
else if (out == 4'b1111) out = 4'b1110;

end
endmodule

• Suppose we make the counter this way:

EE 271 Lecture 8AEN

If-else Gray Counter

• 26 gates instead of 12

• Slowest path is 1.4ns instead of 1ns

D Stark

EE 271 Lecture 8AEN

if-else Statements and case Statements

• If-else Implies multiplexing hardware

• To infer latches, use if without an else clause

• If-then-elseif statements imply priority
– Use only if priority checking is required

– Otherwise esult will be incorrect or possibly slower

• case Statements imply parallel mux function
– Use case statements where possible, particularly for FSM’s

EE 271 Lecture 8AEN

Combinational Adder Contents

• Tool created 32-bit Carry Lookahead Adder
– Tool contains parameterizable set of arithmetic operators

– Grabs the appropriate one for your probem

• 369 cell instances
from 1 line of verilog

• Did you really need
it?

EE 271 Lecture 8AEN

Layout for Std Cells

• Mask data – for fab

• Abutment - for placement

• Pin location – for routing

• Area of cell – for synthesis

abutment
rectangle

Cells arrayed to
abutment line

pins

EE 271 Lecture 8AEN

2-Layer metal Place and Route (Old Style)

• Arrange cells in rows interspersed with routing channels

• Routing runs vertically in m1, horizontally in m2

• No routing over cells

EE 271 Lecture 8AEN

Placement for Multiple Levels of Routing

• No need to leave channels

• Most (80-90%) of surface can be covered by cells

