
Additional Slides for Lecture 17

Advantages/Disadvantages of Wire Bonding

- Pros
 - Cost: cheapest packages use wire bonding
 - Allows ready access to front side of die for probing
- Cons
 - Relatively high inductance connections
 - Bond wires are 1nH/mm
 - Bond wire length is typically 3-5mm
 - Number of bonds is proportional to square root of die area
 - Not great for distributing large amounts of power
 - Not great for large numbers of I/O's

Connecting to the Die: Flip Chip

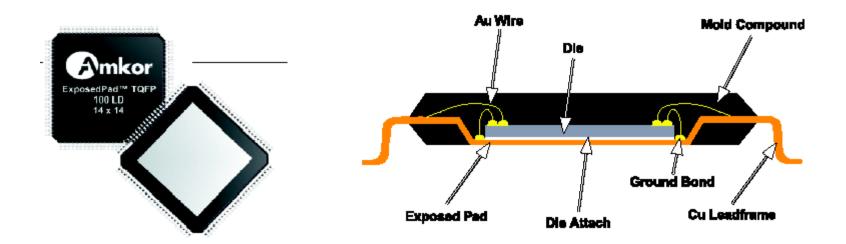
- Entire surface of die can be covered with bonding sites – Placed on 250μ centers
- Small balls (bumps) added at wafer level
- Chip flipped over and connected to package

Flip Chip CABGA Cross Section

Advantages and Disadvantages of Flip Chip

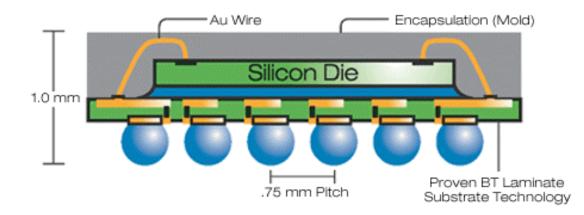
- Pros
 - Large number of connections
 - 1cm x 1cm wire bond chip @ 50μ staggered pitch: 800 pads
 - 1cm x 1cm flip chip @ 250 μ centers: 1600 pads
 - Better power distribution
 - Flip chip: current flows through 20μ thick power plane routing
 - Wire bond: Current flows through 1μ thick top layer metal
- Cons
 - Cost
 - Debug

Integrated Circuit Packages

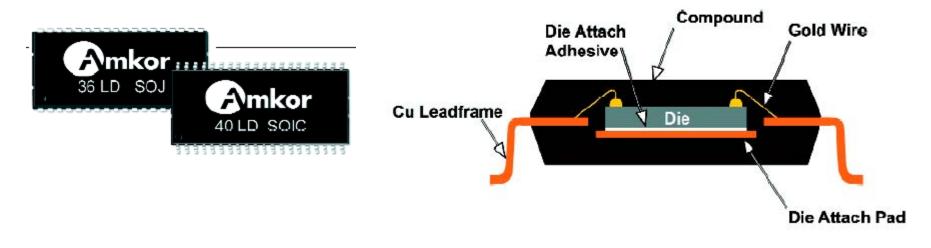

- Different applications have different requirements
 - Logic (Microprocessors, ASIC's)
 - high power, I/O count
 - Small number per board (ok if bigger)
 - Relatively high Average Selling Price (ASP)
 - Memory (DRAM, Flash)
 - Lower power and fewer I/O's per die
 - Large number per board (space at a premium
 - Cost cost cost...
- Package types vary by application

A Sampling of Packages

- Packages for Logic
 - QFP Quad Flat Pack
 - BGA Ball Grid Array
- Packages for Memory
 - TSOP Thin Small Outline Package
 - CSP Chip Scale Package

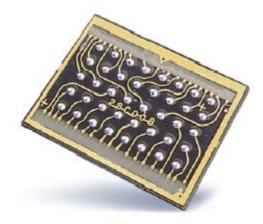

Quad Flat Pack (QFP)

- Wire Bond package
- · Leads are coplanar fanning into die
 - Higher coupling

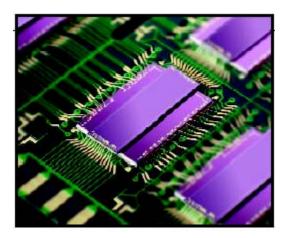

Ball Grid Array

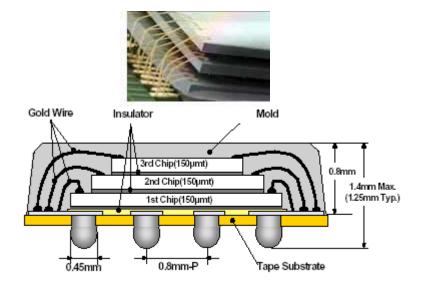
- Most popular ASIC package
 - Basically a small printed circuit board
- Multiple planes available in package
 - Possible to route larger numbers of signals
 - better signal integrity

Thin Small Outline Package (TSOP)


- Most popular DRAM package
 - Very cheap
- Wires bond to lead frame
 - Bond pads sometimes at center of die

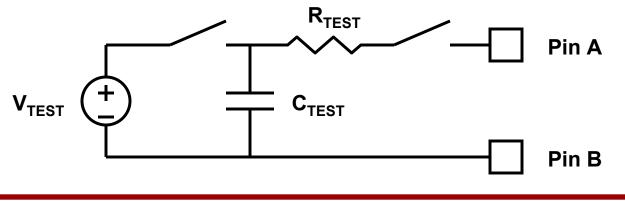
Chip Scale Packages


- Packages is same size as die
 - Very space efficient
- Very short leads good electrical properties
- Back side of die exposed good thermal properties
- Possible to fabricate at wafer level



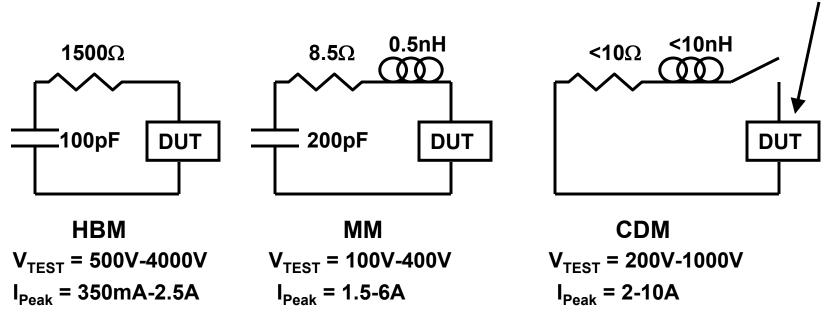
Increasing Package Density

- Large memory systems, density is key
- For portable electronics, space is key
- Reduce required package size
 - Stack die on top of one another



Electrostatic Discharge (ESD)

- MOS devices are very sensitive to high voltages
 - Gate oxides will fail if applied voltage is too high
 - Junctions will burn out if currents are too high
- These conditions can occur during ESD events
- All devices need to contain some type of ESD protection
- Challenges
 - Making sure the device survives the shock
 - Keeping the capacitance low enough to allow good I/O performance

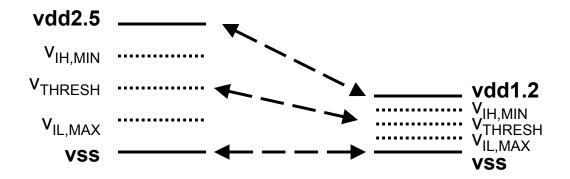

ESD Modeling and Testing

- Basic models exist for ESD
 - Charge up a capacitor to some test voltage V_{TEST}
 - Connect capacitor between two pins on device though R_{TEST}
- Apply between any pairs of signal pins
- Apply between all supplies and any signal pin

Different ESD Models

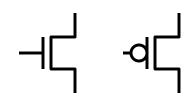
- Human Body Model (HBM)
- Machine Model (MM)
- Charged Device Model (CDM)

charge DUT to

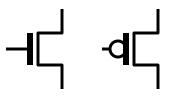

 V_{TEST}

source: Dabral and Maloney: Basic ESD and I/O Design

EE 271 Lecture 17

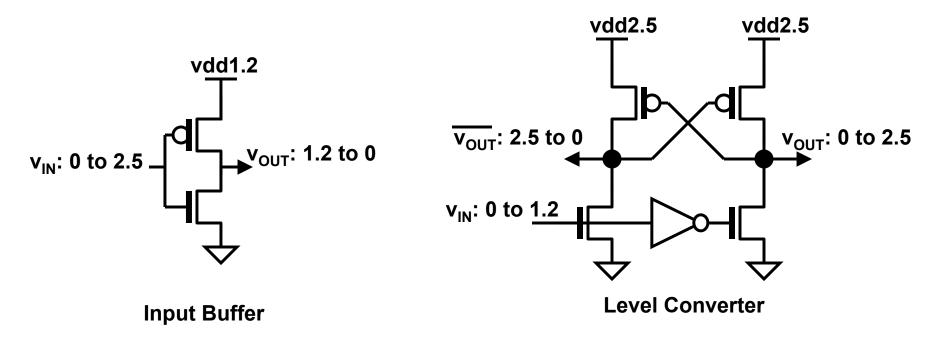

Providing for Voltage Compatibility

- Our new 0.13μ device with 1.2V supply needs to talk with older 2.5V or even 3.3V devices
- 1.2V output cannot reach the required level
- 1.2V input cannot survive the applied voltage
- How do we match these up?



Process Support for I/O

- Newer processes have dual threshold devices
 - Fast, low voltage tolerance, thin oxide devices for core
 - Slow, higher voltage tolerance, thicker oxide devices for I/O
- Build most of chip from core devices
- Just build I/O drivers from thick oxide devices


Thin oxide devices 1.2V supply

Thick oxide devices 2.5V supply

Converting Levels

- How do we get from 1.2V domain to 2.5V domain?
 - 2.5V to 1.2V: Use thick oxide devices in inverter connected to low supply
 - 1.2V to 2.5V: Use level converter circuit

