
MAH, AEN EE271 Lecture 16 1

Lecture 16:

Testing,
Design for Testability

MAH, AEN EE271 Lecture 16 2

Overview

Reading
W&E 7.1-7.3 - Testing

Introduction

Up to this place in the class we have spent all of time trying to figure out what
we want on a chip, how to implement the desired functionality. We also need to
figure out a method of testing to see if the chip works after it is manufactured.
There are two types of testing a designer is interested in. The first is to check
out the design, to make sure it is correct, and implements the desired
functionality. We have talked some about this testing already (checking out your
verilog code, or using verilog to generate tests for irsim).

Unfortunately the manufacturing process for ICs is not perfect, so we need to
check each chip created to see if it matches the original design. Given the
complexity of today’s chips, this can be a very difficult task, unless some
planning is done up front. This planning is called design for testability.

MAH, AEN EE271 Lecture 16 3

Levels of Specification and Simulation

Design testing uses the different abstraction levels:

• The goal of design is a hierarchy of levels of implementation, where each level
is “correct” with respect to the above level of specification.

- Architectural -> Behavioral -> Logic -> Circuit -> Layout -> Devices

• Each level of implementation has a more detailed behavior than its specification
cares about. The specification is a “subset” of its implementation. The
specification does not imply a unique implementation.

• The goal of simulation is to make sure that all levels of implementation “agree”
on the same results as specified.

- ProgramExecution -> C-model -> Verilog -> Gates -> Spice -> Trans. Models

• Errors occur when simulation or testing fails to detect that a given level of
implementation doesn’t produce the same results as its specification says it
should. Always think about comparing between two levels.

• Design errors are corrected by changing the implementation AND the
simulation/specification to make sure it gets checked.

MAH, AEN EE271 Lecture 16 4

Testing Roles

1. Debugging a Design - Did we design it correctly?
Why doesn’t the chip match simulation

(oops - did not simulate that case. Specification inadequate)
(oops - design mismatch. Implementation wrong.)

Designers working with chip trying to locate bugs.
Want vectors to isolate problems and minimize engineers’ time.

2. Acceptance Testing – Does this particular fabricated chip work?
Pass/Fail result. It is a quality test of the part before it is sold
Want few, good, vectors, each vector should check many possible faults
Time is money for this type of testing.

3. Failure Analysis – Why did this part fail?
Try to improve the test coverage (if faulty part passed our tests)
Try to improve the chip (if many parts are failing for the same reason.
Maybe there is a marginal circuit

Maybe a design rule really needs to be larger

MAH, AEN EE271 Lecture 16 5

Defects in Fabrication

In the fabrication of chips, there are defects that get introduced. These defects
come from many sources:

1. Defects in the base silicon.

2. Dust or contamination in the fab or on wafer.

3. Dust on mask.

4. Misalignment.

5. Over-etch or under-etch.
...
→ sometimes you don't get the exact pattern you printed.

Thus, sometimes, the implementation of the fabricated die doesn’t match its
specification, and you get wires you don’t want, don’t get wires that you want, or
find out that the transistors don’t operate as you expect

MAH, AEN EE271 Lecture 16 6

Particle Defects

Particles can disrupt either “light-field” or “dark-field” patterns on the mask or
on the wafer.

Shorts

Opens

MAH, AEN EE271 Lecture 16 7

Design Errors vs. Production Errors

Design Testing

• When you are checking out your design, all you need to do is test that every cell
works, but you don't worry as much about checking that every instance of every
cell is working. If register 6 works, register 7 will work too (but you do need to
check the decoder.)

• Check every unique cell definition.

Production Testing

• Defects are random, they can occur anywhere on the chip.

• Need to check every unique instance (every transistor and every wire)

MAH, AEN EE271 Lecture 16 8

Testing

Testing for Design:

• If one register bit works, that cell was designed correctly.

Testing for Production:

• Need to test every bit in the register to make sure they all were fabricated
correctly.

• Need some metric to indicate the coverage of the tests. This is usually done by
measuring fault coverage, which is the percentage of the faults are covered by
your tests. Fault grading is the process of measuring fault coverage.

• Tests have to be pretty good if you don’t want to sell parts that are faulty. The
lower the yield, the higher test coverage required to avoid selling a bad part.

• Probability shipping a bad die approximately (1 - C) * B) where C is the test
coverage and B is the bad yield, both normalized from 0..1

MAH, AEN EE271 Lecture 16 9

Chip Yields

New, state of the art huge part < 10% (maybe 1%)

Mature (old) part > 50% (maybe 90%)

• Problem is as yields go up, people build larger die, forcing chip yield down. The
reason? It makes the system cheaper. The number of good die/wafer need not
be large for the newest processor chip, since the price of that chip can be many
$100s. By adding more stuff to the die (floating point, larger caches), you make
the chip more expensive, but the systems cheaper.

→ Always going to have to test low-yielding parts.

→ Need high fault coverage to guarantee shipping good quality parts.

MAH, AEN EE271 Lecture 16 10

Design Testing

This type of testing has been the focus of most of this class.

• Done mostly with simulators

• Goal is to exercise the chip through all its operations.

• The ‘all’ part is hard, since

- It is hard to remember / think up all possible cases

- Simulators run much slower than the chip

• When chips come out of fabrication and fail in system

- Check to see if the simulator fails where the real chips fail.

- If it does, debug the chip in the simulator

(it is easier to peak and poke at nodes)

- If it doesn’t, you need to probe the chip

Need to find out why the simulation doesn’t match the actual part.

• Goal is to find a chip that works, and keep simulation model consistent

MAH, AEN EE271 Lecture 16 11

Probing Technology

• Normally you only have access to the pads.

• Micro-probes (nano-probes, pico-probes) are all very thin needles manipulated
on a wafer probe station that can get be moved under the microscope and
dropped down on specific wires. But often the added capacitance disrupts the
circuit so much, that no information is gained about what was happening before
the probe changed the circuit.

• With an active FET amplifier in the tip, the best micro-probe models can reduce
the added capacitance to under 100fF

• Voltage levels can be sensed non-mechanically by e-beam testers, which are
like sampling digital oscilloscopes that recreate a waveform by repeated
sampling at slightly different delay offsets.

• Both microprobing and e-beam probing can usually only get to the top layer of
metal. Sometimes it is possible to scrape insulation away, to get to the next
lower level of metal if it isn’t covered by the top layer. Sometimes laser or ion
beam drilling can be used too.

MAH, AEN EE271 Lecture 16 12

Single-Die Repair Technology

When a problem is discovered, and a correction proposed, it is desirable to check
the correction quicker than waiting many weeks for the re-fabrication cycle.

It is possible to make changes to individual dies by using focused ion-beam(FIB)
machines. Together with laser cutting, this allows the capability to both ablate
(remove) and deposit (add) wires. But the wires are much lower quality
(hundreds of ohm/square), and deposition rates are slow (on the order of a minute
per 100 microns).

Much better to get the chips right in the first place!

MAH, AEN EE271 Lecture 16 13

Production Testing

Once the design is fully correct, production testing verifies correct fabrication for
each new die.

But this isn’t trivial.

1. Need to test all the gates in a chip.

2. Only get to force chip inputs and observe chip outputs. (Production testing is
done with automated equipment, never microprobing or e-beam, obviously)

gates >> # inputs/outputs.

3. Production testing is always done by applying a sequence of vectors (apply
new input to pins, and measure outputs from pins), usually one vector per clock
cycle.

If there was no state, the problem would merely be hard, but not impossible. With
state, the problem is nearly impossible unless the designer helps.

MAH, AEN EE271 Lecture 16 14

Testing Combinational Logic

Problem is that you don’t have direct control over the inputs to the gate you want
to test, and you can’t directly observe the output either.

This problem would be easy except for reconvergent fanout.--That is, that node
“a” and node “b” can be the same node.

In general this is a ‘hard’ problem.

Controllability
Observability

MAH, AEN EE271 Lecture 16 15

Reconvergent Fanout

In real logic circuits you need to choose a consistent set of assignments along the
input paths, so the output path is also activated.

This choice is hard (impossible) to do without some back-tracking (exponential
time in the worst-case)

But the average case is not very bad, and there are a number of algorithms /
programs to help generate the test vectors:

D-algorithm

Podem

(Take McCluskey’s class here at Stanford …)

Problem is with State --

- Don't have direct control of inputs, since most inputs are really the outputs of
latches and therefore the result of the previous inputs. We will address this
problem soon, but first there are other issues …

MAH, AEN EE271 Lecture 16 16

Are All Faults Detectable?

The process of controlling inputs and observing outputs is called “sensitizing” a
path to a particular fault.

Sometimes, there is no combination of inputs that will sensitize a particular fault.
Does this mean the fault doesn’t matter? Sometimes it really doesn’t matter,
because there may be redundant logic in the circuit. Test generation programs
therefore help to find redundant logic that can then just be removed from a design.

But usually, the redundant logic is there for a reason, such as in a carry-lookahead
adder, the logic helps to make the overall critical path shorter. If there was a fault
in some of the redundant logic, the observable results might still be correct, but
slower.

But production testers are usually applying the vectors more slowly than real
operation, so they can’t detect the speed degradation. It is better to change the
design by bring out an internal node to an output, so that the faults will be
observable with a change in logic result that the automated tester can see.

MAH, AEN EE271 Lecture 16 17

Fault Models

Most automatic test pattern generation (ATPG) programs use a simple Stuck-At-
One (ST1) and Stuck-at-Zero (ST0) model of faults.

But, most real faults are actually opens or shorts. Unfortunately, generating tests
for these kinds of faults is much more ugly. Generally, people and programs just
use stuck-at models and hope they will catch the real faults anyway.

In CMOS, an open node stores a value. If it is changing slowly enough, then a
sequence of stuck-at tests for that node will catch it. Need to try to drive it to one
value, then try to drive it to the other value to detect that it was open and didn’t
change. So, if you have a complete set of patterns testing every node for ST1
and ST0, then just apply it twice to make sure every node gets either ST1-ST0-
ST1-ST0 or ST0-ST1-ST0-ST1 tests.

Shorted nodes can only be sensitized if the two drivers are in opposite states.
Without information about geometric locations, there are (N-1)2 possible shorts in
an N node circuit. If you know the layout the number drops to a few times N.

MAH, AEN EE271 Lecture 16 18

IDDQ Testing

Measuring the quiescent power supply current (IDDQ) as a method of testing is
another good idea in CMOS circuits.

Once pure fully-complementary static CMOS circuits have driven their outputs
they only draw picoamps from the power supply to compensate for leakage.

So, design the chip with a way of turning off all DC power consumption (like
ratioed-logic NOR gates), and then after every vector, the power supply current
will settle down. Even on big chips with millions of transistors, the leakage current
of all the transistors together is less than (or about the order of) the on-current of a
single transistor that is stuck on.

So, measuring IDDQ is a great way to detect shorts which will cause fighting
output drivers to consume current.

But, don’t have time to measure IDDQ after every test vector, so just measure it
after a few well chosen ones, and hope.

MAH, AEN EE271 Lecture 16 19

Testing Circuits with State

Suppose you have a 32 bit counter:

• With no inputs but clock and the outputs there are two problems:

- The tester does not know where the counter starts. Thus it can’t simply
compare the counter output to the ‘expected’ value.

- To test the counter takes 232 clock cycles. This is a long time to test just 32
counter cells.

• Adding a reset fixes the first problem.

- All counters (and state in general) need a reset to enable the tester to get the
chip in a known starting state. Testers never synchronize or change vectors
based on “if” conditional statements like a program.

• Adding a load input fixes the second problem.

- With a load it takes O(32) steps to test the counter.

- To efficiently test state machines, you need a direct way of getting the state
machine into the state you want to test. The easiest way of doing this it to
provide a mechanism to load the state in the state machines.

MAH, AEN EE271 Lecture 16 20

Design for Testability

An absolute requirement for Modern Chips.

Partition the chip to make controllability of all state and therefore the testing,
easier. Think about changing a sparsely connected FSM into a fully-connected
graph, where every node can be entered directly by a transition from every other
node.

Wide Range of Options:

- Explicit built-in-self-test (BIST)

- Additions to the (micro)code to make it go through a test sequence

- Extra Test Buses

- Link all registers/latches into scan chains, to make state scannable.

There are some automatic test pattern generation programs that do a really good
job, but only if all state is scannable. This is a motivation to make the state
scannable even if it seems excessive.

“Live within your tools”

MAH, AEN EE271 Lecture 16 21

Scan

Scan techniques are often used in testing, since they take only a few (about 4 to
6) additional pins, but have the potential to control a lots of things (state, other
output pads, etc.). Trade bandwidth for pins. Techniques requiring everything to
be scannable are often called by the buzzword LSSD (level-sensitive scan
design) which really just means “full-scan”. (Original meaning also implied strict 2
phase clocking)

• Convert testing a sequential machine into solely the problem of testing a block
of combinational logic with ALL primary inputs controllable through scan, and all
primary outputs observable through scan.

• Accomplish this by changing all the state latches into a latch that can become a
shift-register, and linking them all together in scan chains.

• A state can be shifted in, all the logic can compute, and then the state can be
shifted out at the same time the next state is shifted in.
Do a complete scan between every applied test vector.

• Scan great for both debug and production wafer or packaged part testing

• Partial-scan is possible, but ATPG tools are not as automated.

MAH, AEN EE271 Lecture 16 22

LSSD

• In test mode, registers shift data and form large shift registers.

• Since all the CL blocks can be ‘directly’ driven and observed, we can use a test
generation program for combinational logic.

• In a latch-based chip, need to add extra Φ2 latches so the scan chain doesn’t
go through combinational logic.

• In both cases, scan-in muxes can be combined into Φ1 latches.

Scan of Register-based designs Scan of Latch-based designs

CL
Φ1 Φ2

Scan In

Scan Out

CL
Φ1

Φ2

Scan In

Scan Out

Φ2CL

*

MAH, AEN EE271 Lecture 16 23

Design for LSSD

Does not affect user-visible architecture but

• Makes registers or latches more complex (larger and slightly slower)

→ area penalty.

• The additional wiring taken up by the scan wires is usually minuscule, but this is
only true when the CAD flow can generate a good scan ordering, which must be
determined after cell placement (and then backannotated into logic netlist).

For many semi-custom design, full-scan makes sense since it allows the
production test vectors to be generated with good test coverage.

For full custom, it use is growing.

• While datapaths are pretty easy to test, and you don’t need to scan
architecturally-visible registers, just read them, there is a great fear about
debugging chips that can’t be probed. You need some internal access, and
scan is one way to get it.

MAH, AEN EE271 Lecture 16 24

Built-In-Self-Test

The buzzword BIST is best used to refer to the portions of a design where an
additional FSM has been added solely for the purposes of running through a test
sequence where the results are NOT observable by the tester on every clock
cycle.

Typically, BIST is added to test large (RAM) arrays where the number of clock
cycles required by conventional vector-based tests would be just too excessive.

Additionally, BIST can be used to test the delay performance of circuits which
would also not be accessible by a tester applying vectors slowly.

The result of BIST is meant to be a pass/fail result, not diagnostic information.
Typically, the BIST controller compresses the results into a “signature” which can
be compared against the signature of a known good chip.

Unlike other methods of design for testability, adding BIST usually doesn’t really
help in providing any controllability for design debug.

MAH, AEN EE271 Lecture 16 25

Helping out Board-level Testing

With the increase in chip pin count, and board complexity, printed circuit board
testing is becoming an issue too:

• Old ‘bed-of nails’ testing does not work

- This is where the board was pulled against a large number of pin points. The
points could be either sensed or driven, allowing the tester access (both
control and observe) to the board level signals.

• Leads of surface-mount components are inaccessible after soldering, so can
only test by being able to control the pads of the chips.

• Custom and semi-custom chips are starting to routinely have features for board
testing built in. Boards can be easily tested if all the chips on the boards use the
same standard

• JTAG (an IEEE standard) adds a pad-boundary scan to allow the tester to
control the I/O pins on each chip to test the board’s wires.

• JTAG can also give access to the internal scan of the individual chips

MAH, AEN EE271 Lecture 16 26

JTAG

Each chip contains a JTAG controller that can recognize when it is being
individually addressed by the board-level test sequence. The controller generates
the signals to control the muxes in each pad.

Using ability to make every pin either an input or output, the tester drives a value
on a pin, and then checks the input pins of the other chips that should be
connected to this chip. If they don’t see the same value, the ‘board’ is not working
correctly (could be solder connections, or a broken via in the board)

Chip

Φ1 Φ2

Previous Pad in chain

Next Pad

Internal
Logic

Physical
Pad

Tri-state

MAH, AEN EE271 Lecture 16 27

Overall System Test Strategy

To enhance controllability and observability both inside of chips and at the board
level, use the techniques discussed in this lecture:

• Add reset signals and muxes to allow more direct control.

• Bring key signals out from inside of complex combinational logic blocks.

• Add Scan to latches/registers.

• Add BIST around RAMs or other arrays, using signature compression to
compare the results.

• Use JTAG to give pad access to the board-level test controller

• Parallelize test of different chips at the board-level

• Define the tests that can be run or initiated as “diagnostics” by the customer in a
finished system.

MAH, AEN EE271 Lecture 16 28

