
EE 271 addition to Lecture 6 1AEN

Verilog Code for FSM

• CL for next state and output
Use case statement to check the state, then set next state and output

using the input (if then)

always @(state or a)
case (state)

S0: if (a) next_state <= S3
else next_state <= S1

S1: if …
.
.

default: next_state <= S0

EE 271 addition to Lecture 6 2AEN

Verilog Code for FSM

• Use a separate always block to store the sate:

always @(posedge clk or posedge reset)
if (reset) state <= S0;
else state <= next_state;

EE 271 addition to Lecture 6 3AEN

Some Guidelines

• Partition your design into leaf cells and non-leaf cells
• For CL use assign statements if practical

– if need to use always, in case statements assign the signal
in all branches

• Include default cases in your case statement
• Use comments
• Use meaningful signal names, parameters for constants
• Make sure you stimulus list is complete
• Avoid

– undefined outputs
– incomplete specification of cases
– shorted outputs
– missing begin/end blocks

EE 271 addition to Lecture 6 4AEN

Common Places for Bugs!

• Clocks, registers and latches

• FPGA and ASIC designers sometimes use conservative
methodologies:

– Only use positive edge-triggered registers

– Use a common asynchronous reset for all regs

– Try to use common clocks for all regs, avoid gated clk, use
enable instead

– Resolve all X’s and “bus conflict” messages after simulation

– Understand all synthesis warnings, do not simply ignore
them

EE 271 addition to Lecture 6 5AEN

Blocking and Nonblocking Assignments

• Inside an always block you can have

– Blocking assignment =
• a group of them are evaluated sequentially

– Nonblocking assignment <=
• are evaluated in parallel

• Use nonblocking, it’s a better model for hardware!

– real gates operate independently

